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Abstract: Alzheimer’s Disease (AD) is a highly prevalent condition and most of the people suffering
from it receive the diagnosis late in the process. The diagnosis is currently established following an
evaluation of the protein biomarkers in cerebrospinal fluid (CSF), brain imaging, cognitive tests, and
the medical history of the individuals. While diagnostic tools based on CSF collections are invasive,
the tools used for acquiring brain scans are expensive. Taking these into account, an early predictive
system, based on Artificial Intelligence (AI) approaches, targeting the diagnosis of this condition, as
well as the identification of lead biomarkers becomes an important research direction. In this survey,
we review the state-of-the-art research on machine learning (ML) techniques used for the detection of
AD and Mild Cognitive Impairment (MCI). We attempt to identify the most accurate and efficient
diagnostic approaches, which employ ML techniques and therefore, the ones most suitable to be used
in practice. Research is still ongoing to determine the best biomarkers for the task of AD classification.
At the beginning of this survey, after an introductory part, we enumerate several available resources,
which can be used to build ML models targeting the diagnosis and classification of AD, as well as
their main characteristics. After that, we discuss the candidate markers which were used to build AI
models with the best results in terms of diagnostic accuracy, as well as their limitations.

Keywords: Alzheimer’s disease; mild cognitive impairment; biomarkers; machine learning; deep
learning; diagnosis

MSC: 68T07

1. Introduction

Brain disorders are increasingly recognised as a significant cause of death and a global
healthcare problem. They are broadly divided into two main categories, respectively
Neurodegenerative diseases and Neuropsychiatric disorders [1].

Neurodegenerative Diseases are defined by progressive loss of neurons, which disrupts
the function of the Central Nervous System (CNS) as well as the Peripheral Nervous
System (PNS). Some common neurodegenerative diseases are Alzheimer’s Disease (AD),
Parkinson’s Disease (PD), Prion Disease and Huntington’s Disease (HD). These diseases
cause the impairment of one or several particular functions contributing to one’s daily
experiences, such as movement, speech, memory and coordination. Therefore, patients
with these conditions experience a significant reduction in social, work and day-to-day
activities [2]. These limitations raised questions about the quality of life of both patients
and caregivers. From this point of view, Clark outlined the importance of promoting
well-being, such as to “add life to years rather than years to life” [3]. Several early reviews
enumerated the risk factors associated with neurodegenerative diseases in general and
AD in particular [4–9]. Aging has been identified as the primary risk factor for most
neurodegenerative diseases [10,11]. More than one in nine individuals aged 65 and older
were living with AD in 2021, with the prevalence of this condition continuously rising with
the increasing age [12].
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Neuropsychiatric Disorders are specific conditions in which an individual’s thoughts,
perceptions, emotions and behaviour cause suffering and interfere with the individual’s
daily functioning [13]. Bray et al. [14] provide a detailed survey illustrating several attempts
of identifying susceptibility genes for neuropsychiatric disorders, enforcing the idea that
these conditions are attributable to genetic factors. Recent epidemiological studies suggest
that toxic stress converts this genetic susceptibility into actual neurological disorders [15,16].
Early-life negative events raise the risk for the development of the neuropsychiatric disorder.
Childhood traumatic events are risk factors for developing bipolar disorders [17].

Multiple brain disorders occur after other life-threatening illnesses such as Acute
Respiratory Distress Syndrome (ARDS). Sasanneja et al. [18] review pathophysiological
mechanisms, epidemiology and risk factors underlying cognitive impairment following
ARDS. In these cases, neurocognitive and neuropsychiatric problems persist for years after
the lung injury, even when a clear and defined structural brain injury appears absent.
The long-term sequelae prevent patients from regaining the quality of their lives before
the illness. Kumar et al. [19] provide a comprehensive review of the brain pathologies and
chronic neuropsychiatric sequelae associated with COVID-19 infection. In this context,
multiply studies arise regarding the early diagnosis and the prevention of brain dysfunction
in the critically ill [20–23].

Huang et al. [24] identify two highly important characteristics of the brain which
contribute to recovery from brain injury. The first of them is the redundancy, which refers to
the ability of intact brain areas to take over functions formerly performed by a damaged
area. However, redundancy is reduced in older age [25], making the brain less capable
of shifting functions from one area to another. Moreover, some functions of the brain,
such as vision, can not be fulfilled by other brain areas [26]. As a result, direct harm to
that areas may lead to permanent consequences. The second characteristic is the plasticity,
meaning the ability of some nerve cells to change so that they can perform new functions.
The level of plasticity experienced throughout life can be potentiated by genetic, cellular
and molecular factors, as well as by environmental differences [27].

Alzheimer’s Disease (AD) Overview

AD is an irreversible severe neurodegenerative disease that causes the deterioration
of brain tissue and consequently, the loss of mental function. In 2019, AD was ranked as
the sixth leading cause of death in the United States (US), accounting for 44.7% of all the
dementia cases [28]. During 2020, COVID-19 has been added as a new cause of death and
AD thus became the seventh leading cause of death in the US [29].

The causes of AD are not fully understood yet. However, significant progress is
being made in this direction. Research shows that the AD brain is characterized by the
extracellular amyloid plaques and intracellular tau tangles [30–33]. While it is not clear
what causes this process to begin, it is known that it starts several years before symptoms
occur. This is why significant efforts are being undertaken to find new biomarkers for the
early identification of AD. While there is no drug or intervention which can successfully
treat AD, the early detection of this condition involves several benefits. Firstly, the subject
is more likely to be eligible for clinical trials, which most often address people in the
early stages of AD. Secondly, Aducanumab, the first drug which attacks the underlying
pathobiology of the disease and the first one approved in the last 18 years (in 2021), has
been clinically tested on patients with early AD [34]. Therefore, if the disease was detected
before the neurological symptoms arise, its evolution could be better controlled.

