. mathematics

Article

A Modified Conjugate Residual Method and Nearest Kronecker
Product Preconditioner for the Generalized Coupled Sylvester
Tensor Equations

Tao Li !, Qing-Wen Wang %3

check for
updates

Citation: Li, T.; Wang, Q.-W.; Zhang,
X.-F. A Modified Conjugate Residual
Method and Nearest Kronecker
Product Preconditioner for the
Generalized Coupled Sylvester
Tensor Equations. Mathematics 2022,
10,1730. https://doi.org/10.3390/
math10101730

Academic Editors: Zhongshan Li and
Michael Voskoglou

Received: 17 April 2022
Accepted: 13 May 2022
Published: 18 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

*{ and Xin-Fang Zhang !

Department of Mathematics, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan
Province, Hainan University, Haikou 570228, China; tli@hainanu.edu.cn (T.L.);

995272@hainanu.edu.cn (X.-EZ.)

Department of Mathematics, Shanghai University, Shanghai 200444, China

Collaborative Innovation Center for the Marine Artificial Intelligence, Shanghai 200444, China
Correspondence: wqw@t.shu.edu.cn or wqw@shu.edu.cn

Abstract: This paper is devoted to proposing a modified conjugate residual method for solving the
generalized coupled Sylvester tensor equations. To further improve its convergence rate, we derive a
preconditioned modified conjugate residual method based on the Kronecker product approximations
for solving the tensor equations. A theoretical analysis shows that the proposed method converges to
an exact solution for any initial tensor at most finite steps in the absence round-off errors. Compared
with a modified conjugate gradient method, the obtained numerical results illustrate that our methods
perform much better in terms of the number of iteration steps and computing time.
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1. Introduction

As is well known, the tensor equations as generalizations of matrix equations have
been intensively applied in the field of theory and applications. Particularly, the generalized
coupled Sylvester tensor equations have drawn significant attention because they play an
increasingly important role in control theory [1-8], finite difference [9], finite element [10]
and information retrieval [11], etc. This motivated us to propose two effective iterative
methods for solving the tensor equations.

In this paper, we are interested in developing two iterative algorithms to solve the
following generalized coupled Sylvester tensor equations:

Xy X1 A+ X X App+ -+ X1 X1 Aoy + X X A1y = By,

Xy X1 Ag1 + X3 X Agp + -+ + Xy X1 Ag(y_1) + X1 X Aoy = By,
@

Xy X1 A+ X X0 Ao+ -+ Xyo X1 An(n—l) + X1 X Aun = By,

where the matrices A;; € R, the right-hand side tensors B; € R *2x*l: are given
(i,j=1,---,n),and X] e RhxhxxIn mugt be unknown. As a special case of Equation (1)
(X; = & for j = 1,2,3), the third-order Sylvester tensor equation (known as 3D matrix
equation) is

X X1 A1+ X XAy + X x3A3 =15, 2)
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which arises frequently from the discretization of radiative discrete ordinates equations [12,13]
and high-dimensional partial differential equation [14]. One application of Equation (2) in
heat transfer is to solve the three-dimensional microscopic heat transport problem [15]

oy U, U

Loy Pu | Pu PU  Q+1,00/0t
k ot T 9t2 ’

= VU =+t == 3

G aa) T Uan2 x ©®)
where Q is a heat source, U is temperature, C, is specific heat, p is density, x is conductivity,
and 7; and 1y are the time lags of the heat flux and temperature gradient, respectively.
From the mixed collocation-finite difference method, Equation (3) can be discretized as
Equation (2) with its coefficient matrices given by

T, 242

At + T, [
—Tq(g)z( 3 ) — zxAtq’ if i=j
(A1)ji = - _1)iti
T U iy
¥ osin®[5 (=57 — x)]
2+2
— (A, if k=5
(A2)sk = T (_1)k+s 4)
—27,(+) , if k#s,
q ; "
Oy sin®[3 (352 — )]
T 1242 _
—TU(E)Z(ZT)I if p=gq
(As)gp = T (—=1)p+a
—2my(5)? , if p#g,
02" sin[L(l —z,)]
where x; = %—T,yk = % and z, = %,and ,B]- = %’*, Ys = % and % fori,j =0,---,

Iy—=1,ks=20,---,[y—1and p,q = 0,---, I — 1. Some effective iterative algorithms
have been proposed for solving Equation (2). For example, according to the hierarchical
identification principle, Chen and Lv proposed a gradient-based iterative method and its
modification version [16] for solving the tensor equation when it has a unique solution. To
accelerate the rate of convergence of the GI method, Ali Beik and Ahmadi Asl [17] derived
a so-called residual norm steepest descent algorithm for solving the tensor equation. If
X; = X forj =1,---,n, then Equation (1) reduces to the generalized Sylvester tensor
equation

XX A+ X XA+ + X X, A =B, 5)

which has been widely applied in the signal image, blind source separation, restoration
of color and hyperspectral images. For more details, one may refer to [18-23] and the
references therein.

In the last decade, some efficient algorithms for solving Equation (5) have been devel-
oped well. For example, Chen and Lv [24] proposed a generalized minimum residual (GM-
RES) method and its preconditioned version in their tensor forms for solving Equation (5).
By employing the Arnoldi process and the full orthogonalization method, Ali Beik et al. [25]
introduced the conjugate gradient and nested conjugate gradient methods to search the
solution of the generalized Sylvester tensor equation, respectively. Moreover, Karimi and
Dehghan [26] presented a new method based on the global Bidiag 1 process [27] for finding
an approximate solution of (5), which is a promising method. Wang et al. [28] studied the
performance of an iterative algorithm that obtains the least square solution of Equation (5)
over the quaternion algebra. Additionally, Xu and Wang [29] extended the BiCG and
BiCR methods to solve the Stein tensor equation, which is a general form of the Lyapunov
matrix equation. Li et al. [30] developed five numerical algorithms for solving the discrete
Lyapunov tensor equation. Huang and Li [31] proposed some Krylov subspace methods
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including the conjugate residual, generalized conjugate residual, biconjugate gradient,
conjugate gradient squared and biconjugate gradient stabilized methods in their tensor
forms for solving a tensor equation. Hajarian [32] gave the matrix form of the biconjugate
residual algorithm for studying the generalized reflexive and anti-reflexive solutions of a
generalized Sylvester matrix equation. Then, Hajarian [33] derived four efficient iterative
methods for obtaining the reflexive periodic solutions of general periodic matrix equations.
Additionally, Hajarian [34] presented a conjugate gradient-like method for solving a general
tensor equation with respect to the Einstein product. In [35], Najafi-Kalyani et al. derived
some effective iterative methods for solving the tensor Equation (5), which are based on the
tensor form of global Hessenberg process. Liu et al. [36] investigated the solvability of a
quaternion matrix equation. Mehany and Wang [37] studied some necessary and sufficient
conditions for the solution of the three symmetrical systems of coupled Sylvester-like
quaternion matrix equations. Combining the standard Tikhonov regularization technique,
a new iterative method to solve the ill-posed tensor Equation (5), was also established.
By CP decomposition, Bentbib et al. [38] developed Arnoldi-based methods (block and
global), which possess the global convergence for solving the tensor Equation (5) efficiently.
Additionally, Heyouni et al. [39] established the generalized Hessenberg method in its
tensor form for solving (5). However, so far, there has been little research on solving the gen-
eralized coupled Sylvester tensor Equation (1), numerically. Only Lv and Ma [40] presented
a modified conjugate gradient (MCG) method for investigating its iterative solutions.

For solving an n-by-n symmetric linear system Ax = b, the classical conjugate resid-
ual (CR) method as a special case of GMRES method was derived in [41]. In this case,
the residual vectors are always A-orthogonal, and the vectors Ap; are also orthogonal
fori = 0,1,...,n. This fact shows that the method converges fast to an exact solution
within finite steps in the absence round-off errors. Compared with the CG method, the
computational work and storage costs of CR method may increase slightly, but its conver-
gence behavior is more smooth. Note that the classical CR method cannot be extended
directly to solve the tensor Equation (1), because it is nonsymmetric. So, we propose a
modified conjugate residual (MCR) method for studying Equation (1). Also note that
preconditioning is an effective mean of reaching improved convergence of iterative meth-
ods. Preconditioners, such as incomplete LU factorizations preconditioner [42], Neumann
preconditioner [43], and nearest Kronecker product (NKP) approximate preconditioner [44],
have been confirmed as powerful tools for solving large linear systems. In [45], some
iterative methods with the NKP preconditioner performed much better than other precon-
ditioners. In this paper, we present a preconditioned MCR method based on Kronecker
product approximations for solving Equation (1), which is superior to the MCR method.

The rest of this paper is organized as follows: In Section 2, we recall some notations
and preliminaries that will be used in the sequel. In Section 3, we formulate a modified
conjugate residual method to solve the generalized coupled Sylvester tensor Equation (1),
and present its preconditioned version to speed up the rate of convergence of MCR method.
The established convergence analysis shows that an exact solution to Equation (1) can
be given for any initial tensor at most finite steps in the absence of round-off errors.
In Section 4, we provide some numerical examples to illustrate the effectiveness of the
methods proposed in here. Finally we draw some conclusions in Section 5.

2. Preliminaries

In this section, we recall some definitions and useful results that will be used in the
sequel. Let R denote the real number field. Given a positive integer #, an order n real
tensor X' = (x,4,...4, ) (1 < ii<IL,j=12"- ,n) is a multidimensional array consisting
of I - - - I, entries [46,47]. We denote the set of all real tensors by R >2>xIn 1f 5 = 2,
then we call the tensor A as an I} X I, matrix, denoted by A. We denote the set of real
matrices by R'*%2. An I; x I; identity matrix is denoted by I'1. For a matrix A € Rli*2,
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AT € RE2XN s then said to be the transpose of A. Given matrices A = (a;) € R™" and B,
their Kronecker product, denoted A ® B, is defined as

anB alzB te alnB

1121B azzB cee alnB
A®B =

amB amB -+ awuuB

For matrices A and B, (A ® B)~! = A~! ® B~!. The unfolding of a tensor X’ along mode
1, denoted by X(l), isan I} x IpI3 - - - I, matrix with its column being a column of & along
mode 1. The symbol vec(X) denotes a vectorized matrix by stacking its column to form a

vector. O is called a zero tensor if its entries are zero. Given tensors X,) € RlixLx--xIx
their inner product is a scalar given by
T Il IZ In
<X,y> = VeC(X(l)) VeC(Y(l)) = 2 Z cee Z Xiyin-inYigip--in- (6)

i1=1ip=1  ip=1

If (X,Y) = 0, then X and ) are said to be orthogonal. The Frobenius norm over
RI*ExxIn ig defined as

Il 12 I

1X] = (xx) =] Y ) - lxiiz...z-m'

i=lip=1  ipy—

For a tensor X € RO XX XIi and a matrix A € R"™*k, their k-mode product, denoted
by X Xy A,isannthorder I1 X - -+ X Iy_1 X m X I 41 X - -+ x I, dimensional tensor with
its entries given by

I
(X Xk A)il"'ik—ljik+l"'in = Z x,'l...ik...inajik, ] =1,---,m. (7)
ir=1

From the definition of unfolding and the results in [48,49], the following statements
hold:
(1) fTy = X1 Al X9 A2 X3 Xy Ay, then Y(l) = A1X(1)(An ® An—l K ® Az)
holds;
(2) For different mode multiplications (k # n), it follows that X x, A X B = X X} B x,, A;
(B) Ifk=mn,then X x, AXx,B=X X, (BA);
(4) The k-mode multiplication commutes with respect to the inner product, that is,
(X,Y x A) = (X x; AT, D).

3. A Modified Conjugate Residual Method for Solving the Tensor Equations

In this section, we propose a modified conjugate residual method for solving the
tensor equation Equation (1), and establish its precondition version to speed up the rate of
convergence. First of all, we present a necessary and sufficient condition for the existence
of solution of (1). From the above results in Section 2, Equation (1) can be rewritten as the
following linear system of equations

Ax =D, 8)

where
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I"e .- @I2@ Ay I"®. - @ ApeIh e A @It @ Ih
. Ay @In1@...@Ih "e. . .@I2g Ay II"®A2(n—1)®"'®Ill
Ifn®---®An2®I’1 11n®---®An3®112®111 11n®---®112®An1
[ vec(Xy(y)) vec(By(q))
‘e vec(Xa(1)) ’ b vec(By (1))
| vec(Xy(p)) vec(By (1))

Then, we have the following results.

Lemma 1 ([40]). Equation (1) has a solution if and only if the linear system of Equation (8) is
consistent. In this case, its solution is unique if the coefficient matrix A is nonsingular.

Actually, for Equation (8), it is difficult to find its solution by the classical conjugate
residual method because the matrix A cannot be guaranteed to be symmetric. Moreover,
the above method cannot be achieved in actual implementations because its computational
work and storage costs are very expensive for larger [;,j =1, - - , n. Thereby we propose a
modified conjugate residual method based on tensor form for solving Equation (1). Similar
to [40], we define two operators £; and £;(i = 1, - - ,n) over Rl *2xxln a5

L1(X, -, &) =X X1 Apn+ X X0 Ap + -+ + Xy X Aqy,
Lo(Xy, -+, &) = X X1 App + Xz X0 Agp + -+ - + X Xy Aoy,
)
En(Xlr”‘ an) =X X1 A+ X X0 A+ -+ X1 X A
and ~ T T T
L1(R1,--,Ru) =R1 x1A}; + R Xn Ay + -+ Ry X2 Ay,
Lo(Ry, -, Ru) =Ri X2 Aly + Ry X1 Af + -+ + Ry x3 A,
(10)
En(le' o /Rn) =R XHA{n +Ra Xn—-1 A%ﬂ(nfl) ++ Ry X1 AZ;]/

where
Ry =B1—Li(X,---, &),

RZ = BZ - 'CZ(Xl/ e /X}’l)/
(11)

Rn == Bn - »Cn(Xlr T /Xn)-
From Equations (9) and (10), we can obtain the following lemma.
Lemma 2. If tensors &;, Y; € RIxlxxIn §—1 ... n and scalars u,v €R, then

’Cl(l’lxl +Uyl/' o /;’IXH_FVyﬂ) = ;’I’Cl(Xll /Xi’l) +V’Cl(y1/ t /yl’l)/

_ _ ~ 12
Ei(]/lX]“‘Vyl,"',]/an+Vyn):P[Ei(‘)c‘],"',Xn)+V£i(y1,"',yn), ( )

ie., L;and L; are linear operators from RI>*12><1In tg jtself. Moreover,

<X1/‘C1(y1/y2/' o /yn)> + <X2/£2(y1/y2/"' /yn)> +-- <Xn1£n(ylry2/"' /yi’l)>

= <y1/£_1(X1/X2/ Tt /Xn» + <y2/£_2(Xl/X2/ Tt /X}’l)> + -+ <yn/ ‘C_H(Xl/‘)(2/ Tt /Xl’l)>-

(13)
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Proof. For the first statement, we only prove that Equation (12) holds for i = 1; the rest
(i=2,---,n)can be deduced similarly. If 1, v € R, then

Ly(pXy + vy, oy Xy +vVy) = (pX1 +vd1) X1 A+ -+ (& +vVn) X A1,
=puLy(Xy, -, X)) +vL( V1, -+, V),

Ly(pXy + vy, pXy +vVn) = (uXy +vd1) X1 Afj + -+ + (uX1 +vD1) x2 Al
=uly (X, , X)LV, V)

For Equation (13), it follows that

(X1, V1 X1 Ap + V2 xa App 4+ 4 Vi X Ary) + (X2, Vo X1 Ag1 + V3 X2 Agp - - + V1 Xy Agy)
+o (X, Y <1 A + V1 X2 A+ -+ V1 X Aun)

= [(X1 x1 AT, V1) 4+ (X0 <2 AL, Do) + - 4+ (A X A, V)] 4 [(Xa X1 AQy, Vo) + (X x2 ADy, V)
oo (X X Agy, V)] (X X0 Ay, Vo) + (X X2 Agg, V1) -+ (X X Ay, Y1)
=V, X1 x1 AL+ X <y AL+ Xy xo AL) + (O, Ay < AL + 20 xq AL+ X x5 AL)
+ (Y, X X0 AT+ X %1 Ag(nfl) 4o Xy xq AL

= (W1, L1(&, A, - - ,DX"» + Vo, Lo( X1, X,y -+, X)) + -+ (Y, Lo (X, Xy, X)),

Now, we present the following modification of conjugate residual method for solving
Equation (1):

From Algorithm 1, one can see that the key computations are the computation of
ngﬂ) and Pi(kH) withi = 1,2,---,n. Both of them require O(I1 I --- [,(Y} 4 [; + 1))
floating point operations (flops). So, we can obtain that the amount of flops required by
each iteration of Algorithm 1is O(4nlil--- I,(X" 4 i +1)).

To investigate the convergence of Algorithm 1, we first give some properties of the
tensor sequences generated by the algorithm as follows:

Theorem 1. Let {RF}, {PF}, {L/(RK, -, RE)} and {L,(PE,--- , PO}y (1 =1,-- ,nk =
0,1, - ) be the tensor sequences given by Algorithm 1. Then, fori # j,i,j = 0,1, - -, we have

(Ca(Pl, - P La(P] o PR 4+ (La(PY, - Pl La (P PR) =0,
Moreover, for j < i, it follows that
(RY, L1(P], -+, Ph)) + 4 (Riy La(P], -+ P) 5)

— (Pl Ly (R, RE)) + -+ (Ph, La(RL, -+ RL)) = 0.
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Algorithm 1 A modified conjugate residual method for solving Equation (1)

1.

