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Abstract: Dimensional Analysis (DA) is a mathematical method that manipulates the data to be
analyzed in a homogenized manner. Likewise, linear regression is a potent method for analyzing
data in diverse fields. At the same time, data visualization has gained attention in tendency study.
In addition, linear regression is an important topic to address predictive models and patterns in
data study. However, it is still pending to attack the manipulation of uncertainty related to the data
transformation. In this sense, this work presents a new contribution with linear regression, combining
the Dimensional Analysis (DA) to address instability and error issues. In addition, our method
provides a second contribution related to including the decision maker’s attitude involved in the
study. Therefore, the experimentation shows that DA manipulates the regression problem under a
complex situation that the outcome may have in the investigation. A real-life case study is used to
demonstrate our proposal.

Keywords: linear regression analysis; dimensional analysis (DA); forecast; mean square error; pat-
terns; tendency

MSC: 68T10; 68T30; 62J86; 68T37; 68V30; 60A86; 62F07; 62H30

1. Introduction

Linear regression (LR) model utilized in numerous areas of application [1]: for example,
engineering, economics, ecological, social sciences, and medicines, among many others.
Hence, linear regression is a potent and flexible technique in order to address regression
issues. Thus, the trend of LR model is an extensive topic with important interest for
researchers according [2–4].

Moreover, according to [5–7], the topic related to inventories play a key role because
represent around 60% about operational cost for the organizations. Generally, the inven-
tories are classified as following: (1) raw material, (2) work in process, (3) spare parts,
and (4) finish good, etc. In addition, the interest related to inventory is due to cost man-
agement strategies by organizations [8–11]. Based on operation research, the inventories
can be used in order to addressed considerable reduction cost. Therefore, the forecast
method is imperative in order to determine the quantities with accuracy avoiding minimal
error [12]. In this mode, the literature review explains the use of several methods focused
to forecast of the inventories: for example, Linear regression and time series [13,14], Neural
Networks [11,15], Machine Learning [16], and Bayesian principal component regression
model [17], among others [10,18].
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Additionally, dimensional analysis (DA) presents extensive interest in engineering [19,20].
DA has the potential to model, simplification the scale and dimension of the variable [21].
Thus, applications of neural networks [22], Matrix manipulations [23], physical sciences ap-
plications [24], revolutionary dimensional analysis methods [25,26], and statistical theories for
dimensional analysis [27].

Therefore, dimensional analysis (DA) is a proficient tool that involves the interrela-
tionship of the data or arguments under analysis. Much different research on DA is related
to the statistical situation [28–31]. In this mode, Dovi [32], reported the improving the
statistical accuracy of dimensional analysis correlations. However, this work does not
consider the attitude of the decisors.

The literature reveal a substantial interest in dealing with the next crucial gaps:

• The vital element is the instability of the prediction method [33,34];
• Minimize the median squared difference between observed and fitted response [35];
• Verify the efficacy of the algorithm, the greatest robustness, and accuracy in forecast

results [12,36–41].

Based on the aforementioned considerations, the concrete contributions of this paper
are the following:

1. We formulate a method to attack the drawbacks related to efficiency, instability, and
minimal error.

2. This study explores the significant application of linear regression model under
Dimensional Analysis.

3. The novelty of the current study also lies in considering the grade of importance of
the decision makers or experts involved implied to solve the problem.

4. Finally, the proposed includes an application of DA to linear regression to deal with
an inventory forecast problem.

The remainder of this paper is structured as follows: Section 2 presents basic concepts.
The research methodology is described in Section 3. A numerical case study is presented in
Section 4. Section 5 provides the discussions of findings. Finally, the conclusion is given in
Section 6.

2. Basic Concepts

This section introduces the basic concepts used in this document.

2.1. Linear Regression

The linear regression (LR) method used to approximate a pendent variable reported
to the values or changes of other variables studied in a linear shape.

Definition 1. Let xi and yi be two variables within a random and continued distribution. In this
mode, assuming a numerical data set mapped by (xi, yi) for i = 1, 2, . . . , n, where xi ∈ Un and
yi ∈ Un. A reasonable form of relation between the response variable called Y and the regressor X is
the linear relationship. In this manner, a model can be represented as follows, where Ÿl of dimension
n is a mapping in space Rn → R, captured by a vector of analysis related to metrics involved, and
Υ ∈ ω ⊆ RP, which is built by χ and Γ; In this mode, the simple linear regression depicted by
means of Equation (1):

Ÿl = χ + ΓXl (1)

where χ is the value stand for the value of when Xl = 0, also called the intersection, and Γ is the
change in Ÿl called the slope of the line.
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2.2. Dimensional Analysis

The mathematical expresion of DA is depicted by Equation (2) as follows:

DA =
n

∏
i=1

(
xi
Si

)τi

. (2)

where:
xi = is the numerical argument for i = 1, 2, . . . , n;
Si = is the best numerical datum taken from the data set under analysis;
τi = is the grade of altitude or weight of the decision (expert) within a vector.

