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Abstract: As COVID-19 continues to threaten public health around the world, research on specific
vaccines has been underway. In this paper, we establish an SVIR model on booster vaccination with
two time delays. The time delays represent the time of booster vaccination and the time of booster
vaccine invalidation, respectively. Second, we investigate the impact of delay on the stability of
non-negative equilibria for the model by considering the duration of the vaccine, and the system
undergoes Hopf bifurcation when the duration of the vaccine passes through some critical values.
We obtain the normal form of Hopf bifurcation by applying the multiple time scales method. Then,
we study the model with two delays and show the conditions under which the nontrivial equilibria
are locally asymptotically stable. