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Abstract: In this paper, we compute a (local) optimal reduced order model that matches a prescribed
set of moments of a stable linear time-invariant system of high dimension. We fix the interpolation
points and parametrize the models achieving moment-matching in a set of free parameters. Based on
the parametrization and using the H2-norm of the approximation error as the objective function, we
derive a nonconvex optimization problem, i.e., we search for the optimal free parameters to determine
the model yielding the minimal H2 norm of the approximation error. Furthermore, we provide the
necessary first-order optimality conditions in terms of the controllability and the observability
Gramians of a minimal realization of the error system. We then propose two gradient-type algorithms
to compute the (local) optimal models, with mathematical guarantees on the convergence. We
also derive convex semidefinite programming relaxations for the nonconvex Problem, under the
assumption that the error system admits block-diagonal Gramians, and derive sufficient conditions to
guarantee the block diagonalization. The solutions resulting at each step of the proposed algorithms
guarantee the achievement of the imposed moment matching conditions. The second gradient-based
algorithm exhibits the additional property that, when stopped, yields a stable approximation with a
reduced H2 error norm. We illustrate the theory on a CD-player and on a discretized heat equation.

Keywords: model order reduction; moment matching; optimal H2-norm; (non)convex optimization;
gradient method

MSC: 93C05

1. Introduction

To reduce the complexity and the high dimension of LTI systems yielded by, e.g.,
partial-differential equations or networks of interconnected systems, for analysis and
control, model reduction is called for, see e.g., [1]. The approximation error must be small
and the most important physical and/or structural properties, such as the stability, must
be preserved.

State-of-the-art: Model reduction of linear systems consists of two main categories
of methods: SVD-based and moment matching-based. Balanced truncation (BT) is a well-
known SVD-based method, first introduced in [2], see also [3]. The method is based on
bringing the given stable system into the so-called balanced realization, where the states
are ordered according to the Hankel singular values (HSVs)—positive similarity invariants
measuring the degree of controllability and observability of the states. For model reduction,
the balanced realization is truncated, neglecting the dynamics corresponding to the smaller
HSVs. The resulting model is stable and balanced and yields an aprioric upper bound of
the H∞ norm of the approximation error. However, for large-scale, dense systems, BT may
become unscalable even if parallelized, due to the requirement to compute the balancing
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coordinate transformation, see, e.g., [4,5] and the references therein. Moreover, balanced
truncation also exhibits an upper bound on the H2 norm of the approximation error, usually
larger than the bound on the H∞ norm see, e.g., ([1], Section 7.2.2.) Moment matching
techniques represent an alternative tool for model order reduction, see, e.g., [1,6,7], where
a low degree rational transfer function is constructed to match the coefficients of the series
expansion of the original transfer function at various interpolation points in the complex
plane, called moments. The moments are yielded by the Krylov projection matrix [6,8,9],
computed as the (unique) solution of a Sylvester equation [10,11] constructed from a state-
space realization of the system in the time domain. Then, families of parametrized reduced
order models that match say that ν moments are computed [10,12].

To find more accurate models in the family, two-sided projections have been employed,
see, e.g., [1,6,13], yielding a ν order model matching 2ν moments at two sets of ν interpola-
tion points. Two-sided moment matching has also been achieved in [14] as well as in [15],
reducing the H2 approximation error. Furthermore, in [16,17], using two-sided projection-
based interpolatory methods, the model minimizing the H2-norm of the approximation
error has been computed. Based on [18], in [17], an Iterative Rational Krylov Algorithm
(IRKA) for H2 model reduction has been proposed. The resulting model interpolates the
given transfer function and its derivatives at the mirror images of the poles of the approxi-
mant and is numerically efficient, involving only matrix-vector multiplications (such as
the Lanczos iterations [19]). However, as pointed out in [20], IRKA does not guarantee the
convergence to a (local) minimum, except for the special case discussed in [21]. Moreover,
the resulting model may be unstable even if the original system is asymptotically stable.
Note that, in moment matching, the selection of the interpolation points and the preserva-
tion of stability are still open issues. For instance, in [22], a two-sided projection method is
proposed, where one projection contains SVD features such as stability preservation and an
error bound, whereas the other projection contains iterative Krylov features. The resulting
model is stable, solves a restricted H2-error norm minimization problem and matches some
set of moments. In [20,23], using factorization of the error system and applying a greedy
algorithm and adaptive procedure to find suitable interpolation points to minimize the
H2 error is given and, additionally, stability preservation is guaranteed. In [4], a stability
preserving, projection-based method is developed, based on Lyapunov stability arguments.
Results of the optimization-based model reduction that are similar to those in this paper,
but for linear network systems, have been recently given in [24], with the preservation of
the graph topology (however, the results in this paper have appeared on arxiv before [24]).
In [25], the H2 model reduction problem of discrete systems has been studied in the Stiefel
manifold framework, yielding stable models at each step of the algorithm and converging
to a (local) optimal solution. In [26], a Riemannian optimal model reduction method for
stable systems is proposed, yielding (local) optimal, stable models.

Motivation: Note that the mentioned model reduction methods, focused on the search
of interpolation points to preserve stability or achieve minimal approximation error in some
norm, usually lead to unsatisfying choices of interpolation points such as, e.g., the mirror
images of the unknown poles of the approximations. Hence, interpolation at zero, preserving
the DC-gain of the given system to match the step response, may be lost causing disruptions
to potential control designs. In the Sylvester equation-based moment matching framework,
finding the set of parameters yielding the model, in the family of ν order parametrized
models that match ν moments at a fixed set of interpolation points, that achieves the minimal
H2-norm of the error is an open question. In this paper, we give a solution to this problem.
In detail, given an n-th order stable linear system, and a set of fixed interpolation points,
we find a set of parameters yielding a model that simultaneously minimizes the H2-error
norm, is stable and matches ν moments of the given system at the fixed interpolation points.
Hence, the proposed method is shifting the search of optimal interpolation points to the
search of optimal free parameters, leaving the given frequencies unaltered.

Contributions: In this paper, we consider the family of reduced order models that
match a prescribed set of ν moments of a given stable linear time-invariant (LTI) system.
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Fixing the set of interpolation points, the set of prescribed moments is obtained calculating
a single Krylov projection and the resulting models, matching the prescribed moments, are
parametrized in a set of ν free parameters. Then, with the H2-norm of the approximation
error as the objective function, we formulate a nonconvex optimization problem to find
the (local) optimal free parameters yielding the model that achieves the minimal H2 error
norm and is stable. Based on a realization of the error system, we provide the necessary
first-order Gramian-based optimality conditions. Then, we propose two gradient-type
methods, with mathematical guarantees on the convergence to find the (local) optimal free
parameters. We also provide convex SDP relaxations of the nonconvex problem through
the assumption that the error system admits block-diagonal Gramians and then derive
sufficient conditions to guarantee the feasibility of the SDPs. The main contributions are:

(i) We first formulate the model reduction problem in the family of models matching ν
moments, parameterized in a set of ν free parameters. Then, a suitable nonconvex
optimization framework is derived, where the objective function is the H2 approxi-
mation error norm, written in terms of the controllability and observability Gramians
of a minimal realization of the error system. We also write the necessary first-order
Gramian-based optimality conditions, i.e., the KKT system;

(ii) For the formulated model reduction problem, we propose two numerical optimization
algorithms. The first method is using a gradient update for solving the KKT system,
leading to a simple iteration involving matrix multiplications. However, with this
update, the stability of the approximation is achieved asymptotically. The second
method is based on a partial minimization approach. We show that, for the evaluation
of the gradient of the objective function, we need to solve two Lyapunov equations
yielding the Gramians. We also prove that the gradient of the objective function is
Lipschitz continuous. Therefore, a gradient-based algorithm is developed, ensuring
the convergence to a local optimal solution due to the smoothness of the objective
function. Although the gradient evaluation is expensive, each iteration provides a
stable reduced model;

(iii) Finally, we propose a convex SDP relaxation of the original nonconvex optimization
problem by assuming that the error system admits a block-diagonal observability
Gramian. We also derive sufficient conditions to guarantee block diagonalization.

We now emphasize the main properties of the proposed approach. First, each step
of the proposed optimization algorithms yields a model that guarantees the achievement
of the prescribed moment matching conditions. Moreover, when the second algorithm,
developed for the partial minimization, is stopped, it always yields a stable approximation
with a small H2 error norm. Since the proposed methods do not perform a search over the
optimal interpolation points, but over some free parameters, the resulting H2 performance
may be different from other methods, such as IRKA. Hence, one practical advantage of
the proposed approach is that the application oriented properties encompassed in the
matched moments can be preserved entirely. Other advantages of our methods include the
simplicity of the iterations and the mathematical guarantees on the convergence.

Content: In Section 2, we briefly review the Sylvester equation-based moment match-
ing framework. In Section 3, we formulate an optimal H2-norm model reduction problem,
recast as an optimization problem with a Gramian-based cost function, and derive the
corresponding first-order optimality conditions. In Section 4, we analyze several numerical
optimization methods to solve it. In Section 5, we illustrate the theory with a CD-player
and a discretized heat equation.

2. Preliminaries

In this section, we briefly review the Sylvester equation-based moment matching
model reduction for LTI systems, see [10,12]. We also review the notions of controllability
and observability Gramians, and the computation of the associated H2-norm.
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2.1. Linear Systems

Consider a linear, time-invariant (LTI) dynamical system:

Σ : ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), t ≥ 0, (1)

with the state x(t) ∈ Rn, the input u(t) ∈ Rm and the output y(t) ∈ Rp. For the sake of
readability, the argument t is usually dropped. Throughout the rest of the paper, we assume
that the system (1) is stable (spectrum of A, denoted by σ(A), satisfies σ(A) ⊂ C−, where
C− is the set of complex numbers with negative real parts), and minimal (the pair (A, B) is
controllable and the pair (A, C) is observable). The transfer function of (1) is:

K(s) = C(sI − A)−1B, K : C \ σ(A)→ Cp×m. (2)

Since the system is assumed to be minimal, σ(A) is the set of poles of K.

2.2. Sylvester Equation-Based Moment Matching

Assume that (1) is a minimal realization of the transfer function K(s). The moments
of (2) are defined as follows:

Definition 1 ([1,10]). The k-moment of (1) at s1, along the direction ` ∈ Rm, is

ηk(s1) = (−1)k/k!
[
dk K(s)/dsk`

]
s=s1
∈ Cp, k ≥ 0.

Consider (1) and let the matrices S ∈ Rν×ν, L = [`1 `2 ... `l ] ∈ Rm×ν, `i ∈ Rm, be such that
the pair (S, L) is observable. Let Π ∈ Rn×ν be the solution of Sylvester equation:

AΠ + BL = ΠS. (3)

Since (1) is minimal, assuming that σ(A) ∩ σ(S) = ∅ and that the pair (S, L) is observable,
then Π is the unique solution of the equation (3) and rank Π = ν, see, e.g., [27].

Proposition 1 ([10,28]). The moments of (1) at the interpolation points {s1, s2, . . . , sν} = σ(S)
are in a one-to-one relation with the elements of the matrix CΠ (by one-to-one relation between
set of moments and elements of a matrix, we mean that moments are uniquely determined by the
elements of the matrix.)

The next result gives necessary and sufficient conditions for a system to achieve
moment matching:

Proposition 2 ([10,28]). Consider the system: Σ̂ : ξ̇ = Fξ + Gu, ψ = Hξ, with F ∈
Rν×ν, G ∈ Rν×m, H ∈ Rp×ν and the transfer function: K̂(s) = H(sI − F)−1G. Let S ∈ Rν×ν

and L ∈ Rm×ν be such that the pair (S, L) is observable. Moreover, assume that σ(S) ∩ σ(A) = ∅
and σ(F) ∩ σ(S) = ∅. Then, the moments HP of the system Σ̂ match the moments CΠ of the
original system (1), at σ(S), if and only if HP = CΠ, where the invertible matrix P ∈ Rν×ν is the
unique solution of the Sylvester equation FP + GL = PS.

We present a family of ν order models that match ν moments of the system (1). Fixing
S ∈ Rν×ν and L ∈ Rm×ν such that the pair (S, L) is observable and σ(S) ∩ σ(A) = ∅, for
P = Iν, the system:

Σ̂G : ξ̇ = (S− GL)ξ + Gu, ψ = CΠξ, (4)

with the transfer function

K̂(s) = CΠ(sI − S + GL)−1G, (5)
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describes a family of ν order models that match the moments of (1) at σ(S), parameterized
in the free parameters G ∈ Rν×m such that σ(S− GL) ∩ σ(S) = ∅.

2.3. The Computation of the Moments

In practice, the moments CΠ are not computed solving the Sylvester Equation (3),
but using Krylov projections. In this section, we recall the notion of moments based on
the Krylov projection matrix, see, e.g., [6,19,29,30]. For simplicity, given a set of distinct
points {s1, s2, . . . , sν}, closed under complex conjugation with {s1, s2, . . . , sν} ∩ σ(A) = ∅
and `i ∈ Rp \ {0}, i = 1 : ν, a Krylov projection matrix is built as V ∈ Rn×ν, with [1,12]:

V = [(s1 I − A)−1B`1 . . . (sν I − A)−1B`ν]. (6)

Then, the moments of (1) are given by the elements of the matrix CV, see, e.g., [10,12].
Furthermore, there is a direct relation between CV and CΠ from Proposition 1, see [12,28]:

Proposition 3 ([28]). Let Π be the unique solution of (3) and consider the projection matrix
V. Then, there exists a square, non-singular, matrix T such that Π = VT. For T = Iν, the
Krylov projection matrix V is the unique solution of equation (3) for S = diag(s1, s2, . . . , sν)
and L = [`1 `2 . . . `ν] ∈ Rm×ν. Moreover, the moments of system (1) at σ(S) are given by
CΠ = CVT.

We make the following working assumption: matrix Π, the unique solution of (3) is
formed using the Krylov projection matrix V. Furthermore, the moments of system (1) at
σ(S) are computed using Proposition 3, i.e., without solving (3).

2.4. H2-Norm Based on the Gramians of Linear Systems

We briefly recall the Definition of the H2-norm of a stable and minimal LTI system (1)
and its computation based on the controllability and the observability Gramians. Con-
sider the system (1) with the transfer function K ∈ H2, the Hilbert space of complex
functions analytic in the open right-half plane and square integrable. By [31], the H2-norm
is defined as:

‖K‖2
H2

=
1

2π

∫ ∞

−∞
Trace(K∗(jω)K(jω))dω,

where K∗(jω) = KT(jω) and can be computed as:

‖K‖2
H2

= Trace(CWCT) = Trace(BT MB), (7)

where W � 0 and M � 0 are the controllability and the observability Gramians of (1),
respectively. The Gramians are the unique solutions of the Lyapunov equations AW +
WAT + BBT = 0 and AT M + MA + CTC = 0, respectively, see [1].

3. H2 Model Reduction by Moment Matching and Optimization

In this section, based on the parametrization (4) and using the H2-norm of the approx-
imation error as the objective function, we formulate a nonconvex optimization problem to
calculate the approximation that achieves moment matching and minimizes the H2-norm.
We derive the optimality (KKT) conditions in terms of the controllability and the observ-
ability Gramians of the error system and then propose two gradient-based methods, with
mathematical guarantees on the convergence to a (local) optimum. Let us assume that the
observable pair (S, L) is fixed a priori, such that σ(S) ∩ σ(A) = ∅. We seek the reduced
order model Σ̂G in the family (4) parameterized in G, that yields the minimal H2−norm of
the approximation error. To this end, we formulate the optimal moment matching-based
H2-norm model reduction problem as:
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Problem 1. Fix the matrices S ∈ Rν×ν and L ∈ Rm×ν such that the pair (S, L) is observable
and σ(S) ∩ σ(A) = ∅. Given the n-th order system (1), with the transfer function (2) and
the family of ν order models Σ̂G as in (4), with the transfer function K̂ as in (5), that match
the ν fixed moments of (1) at σ(S), find the free parameters G such that the following
conditions are satisfied:

(i) the H2 norm of the error system ‖K− K̂‖2 is minimal;

(ii) the model Σ̂G is stable, i.e., σ(S− GL) ⊂ C−;

(iii) σ(S) ∩ σ(S− GL) = ∅.

Since the Problem 1 is nonconvex, it is usually difficult to find the global optimum, but
an optimization algorithm for such a problem may yield stationary points. However, the
proposed algorithms are descent methods usually leading to a (local) minimum, depending
on the initialization. Note that in most applications, a reduced order model is necessary to
capture desired input-output behaviors/dynamics. In particular, the system responses to
a set of prescribed harmonic signals (e.g., step, low frequency signals, etc.) are imposed
through the selection of the interpolation point matrix S, see [10]. Note that Problem 1 is
relevant from a systemic point of view, since by fixing S and L the desired input-output
behaviors can be captured. Hence, from the family of reduced order models that achieve
moment matching at σ(S), we choose the desired inputs whose output behaviors are to be
preserved through model reduction, see also [10,12,32] for similar settings. Problem 1 can
be recast in terms of the computation of the H2 norm of the Gramians of the realization
of the error system Ke = K− K̂, with K̂ from (5), parameterized in G. Let (Ae,Be, Ce) be a
state-space realization of the error transfer function Ke(s) = Ce(sI −Ae)−1Be, where

Ae =

[
A 0
0 S− GL

]
, Be =

[
B
G

]
, Ce = C

[
I −Π

]
. (8)

LetW andM be the controllability and the observability Gramians of (8), solutions of the
Lyapunov equations:

AeW +WAT
e + BeBT

e = 0, (9a)

AT
eM+MAe + CT

e Ce = 0. (9b)

respectively. Let us recall a standard result for Lyapunov equations:

Lemma 1. Let Ae be given stable matrix, i.e., σ(Ae) ⊂ C−. Then, there exist the unique
solutions W and M, positive semidefinte matrices of (9a) and (9b). Furthermore, if the error
system is minimal (i.e., (Ae,Be) is controllable and (Ae, Ce) is observable), thenW andM are
positive definite.

We partitionW andM following the block structure of Ae:

W =

[
W11 W12
WT

12 W22

]
, M =

[
M11 M12
MT

12 M22

]
. (10)

Hence, Equation (9a) can be explicitly rewritten as:

AW11 + W11 AT + BBT = 0, (11a)

AW12 + W12(S− GL)T + BGT = 0, (11b)

(S− GL)W22 + W22(S− GL)T + GGT = 0, (11c)
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and Equation (9b) explicitly rewritten as:

AT M11 + M11 A + CTC = 0, (12a)

AT M12 + M12(S− GL)− CTCΠ = 0, (12b)

(S− GL)T M22 + M22(S− GL) + ΠTCTCΠ = 0, (12c)

respectively.

3.1. Optimization Formulation of the proposed H2 model reduction problem
Consider Problem 1 with the pair (S, L) fixed a priori. Note that we can find CΠ based

on Proposition 3, i.e., Π = VT, where V as in (6) and T some fixed non-singular matrix.
Moreover, if we choose S unstable, that is σ(S) ⊆ C+, then any (local) optimal solution of
the Problem 1 automatically satisfies σ(S) ∩ σ(S− GL) = ∅. Then, from (7), it follows that
Problem 1 can be written equivalently as an optimization problem:

min
G s.t. σ(S−GL)⊂C−

‖Ke‖2
2 = min

(G,W) s.t. σ(S−GL)⊂C− , (9a)
Trace

(
C
[
I −Π

][W11 W12
WT

12 W22

][
I
−ΠT

]
CT
)

= min
(G,M) s.t. σ(S−GL)⊂C− , (9b)

Trace
([

BT GT][M11 M12
MT

12 M22

][
B
G

])
.

In the sequel, we consider only the formulation in terms of the observability GramianM:

min
(G,M)

Trace(BT
eMBe) (13)

s.t. : σ(S− GL) ⊂ C− and AT
eM+MAe + CT

e Ce = 0.

We clearly observe that the reduced order model is parametrized in the matrix G. Let:

A(G) =

[
A 0
0 S− GL

]
, B(G) =

[
B
G

][
B
G

]T

, C = CT
e Ce =

[
I

−TTVT

]
CTC

[
I

−TTVT

]T

.

In the next sections, we present several (equivalent) reformulations of the nonconvex
problem (13), accompanied by their first-order optimality conditions.

3.2. KKT Approach

We determine the corresponding KKT system for the optimization problem (13). We
first define the open set D(SL) = {G : σ(S − GL) ⊂ C−}. The Lagrangian function
associated to problem (13) is given by:

Γ(W ,M, G) = Trace(MB(G)) + Trace(W(AT(G)M+MA(G) + C)),

where the multiplierW is associated to the equality constraint in (13). Then, we write (13)
into the max-min form:

max
W

min
M,G∈D(SL)

Γ(W ,M, G). (14)

From standard optimization arguments, we know that any solution (W ,M, G) of prob-
lem (14) satisfies the KKT system:

∇Γ(W ,M, G) = 0 ⇐⇒
{
∇WΓ(W ,M, G) = 0
∇(M,G)Γ(W ,M, G) = 0.

Using the block structure (10) for M and W , the next Theorem explicitly derives the
corresponding KKT system:
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Theorem 1. The KKT system of the optimization problem (13) is given by the following explicit
expressions:

∇Γ(W ,M, G) = 0 ⇐⇒


AT(G)M+MA(G) + C = 0
A(G)W +WAT(G) + B(G) = 0
MT

12B + M22G−MT
12W12LT −M22W22LT = 0.

(15)

Proof. Note that the KKT system has the explicit form:

∇Γ(W ,M, G) =

∇WΓ(W ,M, G)
∇MΓ(W ,M, G)
∇GΓ(W ,M, G)

 =

 AT(G)M+MA(G) + C
A(G)W +WAT(G) + B(G)

∇GΓ(W ,M, G)

.

It remains to explicitly compute ∇GΓ(W ,M, G). However, to write the gradient ex-
pression, we introduce a gradient of Γ w.r.t. G using the trace as Γ′(W ,M, G)dG =
Trace(∇T

GΓ(W ,M, G)dG), with dG ∈ Rν×m. Then:

Trace(∇T
GΓ(W ,M, G)dG) = Trace(MB′(G)) + Trace(W((A′(G))TM+MA′(G)))

= Trace
(
M
[

0 B dGT

dGBT dGGT + G dGT

]
+W

[
0 0
0 −dGL

]T

M+M
[

0 0
0 −dGL

]
W
)

= 2Trace
(

BT M12 dG + GT M22 dG− LWT
12M12 dG −LW22M22 dG),

withW andM as in (10). Then:

∇GΓ(W ,M, G) = 2
(

MT
12B + M22G−MT

12W12LT −M22W22LT
)

.

Hence, we get the closed form for the KKT system (15).

Theorem 1 also yields the necessary optimality condition for the optimization problem (13)
associated to the Problem 1:

Lemma 2. IfM and G ∈ D(SL) solves the optimization problem (13) associated to the Problem 1,
then there existsW such that the triplet (W ,M, G) solves the KKT system (15).

3.3. Partial Minimization Approach

Consider A = A(G). Then, the following partial minimization holds for (13):

(13) = min
G: σ(S−GL)⊂C−

(
min

M:AT
eM+MAe+CT

e Ce=0
Trace(BT

eMBe))

)
.

However, if S−GL and A are stable, by Lemma 1, there existsM =M(G) � 0, the unique
solution of the Lyapunov equation AT

eM+MAe + CT
e Ce = 0. Hence, for any stabilizing

G, the partial minimization inM leads to an optimal value:

f (G) = min
M:AT

eM+MAe+CT
e Ce=0

Trace(BT
eMBe)) = Trace

([
B
G

]T

M(G)

[
B
G

])
,

where the matrixM(G) is the unique, positive definite solution of the Lyapunov equation:[
A 0
0 S− GL

]T

M+M
[

A 0
0 S− GL

]
+

[
CTC −CTCV
−CT

VC CT
VCV

]
= 0, (16)
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with CV = CΠ = CVT. Explicitly, in terms of G, we have:

min
G

f (G)

(
= Trace

([
B
G

]T

M(G)

[
B
G

]))
(17)

s.t. : σ(S− GL) ⊂ C− and (16),

whereM(G) is the solution of (16). We now compute a closed form expression for the
gradient of the objective function of (17):

f (G) = Trace

([
B
G

]T

M(G)

[
B
G

])
= Trace

(
M(G)

[
B
G

][
B
G

]T
)

= Trace(M(G)B(G)).

Theorem 2. The objective function f in (17) is differentiable on the set of stable matrices D(SL)
and the gradient of f at G ∈ D(SL) is given explicitly by:

∇ f (G) = 2
[
−MT

12(G)W12(G)LT −M22(G)W22(G)LT +MT
12(G)B + M22(G)G

]
, (18)

whereM(G) solves (16) andW(G) solves the equation:[
A 0
0 S− GL

]
W(G) +W(G)

[
A 0
0 S− GL

]T

+ B(G) = 0. (19)

Proof. To compute the gradient∇ f (G) ∈ Rν×m, we write the derivative f ′(G)dG for some
dG ∈ Rν×m in gradient form using the trace inner product. We introduce the gradient as:
f ′(G)dG = Trace

(
∇ f (G)T dG

)
. From the expression of f (G) we have:

f ′(G)dG = Trace
(
M′(G)B(G) +M(G)B′(G)

)
.

We now separately compute both terms in the above expression. Let

Φ(G,M) =

[
A 0
0 S− GL

]T

M+M
[

A 0
0 S− GL

]
.

Since G ∈ D(SL) and D(SL) is an open set, then, by Lemma 1, we have that ΦM(G,M)dM
given by:

ΦM(G,M)dM =

[
A 0
0 S− GL

]T

dM+ dM
[

A 0
0 S− GL

]
is surjective and furthermore:

ΦG(G,M)dG =

[
0 0
0 −dGL

]T

M+M
[

0 0
0 −dGL

]
.

Since Φ(G,M) + C = 0, the Implicit Function Theorem yields the differentiability ofM(G)
and the following relation:

[
A 0
0 S− GL

]T

M′(G) +M′(G)

[
A 0
0 S− GL

]
+

[
0 0
0 −dGL

]T

M(G) +M(G)

[
0 0
0 −dGL

]
= 0. (20)

Consider the Lyapunov Equation (9a) with the unique solutionW(G), provided that G
is stabilizing:
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[
A 0
0 S− GL

]
W(G) +W(G)

[
A 0
0 S− GL

]T

+ B(G) = 0. (21)

Subtracting (20) multiplied byW(G) to the left from (21) multiplied byM′(G) to the right,
taking the trace, and reducing the appropriate terms, yields:

Trace
(
M′(G)B(G)

)
= Trace

(
W(G)

[
0 0
0 −dGL

]T

M(G) +M(G)

[
0 0
0 −dGL

]
W(G)

)
= 2Trace

(
−LWT

12(G)M12(G)dG− LW22(G)M22(G)dG
)

. (22)

Similarly, for the second term using the block structure ofM and the Definition of trace,
we get:

Trace
(

M(G)B′(G)
)
= Trace

(
M(G)

[
0 B dGT

dGBT dGGT + G dGT

])
= 2Trace

(
BT M12(G)dG + GT M22(G)dG

)
. (23)

Hence, from (22) and (23) we get the closed form expression of the gradient in (18).

Note that the expression of the gradient ∇ f in (18) is the same as the partial gradient
of the Lagrangian ∇GΓ in (15). Theorem 2 also yields the necessary optimality conditions
for the model reduction Problem 1 expressed in terms of (17):

Lemma 3. If G ∈ D(SL) solves the optimization problem (17) corresponding to the model reduction
Problem 1, then the following relation holds:

MT
12(G)W12(G)LT+M22(G)W22(G)LT =MT

12(G)B + M22(G)G,

where M12, M22 are blocks inM(G) andW(G), as in (10).

We can replace the open set D(SL) with any sublevel set: N G0
(SL) = {G ∈ D(SL) :

f (G) ≤ f (G0)}, where G0 ∈ D(SL) is any initial stable parameter matrix. Using similar

arguments, as in [33], we can show that N G0
(SL) is a compact set. Then, the Weierstrass

Theorem implies that for any given matrix G0 ∈ D(SL) , the model reduction Problem 1,

given by optimization formulation (13), has a global minimum in the sublevel set N G0
(SL).

We can also show that the gradient∇ f (G) is Lipschitz continuous on the compact sublevel
setN G0

(SL). Let us briefly sketch the proof of this statement. First, note thatM(G) andW(G)

are continuous functions and, moreover, since they are solutions of algebraic linear systems,
there exists a finite `M > 0 such that:

‖M(G)−M(G′)‖ ≤ `M‖G− G′‖ ∀G, G′ ∈ N G0
(SL).

Then, using the expression of ∇ f (G), the compactness of N G0
(SL), the continuity ofM(G)

andW(G), and the previous relation, we conclude that there exists ` f > 0 such that:

‖∇ f (G)−∇ f (G′)‖ ≤ ` f ‖G− G′‖ ∀G, G′ ∈ N G0
(SL).

This property of the gradient is useful later when analyzing the convergence behavior of
the proposed algorithm for the optimization problem (17).
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3.4. SDP Approach

Alternatively, problem (13) can be written equivalently in terms of matrix inequalities
(semidefinite programming):

min
(G,M)

Trace

([
B
G

]T

M
[

B
G

])
(24)

s.t. : M� 0 and[
A 0
0 S− GL

]T

M+M
[

A 0
0 S− GL

]
+

[
CTC −CTCV
−CT

VC CT
VCV

]
� 0.

Note that the SDP problem (24) is not convex since it contains bilinear matrix inequalities
(BMIs). However, using (10), the next result proves that a (local) optimal solution can be
obtained through a convex relaxation.

Theorem 3. If the following convex SDP relaxation:

min
(G,X22,Y22,Z22), M11�0,M22�0

Trace
(

BT M11B + X22

)
(25)

s.t. : ST M22 − LTZT
22 + M22S− Z22L + CT

VCV � Y22[
X22 Z22
ZT

22 M22

]
� 0,

[
AT M11 + M11 A + CTC −CTCV

−CT
VC Y22

]
� 0

has a solution, then we can recover a (local) optimal solution of the Problem 1 expressed in terms
of (13), through the relations G = M−1

22 Z22 and M = diag(M11, M22).

Proof. WithM as in (10), we get the equivalent problem:

min
G,M�0

Trace
(

BT M11B + BT M12G + GT MT
12B + GT M22G

)
s.t. :

[
AT M11 + M11 A + CTC AT M12 + M12(S− GL)− CTCV

(S− GL)T MT
12 + MT

12 A− CT
VC (S− GL)T M22 + M22(S− GL) + CT

VCV

]
� 0. (26)

Introducing additional variables, we can reformulate (26) as an SDP subject to BMI con-
straints. Indeed, we have the equivalent formulation:

min
(G,X22,Y22),M�0

Trace
(

BT M11B + X22

)
(27)

s.t. : X22 � BT M12G + GT MT
12B + GT M22G,

(S− GL)T M22 + M22(S− GL) + CT
VCV � Y22,[

AT M11 + M11 A + CTC AT M12 + M12(S− GL)− CTCV
(S− GL)T MT

12 + MT
12 A− CT

VC Y22

]
� 0.

The Schur complement yields an SDP with a convex objective function but with nonconvex
BMI constraints:

min
(G,X22,Y22),M�0

Trace
(

BT M11B + X22

)
(28)

s.t. : (S− GL)T M22 + M22(S− GL) + CT
VCV � Y22,[

X22 − BT M12G− GT MT
12B GT M22

M22G M22

]
� 0,[

AT M11 + M11 A + CTC AT M12 + M12(S− GL)− CTCV
(S− GL)T MT

12 + MT
12 A− CT

VC Y22

]
� 0.
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Problem (28) is not convex since it contains bilinear matrix terms. However, if we assume
that M12 = 0, then (28) can be recast as a convex SDP. That is, for M12 = 0 in (28), we get:

min
(G,X22,Y22), M11�0,M22�0

Trace
(

BT M11B + X22

)
(29)

s.t. : X22 � GT M22G,

(S− GL)T M22 + M22(S− GL) + CT
VCV � Y22,[

AT M11 + M11 A + CTC −CTCV
−CT

VC Y22

]
� 0.

Letting Z22 = M22G and using the Schur complement, (29) becomes the convex
SDP (25). Moreover, if (25) has a solution, then we can easily recover G = M−1

22 Z22 and
M = diag(M11, M22). Note also that the solution (G,M) of the convex SDP problem is a
(local) optimal solution of the original problem (13), since we impose M12 = 0.

Note that the SDP inequalities in (24) and the corresponding ones in Theorem 3 must
be strict to infer asymptotic stability. This can be easily done, replacing 0 with −εI, where I
is the identity matrix of appropriate dimension and ε is sufficiently small.

Remark 1. (Sufficient conditions for block diagonal Gramian). Theorem 3 shows that we can
obtain a (local) optimal solution for the Problem 1 through a convex SDP under the assumption
that the error system admits a block diagonal observability Gramian. While diagonal Gramians
have recently been exploited in the balanced truncation of positive systems [34,35], the application
of block diagonal Gramians in the moment matching-based reduction of general LTI systems is
discussed now. In Appendix A we derive sufficient conditions for block diagonal Gramian.

4. Numerical Optimization Algorithms for Problem 1

In this section, we present several optimization algorithms to solve Problem 1 recast
as the optimization Problems (13), (17) or (25). Note that the proposed optimization frame-
work is general and flexible, allowing us to easily incorporate physical system constraints
in the optimization formulations, such as stability, or structural constraints (positivity, net-
work structure, see also Section 4.3). For example, in this paper, to solve the KKT system (15)
of the nonconvex problem (13) or the nonconvex (partial) optimization problem (17), we
propose first-order methods, since they are adequate for large-scale optimization Problems,
i.e., when the dimension n is very large, see e.g., [36]. Note that second-order methods (e.g.,
Newton or quasi-Newton [37]) can be applied, but they typically require more expensive
computations at each iteration (e.g., evaluation of the Hessians and finding solutions of
linear systems), making them intractable when the dimension n is large. Efficient imple-
mentations of the (quasi-)Newton algorithms will be considered in our future work.

4.1. Gradient Type Method for the KKT System

One optimization algorithm that can be used for solving the KKT system (15) of
problem (13) is the gradient method. Starting from an initial triplet (W0,M0, G0), update:

Wk+1 =Wk + αk∇WΓ(Wk,Mk, Gk), (30)[
Mk+1
Gk+1

]
=

[
Mk
Gk

]
− αk∇(M,G)Γ(Wk,Mk, Gk),

where αk is a stepsize selected to minimize an appropriate merit function in the search
direction at each step. Under some mild assumptions, it is possible to prove that the iterative
process (30) converges locally to a KKT point, see, e.g., [37] (Chapter 14). Moreover, if we
start sufficiently close to a KKT point, we can even choose αk constant and the sequence will
converge linearly to a KKT point, with a speed of convergence depending on the starting
point, see [37] (Chapter 14) for details.
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Initialization of the Algorithm

If the convex SDP relaxation (25) admits a solution, then we can consider the solution
provided by this relaxation as a starting point in the update (30), i.e., G0 with G0 = M−1

22 Z22
and the block diagonal matrixM0 = diag(M11, M22). Moreover, we can takeW0 as the
solution of (9a) with G = G0. Sufficient conditions to guarantee the feasibility of the SDP
relaxation, i.e., to guarantee that the error system admits a block diagonal observability
Gramian, are given in the Appendix A. Otherwise, we can fix S and L such that the pair
(S, L) is observable, and select a set {λ1, . . . , λν} ⊂ C−. Then, from basic control theory,
it is known that there exists (a stabilizing) G0, computed by standard control algorithms,
such that the spectrum σ(S− G0L) = {λ1, . . . , λν} (e.g., pole placement procedures).

The algorithm (30) has cheap iteration costs since it requires only matrix multiplica-
tions, making it adequate for large-scale systems. However, the update in (30) has the
disadvantage that only the limit points of the sequence Gk lead to a stable model, whereas
the intermediate iterates may lead to unstable models. Note that this disadvantage is also
encountered in other model reduction algorithms, such as IRKA [17].

4.2. Gradient Method for the Partial Minimization Problem

We have proven that the objective function of the nonconvex optimization problem (17)
is differentiable, with the gradient given in (18). Moreover, the gradient is Lipschitz
continuous on any compact set. Then, we can apply a gradient method to solve (17).
Starting from the initial stable matrix G0 ∈ D(S,L), we consider the following update:

Gk+1 = Gk − αk∇ f (Gk), (31)

where the stepsize αk can be chosen through a backtracking procedure or constant in the
interval (0, 2/` f ) (recall that ` f denotes the Lipschitz constant of the gradient). With such
choices for the stepsize and using the Lipschitz gradient property for the objective function,
the sequence of value functions f (Gk) is nonincreasing [36]:

f (Gk+1) ≤ f (Gk)− ∆ · ‖∇ f (Gk)‖2 ∀k ≥ 0,

for some constant ∆ > 0, where ‖ · ‖ denotes the Frobenius norm. Hence, all the iterates
remain in the compact sublevel set N G0

(SL). Moreover, since f is bounded from below by
zero, then for any positive integer k, a global convergence rate follows from the previous
descent inequality:

min
i=0:k−1

‖∇ f (Gi)‖2 ≤ f (G0)− f ∗

∆ · k ∀k ≥ 0,

where f ∗ is the optimal value of problem (17). Under some mild assumptions, such as
the Hessian of f at a local minimum being positive definite and bounded, then, starting
sufficiently close to this local optimum, the gradient iteration converges linearly to this
solution [36]. Therefore, the speed of convergence of this iterative process depends on the
starting point. As a starting point, we can consider the initialization procedures described
in Section 4.1. Note that, although the iterative process (31) requires solving two Lyapunov
equations depending on the dimension of the original system, n, since these equations
contain a large fixed part corresponding to the original system that can be solved before the
start of the iterative process, it is reasonably cheap. Moreover, the variation of the matrix G
can be viewed as a low-rank update of the error Lyapunov equation. Then, one only has to
solve a small Lyapunov equation and a sparse Sylvester equation at each iteration, not very
expensive, see, e.g., for more details [38]. Finally, the update in (31) has the advantage that
any iterate Gk leads to a stable reduced order model, whereas for the iteration (30), only the
limit points of the generated sequence Gk lead to a stable model.
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4.3. Convex SDP Relaxation

There are several methods available to solve SDP Problems with convex objective
functions subject to BMI constraints, see, e.g., [39]. However, there are more efficient solvers
for the convex SDPs (e.g., problem (25)) that can scale to large instances, such as first order
methods or interior point methods [36]. Note that, in the general case of LTI systems, the
convex SDP relaxation (25) is not exact, since imposing the condition M12 = 0 renders the
solution of the original SDP problem (24) (sub)optimal. If the convex SDP relaxation (25)
admits a solution, then we can initialize the proposed gradient-based methods with the
solution yielded by the relaxation. Sufficient conditions to guarantee the feasibility of the
SDP relaxation, i.e., guarantee that the error system admits a block diagonal observability
Gramian, are given in the Appendix A.

5. Illustrative Examples

We illustrate the numerical efficiency of our theory and algorithms with a CD-player [17]
and on the discretized heat equation modeled as a positive system [40]. In particular, we
compute and compare reduced order models achieving (possibly) the minimum H2-norm.

5.1. CD Player

We consider the model of the dynamics between a lens actuator and the radial arm
position in a portable CD player, i.e., a single input single output system with n = 120,
see, e.g., [1,17] for values of the matrices A ∈ R120×120, B ∈ R120×1, and C ∈ R1×120.
We compute the optimal models through the gradient-based solution to optimization
problem (17) at orders ν = 1:10. In Figure 1, we plot the H2-norm of the approximation error
versus the reduced order index. The solution yields a reduced order model, with small
H2-norm for the approximation error, in the family of reduced order models that match ν
moments at ν fixed interpolation points. The interpolation points have been chosen at dense
frequencies (black), e.g., 0, 0.2, 0.4, 0.6,. . . , as well as rare (blue), e.g., 0, 2, 4, 6, etc. The latter
choice of the interpolation points yields a lower H2 error norm. Note that matching the
moment at zero ensures the preservation of the DC-gain of the step response of the system.

1 2 3 4 5 6 7 8 9 10

0.0115

0.012

0.0125

0.013

H
2

rare

dense

Figure 1. Relative H2-norm of the approximation error versus the approximation order ν for rare/-
dense interpolation points for the CD-player.

Furthermore, Table 1 shows the results of the proposed gradient method-based solu-
tion of Problem 1 versus the results of applying the IRKA [17] and balanced truncation [5],
for orders ν = 2 and ν = 6. Note that IRKA produces better H2 error norms than the
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gradient method. This is due to the fact that IRKA is searching for a solution over the
whole space of ν order models parametrized in (F, G, H), while the proposed method is
searching for a solution only in the subspace of stable ν order models parameterized in
G. Consequently, IRKA is usually producing a stable reduced model only at the solution,
while we can stop our algorithm (31) at any iteration and still yield a stable reduced model.
This argument is further emphasized by the placement of the poles of the (optimal) ap-
proximations yielded by these two methods, in the complex left half plane. Note that
IRKA gives the maximum real part of the poles much closer to the imaginary axis (very
close to instability or unstable even) than the proposed method, e.g., −2.25 · 10−5 versus
−3.9 · 10−1 for ν = 2 and 2.27 · 10−5 versus −4.2 · 10−1 for ν = 6, respectively. On the
other hand, balanced truncation yields a stable model with similar H2 error norms as the
proposed method. However, even if the approximant is stable, the poles are very close to
the imaginary axis. One remedy for improving the quality of the solutions of Problem 1
is to design algorithms that make use of the curvature information. For example, since
we derived explicit expressions for the gradient of the objective function, we can consider
the quasi-Newton methods instead of the gradient methods. Moreover, in general, the
systematic selection of interpolation points is an open issue, and is typically left to the user,
depending on the application goal. However, these issues are beyond the scope of this
paper and they will be investigated in the future work.

Table 1. Comparison of the gradient method-based solution of Problem 1 with algorithm (31) vrs.
IRKA and balanced truncation, with an arbitrary set of interpolation points.

ν
Gradient Method for Problem 1 IRKA [17] Balanced Truncation

H2 Norm Gradient Norm max Re Pole H2 Norm Gradient Norm max Re Pole H2 Norm max Re Pole

2 1.1 · 10−2 4.3 · 10−5 −3.9 · 10−1 4.4 · 10−4 1.5 · 10−6 −2.2 · 10−5 7.5 · 10−2 −2.2 · 10−5

6 5.6 · 10−3 3.5 · 10−5 −4.2 · 10−1 6.4 · 10−5 1.8 · 10−5 −2.3 · 10−5 4.8 · 10−3 −2.2 · 10−5

We further investigate several structured choices of the interpolation points. For order
ν = 6, we choose the interpolation points as the mirror images of the poles of the IRKA
model and of the balanced truncation model of the CD-player system, respectively.

We compare the results of the proposed method to IRKA and the balanced truncation
in Table 2. The structured choices of interpolation points yield similar results to the arbitrary
choice of interpolation points, e.g., ν = 6. Note that, when the interpolation points are
generated by IRKA or by balanced truncation, the interpolation at zero is lost, hence the
DC-gain is not preserved. Furthermore, in this case, the poles of the resulting solution are
closer to the imaginary axis.

Table 2. Comparison of the gradient method-based solution of Problem 1 with algorithm (31) vrs.
IRKA and balanced truncation, with the interpolation points chosen as the mirror images of the poles
of the IRKA and BT models, respectively.