Younes et al. [35] attempted to identify change-points in measures based on brain
imaging, cognitive tests and cerebrospinal fluids, in order to determine the risk of devel-
oping AD at least 10 years before the onset of the most prevalent symptoms. There have
been distinguished minor changes in cognitive test scores 11 to 15 years before the start of
cognitive impairment for the patients who later developed cognitive problems or dementia.
Furthermore, increases in the rate of change of tau protein in cerebrospinal fluid have been
discovered 34 years prior to symptom onset. An early and precise diagnosis of AD could
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also save high amounts of money invested in medical and care expenses. According to [36],
in 2020, the total amount of healthcare costs for the treatment of AD was estimated at
$305 billion. It is an interesting fact that these costs are expected to increase to more than $1
trillion as the population ages.

Until now, several factors are known to increase the risk of developing this condition.
The first and the most significant one is the age. According to [37], the probability of
developing AD doubles every 5 years after reaching 65. The inherited genes can contribute
to the risk of developing AD. It appears that this condition is one of the diseases with the
highest level of heritability (more than 70%) [38]. Other factors include cerebrovascular
diseases (the most consistently reported), diabetes, hypertension, smoking, obesity and
dyslipidemia [39]. Silva et al. [40] provide a more in detail description regarding the
association of the previous risk factors to AD development.

In the following, Section 2 enumerates several datasets and tools widely used in the
state-of-the-art research, which prove to be highly relevant towards achieving the task of
AD diagnosis. Section 3 presents the most recent findings regarding relevant biomarkers
identification. The benefits of including each category of biomarkers, as well as their
limitations are reviewed at the end of this section, next to references to the classifiers which
employed them and led to the best diagnostic accuracy. Section 4 provides a detailed com-
parison of the latest ML approaches designed to predict conversion from MCI to AD and
which had the best results in terms of diagnostic accuracy. Finally, Section 5 concludes and
presents future directions of ML in the field of AD diagnosis and biomarkers identification.

2. Relevant Resources

In machine learning algorithms, data plays an essential role in terms of the quality of
the solutions we obtain. Their size and the quality of the annotations they have are very
important and that is why they are given special attention.

2.1. OASIS Datasets

The Open Access Series of Imaging Studies (OASIS) [41] is a project that made neu-
roimaging data sets of the brain available for free to the scientific community, with the
aim to help the researchers that work in this field. Details about available OASIS datasets
are presented in Table 1. These datasets are comprised of MRI data collected from both
Cognitively Normal (CN) and AD subjects.

Table 1. OASIS Datasets [41].

Name Dataset Type Subjects
Count

Scans Count
per Patient

AD Subjects
Count

Age &
Gender for

CN

Age &
Gender for

AD
References

OASIS-1 Cross-
Sectional 416 3 or 4 100

18–96 years,
119 male,

197 female

60–96 years,
41 male,

59 female
[42]

OASIS-2
Longitudinal
(two or more

visits)
150 3 or 4

64 at initial
visits and 14
at later visits

60–96 years,
22 male,

50 female

60–96 years,
36 male,

28 female
[43]

OASIS-3
Longitudinal
(two or more

visits)
>1000 not specified 489

42.5–95.6 years,
358 male,

487 female

42.5–95.6 years,
254 male,

248 female
[44]

2.2. ADNI Datasets

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [45] is a study aimed at
developing biomarkers for the early detection and tracking of AD. It comprises four distinct
phases—ADNI1, ADNIGO, ADNI2 and ADNI3, in each of which new participants were
recruited, while the existing ones from earlier phases continued to be monitored. A high
level overview of the categories from this study is presented in Table 2.
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Table 2. ADNI Datasets [45].

Data Type Subcategories References

Clinical Data Recruitment Data, Demographics, Physical
Examinations, Cognitive Assessment Data [46–53]

Genetic Data Genotyping and Sequencing Data [51,54–57]
Medical Images MRI and Positron Emission Tomography (PET) images [48,51,58–66]

Biospecimen Urine, Plasma and Serum from Blood, CSF [48,61,67]

Details regarding gender, racial and age group distribution of subjects enrolled in
ADNI studies are illustrated in Tables 3 and 4.

Table 3. Enrollment by Gender and Racial Categories.

American
Indian or
Alaskan

Asian Hawaiian
Black or
African

American
White Multiple

Reported
Not

Reported
Total

Subjects

Male 0 9 0 16 450 2 1 478
Female 1 5 0 23 314 1 0 344
TOTAL 1 14 0 39 764 3 1 822

Table 4. Enrollment by Age Group.

Age Group Enrolled Subjects

Less than 55 4
55–60 22
61–65 56
66–70 85
71–75 244
76–80 229
81–85 137
86–90 44
91–95 1

TOTAL 822

As illustrated in Table 4, there are only 4 subjects less than 55 years old. Furthermore,
94% of male subjects and 91% of female subjects are white, which might lead to a classifier
not generalising well to a larger and more diverse population. The distribution of subjects
by diagnostic categories is represented in Table 5.

Table 5. Diagnostic Categories.

Normal MCI AD Total

Count 229 405 188 822
Percent 28% 49% 23% 100%

2.3. The Alzheimer’s Project

The Alzheimer’s Project [68] contains a detailed exploratory data analysis based on the
ADNI dataset and several predictive models for AD diagnosis [69,70]. The authors used
the ADNI1 dataset for both the cross-sectional and the longitudinal models. The choice of
using only the ADNI1 phase was due to the fact that particular predictors were entirely
missing across several phases of the ADNI study. A detailed comparison between these
experiments is illustrated in Table 6. The baseline measurements refer to the ones retrieved
at the first visit (both features and diagnosis). For each of the models, the best obtained
results in terms of accuracy are illustrated in Table 6.
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Table 6. Detailed comparison between Logistic Regression models developed in the Alzheimer’s Project.

Model Type Model Name Features Prediction
Type

Training
Accuracy Best

Model

Test Accuracy
Best Model Train/Test Split

Cross-Sectional Logistic
Regression

All Baseline
Features

Baseline
Diagnosis
Prediction

80.6% 78.3% 75%/25%

Cross-Sectional Logistic
Regression

MMSE, CDRSB
scores

Baseline
Diagnosis
Prediction

93.4% 92.6% 75%/25%

Longitudinal Logistic
Regression

All Baseline
Features &

Time until last
visit

Progression
from

Cognitively
Normal to
MCI/AD

75% 63% 80%/20%

Longitudinal Logistic
Regression

All Baseline
Features &

Time until last
visit

Progression
from MCI to

AD
76% 63% 80%/20%

Limitations of this study:

• The youngest participant in the dataset is aged 55—therefore, the models can not be
used to provide early diagnosis.

• The dataset has a large number of male participants, white and married - therefore,
the models may not generalize well to the larger population.

Future directions concerning this study:

• The methodology should be extended to datasets involving younger patients.
• It should be tested whether the developed models predict well also on under-represented

groups in the ADNI dataset.

3. Current Research Directions in Biomarkers Identification

AD is a complex neurodegenerative disease which has no effect and early diagnostic
methods. The methods currently used to diagnose AD are based on cognitive tests, imaging
techniques and cerebrospinal fluid (CSF) levels of amyloid-β1-42, total tau protein and
hyperphosphorylated tau (p-tau).

3.1. Neuropsychological Tests

There is no single diagnostic test that can indicate if one has AD. However, as shown
in Table 7, there are several mental cognitive status tests, which assess memory, thinking
and simple problem-solving abilities.

Ref. [71] conducted several experiments on neuropsychological and cognitive data.
They found out that traditional ML algorithms, such as Support Vector Machine (SVM),
Random Forest (RF), Gradient Boosting (GB) and AdaBoost achieved similar classification
performances with neuropsychological or cognitive data. The neuropsychological data
gathered from participants included Mini-Mental State Examination (MMSE), Alzheimer’s
Disease Assessment Scale–Cognitive Subscale (ADAS-Cog), F-A-S Letter Verbal Fluency
(F-A-S LVF) and Logical Memory subtest of the Wechsler Memory Scale (WMS-IV) scores.
In addition, data with the Lawton Instrumental Activities of Daily Living Scale (IADL)
and Neuropsychiatric Inventory (NPI) were collected and included in this study. IADL
evaluates a person’s ability to conduct daily tasks including using a telephone, doing
laundry and handling finances. NPI consists of a brief interview with a family member
or friend who can assess several behavioural areas that are frequently impaired in AD
patients. The subjects having AD and MCI were part of the Memory Disorders Program
cohort at Georgetown University Medical Center, while the CN individuals were recruited
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from Washington DC metropolitan area. Employing all the features corresponding to nine
neuropsychological test scores, the authors obtained the best results using GB, therefore
obtaining an accuracy equal to 81.06%. Performing the same experiment, but this time
applying Synthetic Minority Oversampling Technique (SMOTE) led them to an accuracy
equal to 82.93% both with GB and RF algorithms. The Multilayer Perceptron (MLP)
approach outperformed traditional algorithms when using neuropsychological test scores,
the best result being equal to 88.46% in terms of diagnostic accuracy. Ref. [52] proposed an
MLP based approach for the task of binary classification, with the data consisting of scores
from three neuropsychological tests. More specifically, the data was retrieved from the
ADNI datasets, containing the scores for the following tests: ADAS-Cog, MMSE and FAQ.
For each of these tests, the baseline measurements were chosen (the ones from the first visit).
The MLP models were trained to perform binary classification between distinct cognitive
groups: AD vs. CN, AD vs. MCI, respectively MCI vs. CN. When using only one particular
test, the best result was obtained by employing the MMSE scores for AD vs. CN and AD
vs. MCI, with an accuracy equal to 96.92%, respectively 84.75%. In addition, for MCI vs.
CN classification, the highest accuracy was obtained for the ADAS-Cog dataset, with a
value equal to 81.54%. Finally, for AD vs. MCI vs. CN (3-way MLP) the best result was also
reached when training on the ADAS-Cog related features, with an accuracy equal to 72.75%.
The results considerably improved when the combined three tests were used as an input.
The MLP model thus obtained an accuracy equal to 99.76% for AD vs. CN, 89.64% for AD
vs. MCI, 90.81% for MCI vs. CN and 84.28% for AD vs. MCI vs. CN. Ref. [72] conducted a
study to develop a DL algorithm for identifying a few top neuropsychological tests which
could accurately classify the following groups: Early Mild Cognitive Impairment (EMCI),
Late Mild Cognitive Impairment (LMCI), AD and CN. Besides these tests, the features also
included demographics, genetic factors and blood biomarkers and were collected from
383 EMCI, 644 LMCI, 394 AD patients and 516 CN, all belonging to the ADNI dataset.
The following five feature selection methods were used to identify the most predictive
variables: Information Gain, Boruta Random Forest, Recursive Feature Elimination with
the RF Classifier, Logistic Regression (LR) with LASSO/L1 regularization, and Permutation
Importance. The neural network was an MLP with two fully connected dense layers for
classification, followed by a dropout layer and ending with a fully connected dense layer.
All five feature selection methods yielded the top classifiers to be the CDRS, LDELTOTAL,
mPACCtrailsB, mPACCdigit and MMSE.

Table 7. Neuropsychological Tests for AD Diagnosis.

Name Evaluated Skills Score Range Score Interpretation References

Mini-Mental State
Examination (MMSE)

Orientation, Attention,
Memory, Language,
Visual-Spatial Skills

0–30
The greater the

impairment, the lower
the score

[73–78]

Clinical Dementia Rating Scale
(CDRS)

Memory, Orientation,
Judgment, Problem

Solving, Community
Affairs, Home and

Hobbies Performance

0–3
The greater the

impairment, the greater
the score

[79–84]

Alzheimer’s Disease
Assessment Scale–Cognitive

Subscale (ADAS-Cog)

Memory, Orientation,
Language, Praxis 0–70

The greater the
impairment, the greater

the score
[85–89]

Functional Activities
Questionnaire (FAQ)

Everyday Functional
Abilities 0–30

The greater the
impairment, the greater

the score
[90–94]



Mathematics 2022, 10, 1767 7 of 20

Table 7. Cont.

Name Evaluated Skills Score Range Score Interpretation References

Everyday Cognition (ECog) Everyday Functional
Abilities 1–4

The greater the
impairment, the greater

the score
[95–100]

F-A-S Letter Verbal Fluency
(LVF) Verbal Fluency Depends on the number

of words created

The greater the
impairment, the lower

the score
[101]

Logical Memory subtest of the
Wechsler Memory Scale Memory Functions

Depends on the evaluated
index (e.g., Visual
Memory, Auditory

Memory)

The greater the
impairment, the lower

the score
[102–107]

Delayed total recall
(LDELTOTAL)

Ability to recollect
information acquired

earlier

Depends on the recalled
amount of information

The greater the
impairment, the lower

the score
[72,108,109]

Modified Preclinical Alzheimer
Cognitive Composite with

Digit test (mPACCdigit)
Memory Functions Depends on the recalled

amount of information

The greater the
impairment, the lower

the score
[72,109]

Modified Preclinical Alzheimer
Cognitive Composite with
Trails test (mPACCtrailsB)

Processing Speed -
The greater the

impairment, the lower
the score

[72,109]

3.2. Neuroimaging Biomarkers

One of the most important biomarkers studied for AD diagnosis is the structural
change in the brain morphology measured from the Magnetic Resonance Imaging (MRI).
MRI offers a direct measurement of brain structure in detail, facilitating the conversion of
visible degeneration patterns into a biomarker score. This score can show how similar the
individual’s brain looks as compared to a CN brain or a clinically diagnosed AD brain.

According to [110], MRI-based measurements of atrophy are regarded reliable indica-
tors of disease state and progression. Despite its convoluted structure, the boundaries of the
hippocampus are easier to recognize by automated algorithms than amygdala, entorhinal
cortex or parahippocampal gyrus. This is due to the fact that the anatomical boundaries of the
hippocampus are distinct at high-resolution T1-weighted MRI scans. At the mild dementia
stage of AD, hippocampal volume is already reduced by 10–15% [111]. A recent study
estimated that MTA has 73% sensitivity and 81% specificity to predict whether patients
with MCI will develop dementia [112]. However, there has been little research done for the
diagnosis of AD using exclusively the hippocampal atrophy marker and machine learning
methods for classification.

In order to perform an analysis of the brain tissue, accurate automated segmentation of
brain structures needs to be done. Hippocampus segmentation in MRI is a problem in itself
due to its small size, anatomical variability, low contrast and indistinct boundary. Ref. [113]
shows that segmenting the hippocampus using conventional methods (based on the region
growing technique) does not achieve acceptable results. Ref. [114] focus on an approach
to detect AD from MRI scans using ML algorithms. In order to perform the experiments,
there have been selected 235 MRI scans from the OASIS dataset corresponding to different
AD stages. The preprocessing of the scans consists of the use of Contrast enhancement.
For the feature extraction part, the texture, area and shape features are extracted using
the Gray-Level Co-Occurrence Matrix and Moment Invariants from the hippocampus,
which is selected as the Region of Interest (ROI). In addition, there are extracted features
indicating the age, gender, education, socio-economic status and MMSE score. These are
further fed to an Artificial Neural Network (ANN), which is trained to detect AD using the
Scaled Conjugate Gradient (SCG) algorithm. The proposed system has an average accuracy
of 86.8%.

Ref. [115] proposed an ensemble of three deep convolutional neural networks with
slightly different configurations. These were fed with patches from three physical planes of
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MRI images: horizontal, frontal and median. The MRI images belong to the OASIS dataset.
As a preprocessing step, the scans are normalized (by shifting inputs to zero-mean and
unit variance). Each individual CNN model has the same architectural pattern, consisting
of convolution, batch normalization, rectified linear unit and pooling. The authors kept
these layers very narrow with 12 filters per layer. Batch normalization speeds up the
training process, by acting as a regularizer. The models were trained independently and
the output classification labels were ensembled together using a majority voting technique.
The accuracy of this model on the OASIS dataset was equal to 93.18%.

Ref. [116] proposed a CNN-based algorithm which uses MRI coronal slices covering
the medial temporal lobe to classify AD vs. CN subjects. The authors used the Inception-v4
architecture [117] with slight modifications. This model was designed to take 2D images
with three RGB channels as inputs. As a result, the gray-scale coronal slices were triplicated
into three channels for consistency. After feeding the network with a single coronal slice,
the output was a feature vector containing 1024 values. The authors added three additional
values to the end of the vector: the age of the subject (because mild MTA is observed in CN
elderly subjects), the sex and the number of coronal slices which were evaluated. The final
concatenated vector contained 1027 values and was fed to the classifier module, a fully
connected layer with 1027 input nodes and 2 output nodes. These were fed into a softmax
output layer, which predicted the probability that a particular MRI image indicated the
presence of AD. In terms of results, the accuracy of the models trained on the ADNI dataset
was equal to 89%.

Ref. [118] also used a subset of the ADNI dataset, including 302 MRI images, for the
task of AD classification. For the preprocessing step, the non-brain tissues were removed
from scans by optimizing the fractional intensity threshold and reducing image bias and
residual neck voxels. The brain-extracted images were further segmented into grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF). In addition, GM images were
registered to a standard template using linear affine transformation. Next, a convolutional
architecture consisting of a set of learnable filters was used to extract low- to mid-level
features. Feeding the obtained data to a GoogleNet classifier led to an overall accuracy rate
equal to 98.84%.

Ref. [119] proposed a multistage classifier consisting of several CNN models, with the
purpose of identifying subjects with MCI or AD using MRIs, as it follows: classification
between AD and HC (Healthy Cognition), MCIc (MCI patients who will convert to AD) and
HC, respectively MCIc and MCInc (MCI patients who will not convert to AD). For each of
these binary classification tasks, multiple CNN models were trained using a set of sagittal,
coronal and transverse MRI slices. These CNN models were further integrated into a single
ensemble. Each base classifier based on 2D CNN models was trained using each set of the
sagittal, coronal, or transverse MRI slices.

After building these base classifiers, the first five with the best generalization perfor-
mance for each slice orientation were chosen. This resulted in three classifier ensembles
based on single-axis slices, each of them containing the 5 best base classifiers. The output of
an individual classifier ensemble was generated by combining the outputs of these 5 base
classifiers. Finally, a majority vote scheme was used to combine the predictions of these
three classifier ensembles. When tested on the ADNI dataset, the average classification
accuracies were 84% for AD vs. HC, 79% for MCIc vs. HC, and 62% for MCIc vs. MCInc.

Table 8 summarizes the above-presented ML approaches, the employed preprocessing
and classification algorithms, the used datasets and the accuracies of the best obtained models.
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Table 8. Machine Learning Approaches using NeuroImaging Biomarkers.

Authors Dataset
Name Data Type Preprocessing Classifier Classification

Accuracy

Raut et al., 2017 [114] OASIS MRI Data Contrast enhancement ANN 86.8%
Islam et al., 2018 [115] OASIS MRI Data Image normalization Ensemble of CNNs 93.18%

Bae et al., 2020 [116] ADNI MRI Data Grayscale coronal slices were
triplicated into 3 channels Inception-v4 89%

Sarraf et al.,
2017 [118] ADNI MRI Data

Removal of non-brain tissues
from scans, Image

Segmentation, Image
Registration using Linear

Affine Transformation

GoogleNet 98.84%

Pan et al., 2020 [119] ADNI MRI Data

Skull Extraction, Registration,
Image Smoothing, Voxel-Based

MRI Signal Intensity
Normalization

Multistage classifier
based on CNN 84.5%

3.3. Genome, Blood and Cerebrospinal Fluid Biomarkers
3.3.1. CSF Biomarkers

Methods relying on CSF biomarkers are both costly and invasive. In addition, the
sensitivity and specificity of CSF amyloid-β1-42 and p-tau biomarkers have raised concerns
in several studies about their clinical implications [120–122]. According to [120], CSF
biomarkers are based on a quantitative interpretation. Even if standardization efforts are
more advanced for CSF biomarkers than for other categories of biomarkers, their practical
use must follow specific best-practice guidelines. Ref. [123] states that the sensitivity of
CSF Aβ42 is between 0.69 and 0.81 and specificity between 0.44 and 0.89. These values
imply a great risk of either overdiagnosis or underdiagnosed, misattributed or ignored
symptoms. As a result, patients are frequently diagnosed late, placing a burden on the
health systems. Ref. [124] proposed a classification model for AD diagnosis employing CSF
biomarkers and the J48 algorithm, which led to an accuracy equal to 98.82%. The dataset
was acquired from Kaggle and comprised 91 MCI patients and 242 CN subjects. The data
consisted of protein level of amyloid—Aβ42, native Tau protein, phosphorylated form of
Tau and Apolipoprotein E genotype. The feature selection step was accomplished using
InfoGainAttributeEval from Weka (a data platform for ML tasks consisting of tools for data
pre-processing, classification, and clustering).

Ref. [125] developed an ensemble model using a combination of CSF protein biomark-
ers to predict AD with an accuracy equal to 95.52%. The dataset employed in this approach
was generated by Craig Schapiro et al. [126], comprising both demographic and CSF protein
biomarkers. After applying Recursive Feature Elimination (RFE), three biomarkers proved
to be the most informative: Cystatin C, Matrix metalloproteinases (MMP10) and tau protein.
The classification model used a weighted average of an LR model and a linear SVM.

3.3.2. Genome Biomarkers

Several studies evaluated the potential of genetic biomarkers in AD diagnosis. Ac-
cording to [127], the following genes have been significantly involved in Early Onset
AD (EOAD): Amyloid-β precursor protein (AβPP), presenilin 1 (PSEN1) and presenilin 2
(PSEN2). Meanwhile, late-onset AD (LOAD) has been associated with other genes, includ-
ing: apolipoprotein E-ε4 (APOE ε4), bridging integrator 1 (BIN1) region, clusterin (CLU),
phosphatidylinositol clathrin assembly lymphoid-myeloid (PICALM), and complement
receptor 1, identified in Genome-Wide Association Studies (GWAS) [128]. Among these
associated genes for LOAD, the APOE ε4 allele proves to be a promising biomarker for
AD diagnosis.

Booij et al. [129] used 1239 genes as features for a Partial Least Square Regression
classifier to identify the presence or absence of AD. Data was collected from different health
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institutions in the Oslo area of Norway between 2004 and 2005. The algorithm had an
accuracy of 87% and managed to also discriminate AD from Parkinson’s with an accuracy
of 89%.

Lunnon et al. [130] used 48 genes, many of which were mitochondrial genes (asso-
ciated with oxidative phosphorylation, mirroring changes known to occur in the brains
of AD patients), together with an RF classifier to diagnose AD with an accuracy equal to
75%. Subjects employed in the experiment were from AddNeuroMed, a cross-European
biomarker study.

Perera et al. [131] proposed a machine learning framework which identified 14 new
candidate biomarker genes for AD, some of which are validated by biological research.
The authors used GSE5281 [132] brain dataset, which contains 161 subjects and 24,438
unique gene symbols. After using feature selection algorithms such as RF, Extra Tree Clas-
sifier and Co-relation Matrix, the selected gene symbols are AC004951.6, MAFF, SLC39A12,
PCYOX1L, CTD3092A11.2, RP11-271C24.3, PRO1804, PRR34-AS1, SST, CHGB, MT1M, JPX,
APLNR, and PPEF1. Out of these, 4 genes have already been discovered as AD-related in
the GeneCards [133], respectively: SST, CHGB, SLC39A12 and MT1M. In addition, using
these 14 genes as features for an SVM classifier with a linear kernel led to an accuracy of
91.84% for the task of AD classification.

Sekaran et al. [134] identified 24 novel gene biomarkers using Rhinoceros Search
Algorithm applied on the GSE1297 dataset retrieved from Gene Expression Omnibus
(GEO). In addition, the authors applied an MLP classifier to these most informative features
thus obtaining an accuracy equal to 100% in identifying the distinction between AD and
normal genes. The data used for this experiment was extracted from the hippocampal
region of the brain and contained 31 samples.

Sharma et al. [135] employed an ensemble of RF and LASSO to AD-associated gene
expression datasets corresponding to four brain regions—Prefrontal Cortex (PC), Middle
Temporal Gyrus (MTG), Hippocampus (H), and Entorhinal Cortex (EC), in order to identify
new genetic biomarkers. The data was extracted from the GEO database. Few gene
candidates were commonly identified by both feature selection methods. In addition, there
were common gene candidates within different brain regions, such as e ZNF621, SLC25A46,
RAE1, and ANKIB1, found in both H and EC regions. When using ElasticNet for the
classification task, with both feature selection algorithms applied for the H and PC region
data, the obtained prediction accuracy was 100%.

However, it is more difficult to collect genetic data from the patients, making this
approach a more exclusive one.

3.4. Potential Novel Biomarkers

An important research direction in this field is represented by the identification and
validation of novel biomarkers. From this point of view, Ref. [136] investigated how ML
and novel biomarkers can be used for the diagnosis of AD. The authors studied the AD spe-
cialized journals and in addition to Aβ and tau-related biomarkers, they investigated other
mechanisms of AD pathology, such as neurofiliament light (NFL), synaptic dysfunction
and neuroinflammation.

NFL is a biomarker indicating neurodegeneration. Ref. [137] showed that blood NFL
and CSF NFL concentrations correlate well, while NFL levels correlate inversely with
MMSE scores. In addition, other CSF biomarkers including t-tau, p-tau, neurogranin and
YLK-40 positively correlate with NFL.

Synaptic dysfunction is one of the earliest detected changes in AD. Nilsson et al. [138]
investigated 17 synaptic proteins which might indicate synapse degeneration in AD. The re-
sults showed that beta-synuclein, gamma-synuclein, neurogranin, phosphatidylethano-
lamine-binding protein 1, 14-3-3 proteins and neuronal pentraxins are altered in AD com-
pared to healthy controls, therefore acting as potential early indicators of the disease.

According to [123], biomarkers of neuroinflammation include sTREM2 and YKL-
40, their elevated levels within the CSF indicating AD pathology. Gaetani et al. [139]
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conducted research in order to identify protein biomarkers reflecting neuroinflammation
in AD using multiplex proximity extension assay (PEA) testing. In addition, they applied
ML approaches to identify biomarkers which discriminate between AD-MCI and other
neurological diseases (OND). CSF samples belonging to the patients with AD-MCI and
OND were collected over an 8-year period and further provided by the Laboratory of
Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia.
After performing a univariate analysis of the z-scores relative to the measured proteins, the
most discriminatory proteins between AD-MCI and OND included SIRT2, HGF and MMP-
10 and CXCL5. These tested proteins were also present after applying LASSO, showing
promising performance in differentiating AD-MCI and OND.