In this sense, the parameter τj for j = 1, 2, . . . , m and τ ∈ [0, 1].

Definition 2. In this mode can be introduced the mean for xi based on the Equation (3). Considering
xi, a numerical data set of Rn → R that maintains random conditions and continue distribution is
created:

meanDA =
n

∏
i=1

(
xi
Si

)τj

(3)

The solution in terms of the original argument is obtained by substituting ∏n
i=1

(
xi
yi

)τj
:

meanDA = ∑n
i=1

〈
∏n

i=1

(
xi
Si

)τj

〉

= ∑n
i=1

〈(
x1
S1

)τ1 ×
(

x2
S2

)τ2×, . . . ,×
(

xn
Sn

)τm

〉
,

(4)

then:

meanDA =
n

∑
i=1

〈
n

∏
i=1

(
xi
Si

)τj
〉

. (5)

Example 1. Assuming a set called a1 = (2, 3, 6, 7), it will receive a vector weight
τ = (0.25, 0.25, 0.25, 0.25) and has been determined to be Si = (4.5). Then, applying Equa-
tion (5), we will obtain the meanDA result for this example:

meanDA = ∑4
i=1

〈(
2

4.5

)0.25
×
(

3
4.5

)0.25
×
(

6
4.5

)0.25
×
(

7
4.5

)0.25
〉

= 3.911.

3. Main Results

In this section, we present the generalized linear regression method under the Dimen-
sional Analysis environment.

3.1. Generalized Linear Regression Method under Dimensional Analysis Environment

This section presents a generalized linear regression method under the Dimensional
Analysis environment called (GLR-DA):

Ÿ = γ + βDA x. (6)

Let A be the mean of x, and let xs depict the ideal value of x under dimensional
analysis. Then:

A =
n

∏
i=1

(
xi
xs

)τj

. (7)

B represents y, and ys depicts the ideal value of y under dimensional analysis. Then:
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B =
n

∏
i=1

(
yi
ys

)τj

. (8)

Ÿ = γ + βDA x + Di. (9)

where Ÿ is a vector of responses; γ is a normally scattered vector of random data obtaining
the expected value = 0, also called the intersection; βDA is the weight vector corresponding
to x; and x is the full rank matrix of not random variables.

3.2. Compute the Mean and Variance Estimators

The estimated values of the parameters γ and βDA given in the regression line (9) are
found by using the method of the least-squares and get

γ =
∑Z

z=1 yz − βDA(∑Z
z=1 xz)

n
= ȳ− βDA x̄ (10)

βDA =
∑Z

z=1(xz − A)(yz − B)

∑k
i=1(xz − A)2 (11)

In addition to the assumptions that the error D in the model is a random variable with
mean λ = 0 and variance θ2 constant, also suppose that D1, D2, . . . , Dn are independent
from one run of the experiment to another. In this sense, under random conditions, the
mean λ presented in Equation (12) and the variance θ2 in Equation (14) can be obtained
as follows:. In Figure 1 depict the random conditions for error D .

-3θ -2θ -1θ λ 1θ 2θ 3θ

y

Figure 1. Normal Distribution.

Thus, the mathematical expectation is:

E(λ− λx) = E(λ)− E(λx) = 0 (12)

The covariance Ŝxy is depicted as follows:

Ŝxy =
1
Z

Z

∑
z=1

(xz − A)(yz − B) (13)

where:

A =
1
Z

Z

∑
z=1

xz, and B =
1
Z

Z

∑
z=1

yz
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To determine related bias information, it is imperative obtain the variance. In this
sense, it is possible to carry out a modelization of error called ξ:

E(S2) = θ2 =
1

n− 2

Z

∑
z=1

(xz − A)(yz − B) (14)

Thus, the difference between observations xi and estimated value of A =
1
Z

Z
∑

z=1
xz is

given as:

ξt =
Z

∑
z=1

(xz − A)2, (15)

Moreover, the difference between observations yi and estimated value of B =
1
Z

Z
∑

z=1
yz

is given as:

ξs =
Z

∑
z=1

(yz − B)2, (16)

and the aggregation error of xi and yi, respectively, converge in the Equation (17):

Ŝ =
Z

∑
z=1

(xz − A)(yz − B). (17)

In addition, the sum of the squares of the error can be presented as follows:

SSE =
Z

∑
z=1

ξ2 =
Z

∑
z=1

(yz − γ− βDAxz)
2 (18)