Given initial values X, B; € Rl*<2xxh A e R, k =0, and sete > 0.
Compute

RO =By — Ly(X0, -, &%), (PO =Ly (RS-, RY),

Ry =By~ Lo(A],--, &), | P3=La(RY,-,RY),

RY =By — La(XD,---, &%), \PY=L,(RY,--,RY
and
so=11L1(RY, -, ROIP+ I1L2(RY, -, RDIP+ -+ + 1 Lu(RY, -, RO,
po=1L1(PL, -, POIP + 1L2(PL, -, POIP+ -+ |1 Lu(PL, -, PO,
k k k
e = IRIIZ+ RS> + - - - + [ REI%
Fork=0,1,2,--- until ; < e do:
K = %,
X = xf 4oy PY, (RETL =RE — Ly (PF, -, PE),
B =X Py, | RET =Ry - wiLa(Pr - Pr),

X = xk Pk, A\ REF = RE — weLa(PF, -, PF),
Ly(RET, - RETH) = REF sy AT, + RET 5 AT+ + RET 50 AT,

A k4l K1y _ ok+1 T k1 T k+1 T
Lo(Ry™, - Ry =Ry X2 Ap + Ry X1 Ay + Ry X3 Ags,

Lp(REFL o REFY) = REFL 5 AT 4 REFL A2T(n—1) + o REFL AT
sy = ILURYT - REED P+ 1 Lo(RE - REDIP 4+ ILa (R, - R
Compute gy = *,

7){(+1 _ El (R1{+1, . ,R§+1) + IBkP{(,

Pyt = Lo(RETL, - RETY) + BiPS,

P = L, (RM1L,. REFL) 4 g Pk,

Prp1 = 1L1(PET o PEO R+ ([ Lo (P, - PP -+ [ Lo (PETL, - PETD |2

Proof. The first half of Equation (15) can be obtained by straightforward computation. We
now prove that Equations (14) and (15) hold by induction. Suppose k = 1, from Lemma 2;
it follows that
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(L1(RL, o Ry, La(RY, -+ RA)) + oo+ (La(RE, - R, La(RY, -, Ry))
= (L1(RY = woLa(PY, -+ Po), -+ Ry = aoLu(PY, - Pi)), L1(RY, - Ry))
o (La(RY = a0 Lo (PR, PR), o Ry = aoLn(PY, -+, PR), Ln(RY, -, Ry))
= L2 (RY, - RN+ + 1£a(RY, - R

4 0 0112 4 0 0112
s e e
=0,
(Lr(PL o Po), La(P oo P 4o (Ln (P Pa), La(P, o+, P))
= [(L1(La(RE, - Ry), oo, La(RY, -+ Ry)), L1(P, -, PY)
o (Ll LR Ra) o La(R, o Ry), La(PY, e, P))]
+Bol(Lu(PL, - Pa) L (PR, Pa)) + oo+ (La(PY, - PR), La(PY, - P)]

— [(L(Er (R RE) -+ £u(RE, - RE)), = (RS = RY)

FLALURY o R, La(RE, -+ RE), — (RS~ RE))]
Bl LA (P, PO+ -+ 1La(P, -, PO
= UERY e RE) L1 (RY, - R = L1(RE, -+ RY)
F(Za(RY, - RL), £u(RY, -+ RY) = £a(RY, - RL))]
Bl L1 (PY, - PO+ -+ 1P, PO
— B (R R+ -+ [ £a(RY, - R

=0.
Since 0 f 0 0
1 =L1(Ri,- Ry),
PY=LH(RY, -, RY),
Pp=La(RY,---,RY),
it follows that

<P?I‘C_1(er‘ o rR'}l)> +-+ <P7(1)'Z71(RO/' o ’R('r)l)> =0

If Equations (14) and (15) hold for 0 < j < i < k(k > 1), then for thecase 0 < j < i <k+1
and 0 < j < k we have

(Lo (R, oo REA), 20 (R, - R + o+ (La(REFY, o REVD), £ (RE, -+, R)))
= [L1(RY, -+ RE), P 4+ + (La(RE, -+, RE), Ph)]
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—Bia[(La(RE, - RE), Py o (La(RE, -+ RE), PITH)
~a[(L1(PF, PR, Ly(PL o PR + o+ (La (P, PE), Lu(PL, - P
B 1[<z:1<731,~ PR, Ly (P P
+o o (La(PE - PR, Lu(P] - P
=0,
(Ly(REML, o R, Ly (RY, -+ RE)) + -+ + (La(REML, o R, Lu(RE, -+, RY))
= (Ly(RY — & La(PY, -+ Py), o Ry — kL (PY, -+, Py)), L1 (R, -+, Ry))
4o (La(RE — e Ly (PE, -, PR), - RE — L0 (PE, -+, PEY), (R, -, RE))
= [(Ly(RE, -+ RE), L1 (RE, - RE)) 4+ + (La(RE, -+ RE), Lu(RE, -+, RE))]
—ak[wl(ﬂl(ﬂ, e PR) e La(PY e PR)) PE = B PP
A (La(La (P, PR La(PY, - ), P — Breoa Py 1))
=[||£1(Rk,~~~,7e’;>u2+ |2 (RE, - R
—a[(LL(PF -+ PR), La(PY, -+ PR) = Bia La(PE -, PY))
+o A (La(PE e PR, La(PE, - P = Bea La(PE, o PET)]
= [IZy(RE, - R+ + ILu(RE, -+, RE) P
— 1L (P, PO+ 4 1£a(PE, - PP
=0,
(L (PE, oo PR, Ly (Pl PR 4 4 (La (P PERY), La (P, Ph))
= (Lo(La(RY, o REF) 4 BPE, oo La(REL o REF) 4+ BiPR), £1(P, -, PY)
o (L Ly RE o RE) 4 BePE o La(RE - RET) + BePR), La(PL -+, Ph)
= (La(Lo(RET, - R, - La(RE - RET), L2(P], -, Ph)
o L (Ca(RET - R, o La(REF, o REF)), La (P Ph)
+BlLa (P, PR Lo(PL - Ph)) 4+ (LulPE, - PE), La(PL - Ph)
(LA (L (REL o REFY), o L, (REFL o REH), %(Ré ~RJ™M)
o (La (L (REFY o REFY) o L (REH ,Rﬁﬂ))’%(m _REFY)
= %[<£1<R§+l,~ U RED, LY(RY, - RID) e (La(REFL - REFY), Ly(R), - R))]
- wlmil(?eﬁ“,- CURET), Ly (R R o+ (La(REF - RED), Ly (R RET)]
=0,
(Lo(PE o PRt La(PE - P)) o (L (PYH o PR, La(PY, -+, PR))
= (Lo (Lo (RYTL, - R + Pl La(RYTL, - R + Bk Py), L1 (PY, -, Py))

o (La(Ly (R, - R 4+ BPY, - La(RETL, -+ RETY) + BiPY), La(PE, -+, PY))

1, 4 ~
= *Djk[(ﬁl(RIfo' o, RETD), Ly (REFL, o RETTY)
o (Lp(REFY o REFD), £, (REFL, - REFD))]
Bl (PE o Pa) La (P o)) 4ot (La(PL o), La(PE - Py)

1. 4 ~
= —;k[HCl(R’f“w LRI | La(REF - R
+Bell Lo (PE - PO -+ [ La(PE - PP
=0,
<P{I[:1(Rk+1 Rk+1)> <73,]1/£‘ (RkJrl Rk+1)>

= (P}, L1(Rf — L1 (P, -+, PE), - RE — e Lu(P, - PE))))
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oo (Ph La(RE — e La(PE, -+ PE), -+ RE — e La(PE, -, PR))

= (RY — Ly (PE, -+ PE), L1(P), -+ PR + -+ (RE = aLa(P, - PE), La(P], -, P)
= (R, Ly(P], -+ PI)) + + (RE, Lu(P], -+ PL))]
f«k[wl(ﬂ,---,PSJ,a(P{,---,P/;>>+---+<cn<7>{%---,Pm,cn(P{,---,Pé)ﬂ

=0,

(P, Ly(REFL, - REFD) 4o (P, La(REFY, -+ RETD))

= [(R, L1(PF, -+, Ph)) + <R" La(PF,-+, Ph)]
fock[wl(P{‘,---,PL‘),.cl(Pl,---,Pﬁ» <£n(7>1,---,P’;),z:n(Plk,---,PL‘>>1

= [(L1(RE, -+, RY), PE) + -+ (La(RE, -+, RE), PY)]

—a[||L1(PF, - PP+ + 1La(PE, - PRI

= [(Ly(RE, -+ RE), Ly (R, -+ RE) + Beoa PE) 4+ -+ (Lu(RE, -+ RE), La(RE, -+, RE)
+ Be1 Py D = L1 (PY, - PO+ + 1La(PE, -, PRI

= [ILe(RY, -, RIP+ -+ + | La(RE, -+ RY)I]

—a[||L1(PF, - PP+ + 1La(PE, - PRI

=0.

Consequently, Equations (14) and (15) hold for 0 < j < i < k. From the definition of the
inner product on R1>%2>xIn it also follows that

(L4 a,---,R;;),‘l(Rfl R A (La(RY, - R, La(R, -+ RE))

= (L1(R}, -+, RY), L1(RY, -+, R)) + ---+<Zn<R{,~~~,RL>,En< Lo R,
(L1(PL - PR, La(P e <£n<7>{,---,7>,i>,£n<7>{,--- Ph)
= (La(Pl, P La(PL o PAY) 4o (La (Pl PR, La( Pl ).

This shows that Equation (14) holds fori # j. [
Next, we present a useful lemma that can be used to study the convergence of Algorithm 1.

Lemma 3. Assume that the generalized coupled Sylvester tensor Equation (1) is consistent. If it
has solutions X', - - -, X/, then

(Ly(RY, -+ Ry), & = Xf) + -+ (La(RY, -+ RY), X — &) (16)
= | RYII*+ -~-+|IR’2||2~
Moreover,
(Cr(PE, - Pu), RY) 4+ (La(PL - Po), o) an

= 1L (RY, - RO+ +ILa(RY, - R

Proof. It follows from Equation (13) that

(Ly(RY, -+ R, X = &) + -+ (La(RY, -+ RY), X — )
=<R§,£1<X1—Xl,---,X;—X§>>+---+<R£,cn<xl—Xl,---,X:—XZ:»
= (RY, La(Xf, -, &5) = La(Xf, -+, &)

o (R La( X, X0) = La(XS, -, &)

= (R}, B — Ly(Xf, -, ) + -+ (RY, B — La( X, -, X))

= |RYI+- -+ RG>
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For Equation (17), we have

(LA(PY, -+ /PR, RE) + -+ 4 (La(PF, -, PR),RY)

= (PK, L1 (RE, - RE)Y + -+ (PE L(RE, -, RE))

= <‘C_1(Rk’. te ’Rﬁ) +ﬁk*1P571121(Rk1' c /RI:Z)>

+o T+ <£_1’1(Rk1 T /RI;l) + ;Bk—lpg_ll‘c_n(Rk/' o ,RI;Z)>

= |L1(RY, -, REIP+- -+ |ILa(RE, -+, RE) |2

+ B [(PELLy(RE, - RE)) 4+ -+ (PR, LW(RE, - RE))]
= |Z1(RY, - RO+ + | La(RE, - RO

O

From Equation (16), we can obtain that £; (R, - - -, RE) # Oif | R[>+ - - + || RE||? #
0,(I =1,---,n); otherwise, the tensor equations (1) are nonconsistent. Similarly, from
Equation (17), if ||£1(RE, -+, RE)1Z+ - + |La(RE,- -+, RE)|> # 0, then RF # O and
CZ(P{‘,- . ,77,];) #0O,(l=1,---,n).Overall, we have the following results.

Proposition 1. Let {R¥}, {PF}, {£;(RE, -+, RK)} and {L,(PF, -, Pk)} be the tensor se-
quences given by Algorithm 1,1 =1,--- ,n,k=0,1,--- . Then

IREI? +- -+ IRE]I> =0
if and only if ) )
IZ0(RY, - RO+ + 1 La(RY, - R)|? = 0.

According to the foregoing observations, we present the following theorem to show that
Algorithm 1 converges to an exact solution at most finite steps in the absence round-off errors.

Theorem 2. Assume that the generalized coupled Sylvester tensor equations, Equation (1), are
consistent. If the tensor sequences {RK}, {PF}, {£;(RX, -+, RE)} and {£,(PF,- -, PK)} are
given by Algorithm 1,1 =1,--- ,n,k = 0,1, - -, then we can obtain a solution for any initial
tensors Xlo, cee, Xf) at most nlyIp - - - I, 4+ 1 steps in the absence round-off errors.

Proof. If

Iy (RE, -+ RO+ +IILa(RY, - RIP=0, (k=1,-- ,uhl - I —1),

then it follows from Proposition 1 that R;‘ =0, ie, Xlk, cee, Xff are solutions of Equation (1).
If
1Ly (RE, - REOIP+ -+ ILa(RE, -, RIP#0 (k=1 ,nlL - L),

then we have £1(73{‘,~ .- ,77',5) #0,(1=1,---,n),ie,
L1 (P, POIP+ - + [|1£a(PF, -, P)II* # 0.

So, we can obtain £; (72;111 bt o) RZMZ'”I"H). Therefore, by Equation (14), it follows
that
IL1(RY, -, RIP+- -+ 1 La(RE, - R =1, (18)
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holds for 0 <j,i <nljlp---I, 4+ 1. Let

Li(Ry, - Ry o .
L2(Ry, -+ Ry

Lu(RY,--, Ri)

where £1(RE, - -+, R;)(l),o o Ly(Ry, -, R;)(l) denote the unfolding of themselves along
mode 1. From Equation (18), we have

M2, =1,

(M, Mi) = {O, s

Hence, Mi(i =1,---,nhI---I,+1) is an orthogonal basis of matrix space

S
S

Sn

where S € Rhi*2ln (] = 1,... ,n). However, it is impossible for Ml Int1 £ O
because the maximum dimension of £ is nljI---I,. Using Proposition 1, it follows
that R?llb"'l”ﬂ = (. This fact shows that X{ﬂ][z”'l’”ﬂ, cee, X,lel]z"'l”ﬂ are solutions of
Equation (1). O

Since the preconditioned technique is used to solve nonsingular linear systems, in
the rest of this paper, without specification, we assume that Equation (1) always has a
unique solution; i.e., the matrix A of Equation (8) is nonsingular. Now, we want to find a
preconditioning matrix P to approximate A~! such that

PAx = Pb (19)

and Equation (8) has a same solution. Additionally, Equation (19) could be solved more
effectively than the original systems.

The nearest Kronecker product (NKP) preconditioner, which is based on the Kronecker
product approximations, was firstly described by Pitsianis and Van Loan in [44]. For a
general matrix A, they derived a method for finding its nearest Kronecker product M ® N,
which causes P = M~! ® N~! to approximate A~! sufficiently. Then, Langville and
Stewart [45] extended the above results on matrices with special structure. The goal is to
find matrices Q1, Qo, - - - , Qy such that

[A-—Q1®Q®- @ Qul? (20)

is minimized, where A = Z;”Zl l?‘:lA](i). From [45], we can see that

Q1 ~ anA§D + ﬂle(zn +ay ALY,

Qo = ﬂ21A§2) + llzzt“é2> +am AR,

Qn = anlAgn) + ﬂnzAén) + anmAS;)-

Similarly, we now want to find matrices R, Py, P,, - - - , P, such that

|JA—R@P@P,®---® Py (21)
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is minimized. Here, A is the same as in in Equation (8). It is easy to see that the matrix A
can be written as
A=Rn@I"®  @I"®@An+Rp@I"® - @ Ap@I+- + Ry, @ A, @ 1@ - @ IN
+ Ry ®Ap®@I" 1@ @I+ 4Ry @M@ Ay ® - @I+ Ry @I" @ @ App @ IN
+o R @IM®-- @120 Ay,

where

isann x n matrix, i,j = 1, - - ,n. By Equation (20), it follows that

R~ r1Ri1 +r12R0 + -+ - + 7115 R1y +121R01 + -+ - + 125 R0y + -+ - + 71 Ryt + -+ - + 10 Rn,
Py ~ prol™ + p11A1n + p1aAan + -+ + PraAmn,

Py & pool ™1 + po1 A1) + P2As—1) + -+ P2uAnn—1) 22)

Py = puol™ + pu1Arr + praAar + -+ PunAn,

where rij, Pik are unknown parameters, i,j =1,--- ,n,k=0,1,- - ,n. Moreover, in order
to reduce the complexity of finding the inverse of R, we only take R ~ r11R11 + 2R +
<o+ 1Ry, e,

11
22

Tnn

As stated in [24,45], the optimal parameters then can be solved by the nonlinear optimiza-
tion software quickly, such as fminsearch in MATLAB, nlp in SAS, multilevel coordinate
search. So,wehave A~ RQ P ® P, ® - - - ® Py, and take

P=RePOPL® --®P) =R 1o 1P le - -@P;!

mPrteP e @P!
rp PrleP @@ Pt (23)

(ot U SN R
as a preconditioner for solving Equation (8). Obviously, according to Equation (23) and the
fact (A® B)(C® D) = (AC ® BD), the tensor equation, Equation (1), can be rewritten as
Xy xq Pyl Aq xo o g PPV 4+ X X Pl g Pl Ay X3 X P
+ -+ Xy ><1Pn’1 X+ anflAln:Bl ><1Pn’1 ><2~~~an1’1,
Xy xq P Agy xo o Xy PP+ X xq Pyt o Pl Agy X3 P

+ X ><1Pn*1 Xz,,.xnp;1A2n:82><1P,;1 XZ"'Xﬂpfl’ (24)

-1 -1 -1 -1 -1
Xy X1 P, Ay X Xy Pl + Xy X1 P, szn—lAnz X3+ Xy Pl

o Xy X Pyt xg o Xy PP Ay = By xq Py xg o x PUL
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From the above discussion, we propose a preconditioned modified conjugate residual
(PMCR) method for solving Equation (1) (Algorithm 2).

Algorithm 2 A preconditioned modified conjugate residual method for solving Equation (1)

1. Given initial values XiO,B,' € Rixhx Xy Ajj e RY* k=0, and sete > 0, ij=1,---,n
2. Compute B; = B; xq P71 x5 -+ x,, P71, and set
P n 1

My(AD, - X0 = A0 xq P Ay xg o )y PP+ &Y xq Pt kg X P A,
Mo(&XD, -, X0 = 20 xq PylAg X xg Py oo+ XYy Pt xg o xy Py Aoy,

X,?X1P1A1><2 Xrlpfl-" +X01><1P 'anflArmr

M, (X1,~~~,X,9)

My(RY, -+ RY) = RY x1 (P ' Ann)T xz - (PT)T +---+R2X1( nl)T Xg - % (P Agy)T,
Ma (R?,--- JRy) =R x1 (P xa (P Ar)T xg - x (PP 4+

+RY X3 (P Aus)T xg -+ (P71)T,

Mu(RY, -+, RY) =Ry x1 (BT xa -+ xu (BT A)T + -+ + RY xq (P Am)T xa -+ (PP,
3. Define RY = B; — M;(XD,---, x0), P? = M;(RY,---,RY), and compute

so= [Mi(RY, - RDIP+- -+ [Ma(RY, - R,

po=Mi(PL, - PP+ 4 [Mu(PL, - PP,

e = IR + - - + [ R
4. Fork=1,2,--- until 5 < e do:

R = RE — My (P, -+, PE),
REFL = RE — e Mo (PE, -, PE),

RE = Y — s My (P, ),

My (REFL o REY) = REFL s (P A T %o (P DT 4+

+REF ¢y (P )T xg -+ xp (Py Y A2)T,

My(REFL, -+ R = REF xq (P T o (P Arg) T oo ()T -+
+RET iy x5 (P, Apg)T Xy (PTY)T,

nl)T X2 - Vl(PflAln)T"'_
+RET 5y (P A) T > (P,
skr1 = [My(REFL oo REFD |2 - 4 [ M (REF, -+ REFD |2,

M (RE, - RE) = RE i (P

5. Calculate By = S’;Zl ,

7){<+1 _ Ml (Rllc+1,_ . ,R}:,Jrl) + ﬁkP{(/
PE = My(REF, -+ REVL) + By P,

Pyl = Mu(RET, -+ RET) + Py,
Piir = [Ma(PEFL - PED 2 4 M (PFF -+ PR |2,

4. Numerical Experiments

In this section, we give some numerical experiments to illustrate the effectiveness
of the algorithms proposed in here. All codes were written in Matlab 2016b and run on
a PC with Inter(R) Core(TM) i7-9750H @2.6 GHz and 8.00 GB memory. Additionally, all
operations were based on tensor toolbox (version 2.5) proposed by Bader and Kolda [49].
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We compare the MCR and PMCR algorithms with MCG [40] in terms of the number of
iteration steps (“IT”), the elapsed CPU time (“CPU”) in seconds and the residual Frobenius
norm (“RES”) defined as #;. In all of the following examples, we take X = O as initial
tensors, and 7, < 10716 or the number of iteration steps exceeding 5000 as the stopping
criteria.

Example 1. Consider the third-order Sylvester tensor equation, Equation (2), with its coefficient
matrices being the form of Equation (4). Such matrices are scaled by the same parameter ﬁ, and

B = tenrand(Iy, I, I,). From [15], we let T, = % +10%, 1y = % —-199%x107°,0 = % =1,
At=1073,6, =6, =0.1and 5, = 107°.

In this case, we implement the proposed algorithms and MCG for finding the iterative solution
of Equation (2), and reported the numerical results in Table 1. From this Table, we can observe that
our algorithms in here are feasible and effective, and the elapsed CPU time corresponding to MCR
algorithm is slightly less than MCG. The number of iteration steps to MICR algorithm is no more
than I, IyI; + 1, which coincides with the results of Theorem 2. It is also shown that the PMCCR
algorithm outperforms other algorithms, and its convergence rate is about four times that of the
MCG method. Additionally, from Figure 1, we can see that the convergence behavior of MCR is
more stable than that of MCG.

1050

1040 L

1030 L

1020 r
w

1010/
100 H

10'10 [

1020
0

Figure 1. Convergence history of Example 1, Iy = 15,1, = 15,13 = 20.
Example 2. As the second example, we consider the following convection-diffusion equation [9,16,25,29]

—vAu+c'Vu = f in T =1[0,1]",

(25)
u=0 on JI.
Table 1. Comparison results of Example 1.
Algorithms MCG [40] MCR PMCR

L, I, L] IT CPU RES IT CPU RES IT CPU RES

[5,5,5] 15 0.1463 59784 x 1018 14 0.1396 3.6714 x 1018 5 0.0313 6.2438 x 10~
[10,10,15] 301 0.9928 9.6023 x 1077 296 0.9434 8.8758 x 10717 62 0.2183 6.2891 x 10717
[15,15,20] 632 2.7739 9.6572 x 10717 624 2.6599 9.5403 x 10717 149 0.5866 8.6559 x 10717
[15,20,25] 1189 8.0489 6.4185 x 10~ 1152 7.8583 45580 x 10~ 359 22154 1.5868 x 1017
[20,20,30] 1696 10.2321 9.2562 x 10717 1648 9.7157 9.1825 x 1077 478 3.0135 4.8919 x 10717
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From the standard finite difference discretization on equidistant nodes and a second-order convergent
scheme (Fromm's scheme), Equation (25) can be discretized as Equation (5) with