Table 9 summarizes the benefits of including each category of biomarkers, as well as
their limitations, providing references to the classifiers which employed them and led to
the best diagnostic accuracy.

Table 9. Benefits and Limitations of Different Biomarker Categories.

Biomarker
Category Benefits Limitations Best Classifier

References Best Classifier Best Classifier
Dataset

Best Classifier
Accuracy

Cognitive

Easy to conduct,
Less expensive,

Widely
available,

Noninvasive,
Lack of pain

There is no
single test
which can
indicate a
diagnostic

[52]
MLP for AD vs.

CN
classification

ADNI 99.76%

MRI Data

Less expensive,
Widely

available,
Noninvasive,
Lack of pain

Decreased
hippocampal
volume is not
AD-specific,
Automatic

segmentation of
scans is

challenging,
Need expensive
infrastructure

[118]
GoogleNet for

AD vs. CN
classification

ADNI 98.84%

CSF

Advanced stan-
dardization,

High diagnostic
performance

Expensive,
Invasive [124] J48 Kaggle 98.82%

Genetic Data
Can help assess

the risk of
developing AD

Difficult to
collect [134,135] MLP/ElasticNet GEO 100%

4. Predicting Progression from MCI to AD with Machine Learning Approaches

Mild Cognitive Impairment (MCI) is an intermediate phase between healthy and AD.
It is critical to identify MCI subjects who will convert to AD at an early stage to slow down
the cognitive deterioration of AD patients. Conversion usually occurs in the first three years
after being diagnosed with MCI and the conversion rate lowers considerably in the years
that follow.

As seen above, several cross-section structural MRI-based methods were proposed to
distinguish between healthy controls and AD patients, some of which report an average
classification accuracy higher than 98% [118]. Even if these approaches do diagnose
Alzheimer’s, it is often too late for treatment, as most drugs approved by the Food and
Drug Administration (FDA) seem to have a greater impact in the early stages of the disease.
Moreover, anatomical development in the brain is due to both normal ageing as well as to
AD progression, so it is difficult to discriminate between HC/MCI and AD at a single scan.
Older subjects are more similar to AD, so to avoid such a bias, several approaches started
to use longitudinal image information.
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From this point of view, Ref. [140] provide a new way to discriminate between MCI
patients that either convert to AD or remain stable, using longitudinal MRI. The dataset
used in the paper is obtained from the ADNI collection. The scans are pre-processed
by ADNI as follows: images from the Philips machine are intensity corrected by the N3
method [141], while images from Siemens or GE machines are grad-warped, followed
by B1 bias field correction and N3 intensity non-uniformity correction. The anatomical
development within the brain is represented by the Stationary Velocity Field (SVF) from
registration between the baseline and follow-up images. A linear SVM is employed as
a classifier. Using 36-month follow-up data and 10-fold cross-validation, this approach
led to an accuracy equal to 92%. The authors also performed experiments on 6, 12 and
24-month follow-up images and concluded that similar classification performance can
be obtained with each time interval, but 12 and 24-month follow-up provides slightly
improved classification performance than 6 month follow-up.

Peixin et al. [142] proposed a two-stage classification model based on transfer learning
and contrast learning for the prediction of development from MCI to AD. The authors
used MRI scans from the ADNI dataset, which was further processed following the next
three steps: bias field correction using N4 algorithm [143], affine linear alignment of scans
onto the MIN152 atlas and skull stripping of each image for 129 × 145 × 129 voxels. This
study used the Med3D network [144] to initialize the model parameters and obtain general
imaging features. In addition, training on unlabeled target datasets using contrastive
learning (MoCo) was done to get target imaging features. Finally, the network was fine-
tuned using the labelled target dataset, leading to a classification accuracy equal to 82%.

Gao et al. [145] also explored the use of transfer learning for the task of predicting
conversion from MCI to AD. From this point of view, they proposed AD-NET (Age-adjust
neural network), for which the pre-training model transfers not only features, but also
an age prediction. The age-related information and the extracted features are further
transferred in the fine-tuning model, where the risk of the subject converting to AD is
predicted. The data used for this study is obtained from two sources: the ADNI dataset and
the Information eXtraction from Images (IXI) public dataset, the second of which provides
information about 581 cognitively normal subjects. In addition, the data used for MCI
conversion prediction is obtained from ADNI. During the preprocessing step, the authors
conducted rigid registration to the MNI152 atlas. This experiment led to a prediction
accuracy equal to 83% for subjects with the age range between 75 and 90 years old and 79%
for subjects with the age range between 55 and 75 years old.

Abrol et al. [146] conducted an investigation which evaluated the suitability of using
ResNets with neuroimaging data for the task of predicting progression from MCI to AD.
The input structural MRI images are part of the ADNI study. In the preprocessing step,
they are segmented to identify the grey matter brain areas, which are further spatially
normalized. Finally, they are smoothed using a 3D Gaussian kernel. The smoothed grey
matter maps are fed to a ResNet model, which led to a prediction accuracy equal to 82.7%.

Table 10 summarizes the above-presented research, with a focus on the preprocessing
and classification algorithms employed, as well as on the best results achieved. It is
noticeable that the approach of Sun et al. [140] which used a linear SVM classifier performed
best to distinguish progression from MCI to AD as compared to deep learning methods.
While the dataset was common for all the mentioned approaches, we believe that this result
was due to the preprocessing procedures employed.