ν
Interp.
Points
by:

Gradient Method for Problem 1 IRKA [17] Balanced Truncation

H2 Norm Gradient
Norm max Re Pole

H2
Norm
·10−5

Gradient
Norm
·10−5

max Re Pole
·10−5 H2 Norm max Re Pole

6
IRKA 2.2 · 10−2 1.3 · 10−5 −2.5 · 10−3

6.4 1.8 −2.3 4.8 · 10−3 −2.2 · 10−5

BT 4.6 · 10−3 1.9 · 10−5 −2.3 · 10−5
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5.2. Heat Equation

We consider the 2-dimensional heat equation on a square, see [34] for details:

Ṫ = ∂2T/∂x2 + ∂2T/∂y2,

with the control of the Dirichlet boundary conditions of the four edges.
Using the finite difference discretization on a uniform grid with N points on each axes

leads to the linear system
Ṫ = AT + Bu, y = CT,

where n = N2, m = 4 and p = 1. Hence, A ∈ RN2×N2
is the Poisson matrix satisfying

the Metzler condition, while B ∈ RN2×4 has entries in the set {0, 1}, both matrices being
very sparse. Moreover, we take as the output the global average temperature yielding
C ∈ R1×N2

. Hence, the system is positive, see [40]. We consider N = 100, leading to a mesh
with n =10,000 grid points and, for simplicity, we take u2 = u3 = u4 = 0. We consider
the model reduction Problem 1 and apply the SDP relaxation (25). For N = 100, we get a
system of order 10,000, for the SDP approach needs hours to calculate a reduced model,
due to the high complexity of conventional SDP-solvers. In the case of a large-scale system,
we apply the gradient iteration to the KKT system to decrease the system to the order
100, followed by the solution of SDP relaxation (25), reducing the order to ν = 10. The
interpolation points are chosen as si = i, i = 1 : 10, without a specific constraint. The Bode
magnitudes plots of K and K̂, denoted by Kreduced, for Problem 1, are shown in Figure 2.
Note that the low frequency responses of K̂ and K(s) are very close, see Figure 2b. The
H2-norm error obtained with the 10th order system is 7.41× 10−2.
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Figure 2. Bode magnitudes of the given system (solid black) and the approximation (dashed red)
yielded by Problem 1. (left) Magnitude, (right) Low frequency zoom.

6. Conclusions

In this paper, we have formulated an optimization problem with respect to the H2-
norm minimal approximation error in a family of reduced order models that match a
prescribed set of fixed moments. We have derived first-order optimality conditions and
numerical solutions have been proposed in terms of the gradient method or SDP. Using
test examples such as the CD-player and the heat equation, we have also illustrated the
numerical efficiency of the results.

Author Contributions: Conceptualization, I.N.; methodology, I.N. and T.-C.I.; software, T.-C.I.;
validation, I.N. and T.-C.I.; formal analysis, I.N.; investigation, I.N. and T.-C.I.; resources, T.-C.I.; data
curation, I.N. and T.-C.I.; writing—original draft preparation, T.-C.I.; writing—review and editing,
I.N.; supervision, I.N.; project administration, I.N.; funding acquisition, I.N. All authors have read
and agreed to the published version of the manuscript.



Mathematics 2022, 10, 1765 17 of 19

Funding: The research leading to these results has received funding from the NO Grants 2014–2021,
under project ELO-Hyp, contract no. 24/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Block Diagonal Gramians for General LTI Systems

In this section, we derive sufficient conditions for a general LTI system to admit
block diagonal Gramians, i.e., derive the sufficient conditions for the feasibility of the SDP
relaxation (25) in the case of general LTI systems. In other words, we write the sufficient
conditions to guarantee that the error system admits a block diagonal observability Gramian.
For this, we need the following result valid for any two vectors u and v:

uTv + vTu � uT P−1u + vT Pv, ∀P � 0. (A1)

The inequality follows from the relation (u− Pv)T P−1(u− Pv) � 0, for P � 0. We are
interested in deriving sufficient conditions to guarantee that the SDP (24) admits a feasible
(G,M) withM of block diagonal form and, consequently, that the SDP relaxation (25) is
well-defined.

Theorem A1. Given the stable minimal system (1), there exists a stable reduced order model (4)
such that the error system admits a block diagonal observability Gramian if the following condi-
tions hold:

AT M11 + M11 A + CTC + CTCV P−1
xξ CT

VC � 0,

(S− GL)T M22 + M22(S− GL) + CT
VCV + Pxξ � 0, (A2)

for some matrixM = diag(M11, M22) � 0 and Pxξ � 0.

Proof. Note that the feasible set of (24) is nonempty ifM� 0 and the following inequality
holds:[

x
ξ

]T
([

A 0
0 S− GL

]T

M +M
[

A 0
0 S− GL

]
+

[
CTC −CTCV
−CT

VC CT
VCV

])[
x
ξ

]
≤ 0, (A3)

∀x, ξ. SinceM = diag(M11, M22), (A3) is equivalent to

xT(AT M11 + M11 A + CTC)x + ξT((S− GL)T M22 + M22(S− GL) + CT
VCV)ξ

− xTCTCVξ − ξTCT
VCx ≤ 0,

∀x, ξ. Using now (A1) in the last term we get that

−xTCTCVξ − ξTCT
VCx ≤ xTCTCV P−1

xξ CT
VCx + ξT Pxξ ξ ∀x, ξ.

Hence, if the inequality

xT(AT M11 + M11 A + CTC + CTCV P−1
xξ CT

VC)x + ξT((S− GL)T M22 + M22(S− GL)

+ CT
VCV + Pxξ)ξ ≤ 0,

∀x, ξ holds, then also (A3) is valid. Then (A2) follows.

Theorem A1 provides sufficient conditions and also a procedure to construct a reduced
order model leading to an error system that admits a bock diagonal observability Gramian.
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Indeed, let us, for example, fix L, M22 = Iν and some matrix Pxξ � 0. Then, the existence of
a solution (G, Π) of the system:

(S− GL)T + (S− GL) = −
(
(CΠ)T(CΠ) + Pxξ

)
,

AΠ + BL = ΠS,

together with the existence of an M11 � 0 satisfying AT M11 + M11 A+CTC+CTCV P−1
xξ CT

VC �
0 guarantee that we have a reduced order model yielding a block diagonal observability
Gramian of the error system.
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