2 -1 3 -5 1
-1 2 -1 1 3 -5
A= L L R
-1 2 -1 1 3 -5
2 _1 mxm 1 3 mxm

where h = %ﬂ is the mesh size,i = 1,--- ,n. Set n = 5,m = 10, and

(DNw=100,c1=1,c0=1c3=1,c4 =1,c5 =1,

(2).0 =100,¢1 = 10,¢, = 30,c3 = 50,¢4 = 70, c5 = 90,
Blov=1Lca=Luo=1L=1=1c=1,
(4).v=1,c1 =10,cp = 30,c3 = 50,c4 = 70,¢5 = 90,
(5)v=00lL,c=1c0=1Lc=1Lg=1c=1,
(6).0=0.01,c; =10,c0 = 30,¢c3 = 50,¢4 = 70,5 = 90,

and B = tenrand(10,10,10, 10, 10).

In this example, we utilize the proposed algorithms and MCG to solve Equation (5). The obtained
numerical results are reported in Table 2. From this table, one can see that the number of iteration steps to
MCR is less than 10° + 1. On the other hand, the performance of MCR is slightly better than MCG in
terms of the elapsed CPU time. 1t is also shown that PMCR algorithm converges faster than that of MCG
and MCR.

Table 2. Comparison results of Example 2.

MCG [40] MCR PMCR
Algorithms
IT CPU RES IT CPU RES IT CPU RES

1) 232 3.1112 9.7305 x 1017 226 3.0947 8.6237x10~ 17 58 0.8934 8.1465 x 10717
) 321 42594 8.8469 x 1017 299 3.9742 8.9632 x 10~ 66 1.0423 7.7125 x 10777
3) 283 3.9432 9.9765 x 10717 278 3.9099 9.3321 x 1077 63 0.9578 9.0356 x 10717
4) 400 5.2723 8.9944 x 10~V 382 5.2150 9.1298x10~ 17 82 2.1283 7.9046 x 1017
®) 376 5.0942 9.4951 x 10~ 358 4.9285 9.8407x10~17 79 1.9201 8.9957 x 1017
6) 487 6.0027 9.3902 x 1077 462 5.9755 9.4925 x 1077 124 2.4562 9.1929 x 1077

Example 3. Consider the following generalized coupled Sylvester tensor equations

X X1 A+ & Xp App + A3 X3 Az = By,
Xy x1 Apy + X3 X Ay + X X3 Agz = By, (26)
Xz x1 Az1 + X X2 Azp + X X3 Azz = B,

where A11 and Ay are the matrices A1 and Ay of Equation (4), respectively, and the remaining
matrices and tensors are given by

alpha = 100;

Ay =rand(I, Ip) + diag(ones(Ip, 1)) x alpha, Aqz = rand(I3, I3) + diag(ones(13,1)) * alpha;
Ay =rand(Iy, Iy) + diag(ones(11,1)) x alpha, Az = rand(I3, I3) + diag(ones(I3,1)) * alpha;
Az = rand(I, ) + diag(ones(I1, 1)) * alpha, Asy = rand(Ip, I) + diag(ones(Ip, 1)) * al pha;
Az = rand (I3, I3) + diag(ones(I3, 1)) x alpha, B; = tenrand(Iy, I, I3), i = 1,2,3.

Our tested experimental results in Table 3 show that the elapsed CPU time to all of the
algorithms are increasing as the dimension increases, and the number of iteration steps to MCR
algorithm does not exceed 11113 + 1. It also reflects that the elapsed CPU time to MCR with nearest
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Kronecker product preconditioner is much lower than that of MCR and MCCG. From Figure 2, one
can see that the MCG algorithm has a quiet irregular convergence behavior but MCR is rather stable.
Additionally, we can see that the MCR algorithm is less than MCG in terms of the elapsed CPU
time.

Table 3. Comparison results of Example 3.

Algorithms MCG [40] MCR PMCR
(I, I, I3] IT CPU RES IT CPU RES IT CPU RES
[5,10,15] 76 0.5844 3.1415 x 1071 74 0.5179 43350 x 10717 20 0.1248 25513 x 10717
[10,15,20] 465 3.4385 8.1439 x 107 442 3.1806 6.1823 x 1077 102 0.6026 7.6829 x 10717
(15,15, 15] 130 0.9715 1.1913 x 1077 128 0.9237 1.0795 x 10717 42 0.2556 6.4513 x 10717
[20,25,30] 1310 9.5945 9.1953 x 10717 1289 9.1217 8.3788 x 1017 363 2.0159 7.2917 x 10~V
[25,25,25] 1255 9.0559 8.2675 x 1017 1210 8.8567 7.4489 x 1017 325 1.8219 7.6519 x 1017
1018 . T r T T T T 10'® T
. T . —+—McG \ 4; —+—Mca
oot A el el TR g ]
| 1

105,

100,

RES

10'10 L
1015
10'20 1 1 1 1 L L 1 10—20 1 1 1 1 L L
0 10 20 30 40 50 60 70 80 0 20 40 60 80 100 120 140
T IT

Figure 2. Convergence history of Example 3: I = 5, = 10,13 = 15 (left), I; = 15,1 = 15, and
I3 = 15 (right).

5. Conclusions

In this paper, we proposed a modified conjugate residual algorithm and its precondi-
tioned version based on the Kronecker product approximations for solving the generalized
coupled Sylvester tensor Equation (1). Our convergence analysis showed that the MCR
algorithm is convergent to an exact solution for any initial tensors at most finite steps in
the absence round-off errors, and its convergence behavior is more smooth than MCG for
solving some problems. From the Kronecker product approximations, we developed the
PMCR method for solving the original tensor Equation (1). The performance of PMCR
outperforms other algorithms in terms of the elapsed CPU time and the number of iteration
steps. Note that the nearest Kronecker product technique can also be applied to some exist-
ing methods, such as the biconjugate gradient method and biconjugate residual method.
So, the preconditioned technique is very promising.
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