Then, assuming that βDA = Ŝ
ξt

, the solution for Equation (18) and using Equations (14)–(16)
can be obtained as follows:

SSE =
Z

∑
z=1

(
(yz − B)− βDA(xz − A)

)2

=
k

∑
z=1

(yz − γ)2 − 2βDA

Z

∑
z=1

(yz − B)(xz − A) + β2
DA

Z

∑
z=1

(xz − A)2

= ξs − 2βDA
(
Ŝ
)
+ β2

DAξt

= ξs − 2

(
Ŝ
ξt

)(
Ŝ
)
+

(
Ŝ
ξt

)2

ξt

= ξs − 2

(
Ŝ2

ξt

)
+

(
Ŝ2

ξ2
t

ξt

)

= ξs − 2

(
Ŝ2

ξt

)
+

(
Ŝ2ξt

ξ2
t

)
Finally:

SSE = ξs −
(

Ŝ2

ξt

)
= ξs −

(
Ŝ
ξt

)
Ŝ

Then, the sum of the squares of the error (SSE) is depicted as follows:

SSE = ξs − (βDA)Ŝ (19)
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Additionally, an unbiased estimator of the mean square error (MSE) is:

S2 =
ξs −

(
βDA1

)
Ŝ

n− 2
=

SSE
n− 2

= MSE (20)

4. Numerical Example

In this section, two numerical cases are presented to demonstrate our proposal.

4.1. Numerical Example from a Real Case Study

A real case is considered in a manufacturing company’s need to establish a forecast
related to inventory handling. This company is facing problems related to the forecast
accuracy of raw material. In this mode, the data set used in this study will be under an
inventory prediction problem. Our proposed GLR-DA will addressing a inventory problem
to estimate the inventory conditions. The data considered are depicted in Table 1.

Table 1. Numerical data.

x y x y

1 32 7 89
2 40 8 94
3 40 9 96
4 45 10 96
5 64 11 121
6 71 12 125

The approach requires a pairwise comparison of the variables x and y based on the
following model according Equation (5). In Table 2, the results obtained for each parameter
A and B are depicted.

Table 2. Estimation of the parameters A and B.

A B

0.11 5.63142487
0.14 4.45475331
0.19 3.63920858
0.21 3.34356494
0.26 3.56587087
0.22 3.42892914
0.19 3.55394256
0.35 3.4168655
0.35 3.25595148
0.41 3.0892899
0.43 3.30630209
0.46 3.21766878

mean 3.32 mean 43.903772

The following results applying our method proposed are depicted in Table 3.
Hence, the SME is obtained using Equation (20):

MSE =
644.97

10
= 64.44

The Pearson correlation [42] is presented in Table 4, where a strong correlation between
the information for each variable is observed.
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Table 3. Details and error study.

Real Prediction CaseM ξs |ξs| ξ2
s

32.00 20.50 27.9 11.5 11.5 132.2
40.00 30.61 36.6 9.4 9.4 88.2
40.00 40.71 45.4 −0.7 0.7 0.5
45.00 50.81 54.2 −5.8 5.8 33.8
64.00 60.92 62.9 3.1 3.1 9.5
71.00 71.02 71.7 −0.0 0.0 0.0
89.00 81.12 80.5 7.9 7.9 62.0
94.00 91.23 89.2 2.8 2.8 7.7
96.00 101.33 98.0 −5.3 5.3 28.4
96.00 111.43 106.8 −15.4 15.4 238.2
121.00 121.54 115.5 −0.5 0.5 0.3

125.00 131.64 124.3 −6.6 6.6 44.1

Total 0.14 69.11 644.97

Average 0.01 5.76 53.75

Table 4. Correlation matrix.

Real Data Prediction with GLR-DA Conventional Regression

Real Data 1.0000000 0.9827522 0.9827528
Prediction with GLR-DA 0.9827522 1.0000000 1.0000000
Conventional regression 0.9827528 1.0000000 1.0000000

Finally, it is important to consider that the correlation coefficient is around to 98.27%.
It is a strong value to confirm that the forecast obtained with our proposal is proficient and
robust.

4.2. Numerical Example 2

The data for this experiment were taken from [43] focused on a sales estimation study.
In this mode, the data are presented in Table 5, and for convenience, x represents the weeks
and y describes the sales.

Table 5. Sales data by weeks.

x y

1 9
2 8
3 10
4 10
5 10
6 8
7 7
8 10
9 8

10 10
11 10
12 9
13 9

According to the results represents in Table 6, it can be see that our proposal has the
potential to handle sales estimation problems.
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Table 6. Details of the estimations.