Mathematics 2022, 10, 1767 13 of 20

Table 10. Comparison of studies on prediction of conversion from MCI to AD using MRI scans.

Authors Dataset
Name Data Type Preprocessing Classifier Classification

Accuracy

Sun et al.,
2017 [140] ADNI MRI Data ADNI own preprocessings SVM 92%

Peixin et al.,
2022 [142] ADNI MRI Data

Bias Field Correction, Affline
Linear Alignment onto MIN152

atlas, Skull Stripping
Med3D + MoCo 82%

Gao et al. [145] ADNI &
IXI MRI Data Rigid Registration to MNI152 atlas 3D CNN +

Transfer Learning
83% for age 75–90,
79% for age 55–75

Abrol et al. [146] ADNI MRI Data
Segmentation, Spatial

Normalization, Gaussian
Smoothing

ResNet 82.7%

5. Conclusions and Outlook

This research article comprehensively examined the application of machine learning
including deep learning to biomarker discovery and disease prediction in Alzheimer’s
disease. While there are significant improvements concerning biomarkers identification
and early detection of AD, these subjects remain open to future enhancements.

The paper begins by defining the keywords most used in the paper. Afterwards,
the most important datasets are detailed, respectively OASIS and ADNI, which contain
data that can be fed to ML and DL algorithms to identify AD. The most consistent part of
the paper is devoted to the presentation of the most important biomarkers and how they
can be used to predict AD. Lately, we witnessed significant progress in research regarding
new biomarkers for AD. MRI-based measures are among the most clinically validated
biomarkers for the detection of AD, with [112] estimating that medial temporal atrophy
(MTA) has 73% sensitivity and 81% specificity for predicting the conversion of patients
with MCI to dementia. On the other hand, the results obtained by [134,135] emphasize the
potential of genetic biomarkers in AD diagnosis. However, it is more difficult to collect
genetic data from patients, as compared to clinical data and MRI based measurements.
Meanwhile, collecting cognitive data about subjects using neurocognitive tests represents
a convenient approach for retrieving possible indicators of AD. While there is no single
diagnostic test which can identify if a person has this condition, several mental cognitive
tests evaluate memory, as well as thinking and problem-solving abilities. Ref. [52] obtained
an accuracy of 99.76% for AD diagnosis, using three MLP neural networks, trained using
the results of the following cognitive tests: ADAS-Cog, MMSE and FAQ, with the data
belonging to the ADNI dataset.

Some of the best-performing scientific works using these biomarkers have used neural
networks such as ElasticNet (with an accuracy equal to 100%), MLP (with an accuracy equal
to 99.76%), respectively GoogleNet (with an accuracy equal to 98.84%). These architectures
were analyzed and detailed in the paper.

Future work will continue to be based on the resources and architectures presented in
the paper, with a focus on identifying the most representative biomarkers and using them
for the diagnosis of AD.

Author Contributions: Conceptualization, G.I.S. and A.I.; Methodology, A.I.; Investigation, G.I.S.
and A.I.; Resources, G.I.S.; Writing—original draft preparation, G.I.S. and A.I.; Writing—review and
editing, G.I.S. and A.I.; Visualization, G.I.S.; Supervision, A.I.; Project administration, A.I.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Mathematics 2022, 10, 1767 14 of 20

Acknowledgments: Data analysis in this paper were supported by the Competitiveness Operational
Program Romania, under project SMIS 124759—RaaS-IS (Research as a Service Iasi).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s Disease
ADAS-Cog Alzheimer’s Disease Assessment Scale–Cognitive Subscale
ADIMO Alzheimer’s Disease In My Opinion
ADNI Alzheimer’s Disease Neuroimaging Initiative
AI Artificial Intelligence
ANN Artificial Neural Network
ARDS Acute Respiratory Distress Syndrome
CDR Clinical Dementia Rating
CDRSB Clinical Dementia Rating Scale - Sum of Boxes
CNN Convolutional Neural Networks
CNS Central Nervous System
CSF Cerebrospinal Fluid
CSFOP Cerebrospinal Fluid Original Poster
DL Deep Learning
ECog Everyday Cognition
EL Ensemble Learning
EMCI Early Mild Cognitive Impairment
EOAD Early Onset Alzheimer’s Disease
FAQ Functional Activities Questionnaire
FDA Food and Drug Administration
GEO Gene Expression Omnibus
HC Healthy Cognition
HD Huntington’s Disease
IADL Lawton Instrumental Activities of Daily Living Scale
IXI Information eXtraction from Images
LDELTOTAL Delayed total recall
LMCI Late Mild Cognitive Impairment
LVF Letter Verbal Fluency
MCI Mild Cognitive Impairment
ML Machine Learning
MLP Multilayer Perceptron
MMP10 Matrix metalloproteinases
MMSE Mini-Mental State Examination
mPACCdigit Modified Preclinical Alzheimer Cognitive Composite with Digit test
mPACCtrailsB Modified Preclinical Alzheimer Cognitive Composite with Trails test
MRI Magnetic Resonance Imaging
NPI Neuropsychiatric Inventory
OND Other Neurological Diseases
PD Parkinson’s Disease
PEA Proximity Extension Assay
PET Positron Emission Tomography
PNS Peripheral Nervous System
RFE Recursive Feature Elimination
ROI Region of Interest
SCG Scaled Conjugate Gradient
SVF Stationary Velocity Field
WMS Logical Memory subtest of the Wechsler Memory Scale
WMS-IV WMS – fourth edition
SVM Support Vector Machine
RF Random Forest
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GB Gradient Boosting
MTA medial temporal atrophy
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