Real Prediction ξs |ξs| ξ2
s

9.00 2.34 6.7 6.7 44.4
8.00 3.22 4.8 4.8 22.9
10.00 4.10 5.9 5.9 34.8
10.00 4.98 5.0 5.0 25.2
10.00 5.86 4.1 4.1 17.1
8.00 6.74 1.3 1.3 1.6
7.00 7.62 −0.6 0.6 0.4
10.00 8.50 1.5 1.5 2.2
8.00 9.38 −1.4 1.4 1.9
10.00 10.27 −0.3 0.3 0.1
10.00 11.15 −1.1 1.1 1.3
9.00 12.03 −3.0 3.0 9.2
9.00 12.91 −3.9 3.9 15.3

Total 18.90 39.62 176.40

Average 1.90 2.98 13.43

In addition, the SME is obtained using Equation (20):

MSE =
176.40

10
= 17.64

5. Validations

In this section, statistical tests such as the normal probability test, correlation, means,
standard deviation, confidence interval, and Tukey’s test were used. We conducted the
statistical tests in order to evaluate the methodology proposal as followings.

In this manner, the normal probability test is realized to appraisal the data distribution.
It can be observed in Figure 2 that the normal test results are consistent.

Figure 2. Normal Test.

Thus, a cross-validation of the correlation of the information is presented in Figure 3.
In fact, the chart presented is very interesting, showing the correlation of the data analyzed
with proposed GLR-DA and the conventional linear regression method.
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Figure 3. Correlation Chart about the comparisons.

In addition, the box plot is presented in Figure 4. The data analyzed show small
variations with respect to their means.

Figure 4. Box Plot Chart.

A statistical summary report is depicted in Table 7. It can be considered that the means
and standard deviations are similar.

Table 7. Summary analysis.

Factors Adj. Total
Mean

Adj. Total
StDev

Item-Adj
Corr.

Cronbach’s
Alpha

Real Data 152.16 68.03 0.9828 0.995
Prediction with GLR-DA 152.17 63.49 0.9956 0.9912
Conventional regression 152.16 68.29 0.9962 0.9874

Then, a confidence interval was carried out to validate the information, and the results
are depicted in Table 8. It can be observed that difference does not exist between the means
analyzed.

Table 8. Confidence Interval test.

Factor N Mean StDev 95% CI

Real Data 12 76.08 32.16 (56.43, 5.74)
Prediction with GLR-DA 12 76.1 36.4 (56.4, 5.7)
Conventional regression 12 76.08 31.61 (56.43, 5.74)

In addition, it can be seen in Figure 5 the confidence interval with tendency within
limit.
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Figure 5. Confidence interval.

Hence, information was grouped using the Tukey’s Method [44]. The test was con-
ducted using a 95% confidence, and the results are presented in Table 9. It can be see that
the means are not significantly different.

Table 9. Tukey Pairwise Comparisons.

Factor N Mean Grouping

Conventional regression 12 76.08 A
Real Data 12 76.08 A

Prediction with GLR-DA 12 76.1 A

Tukey simultaneous tests for differences of means. In this mode, using a individual
confidence level = 98.04%. According to comparison of treatment means by Tukey’s
Multiple the findings confirm the consistency about our proposal as shown in Table 10.

Table 10. Tukey Simultaneous Tests.

Difference of Levels Difference of Means SE of Difference 95% CI T-Value Adjusted p-Value

Prediction-Real Data 0 13.7 (−33.5, 33.5) 0 1
Conventional-Real Data 0 13.7 (−33.5, 33.5) 0 1
Conventional-Prediction 0 13.7 (−33.5, 33.5) 0 1

Using the information presented in Figure 6. It can be observed that the means have
similar performances. In this manner, we can determine that they contain the same results.

Figure 6. Tukey simultaneous 95% confidence intervals.
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6. Discussion and Conclusions

The linear regression using dimensional analysis is an alternative manner to obtain
forecasts. In addition, the methodology’s findings proposed can potentially manipulate
regression situation. Likewise, we carried out the different validations to confirm the
consistency and stability of the results. Hence, the means comparisons using Tukey test
explain the significant contribution to confirm the proficient results with our proposal.
According to the different statistical tests realized, we can confirm the effectiveness of our
proposal. In addition, the findings about the results from our proposal are reproducible.
Therefore, based on those results, we confirm that our proposal is capable of dealing with
efficiency, instability, and minimal error focused on the inventory forecast condition.

The literature revised indicates that linear regression continues to be an important
topic to be investigated for academics. Nowadays, advances in technology and complexity
are demanding accuracy forecast. At the same time, the companies face challenges in
addressing the information in a sophisticated manner. Future research can be addressed
to implement fuzzy applications and implement a software environment. In addition, it
can be interesting to perform comparisons in other fields, for example, health, economics,
agriculture, etc.
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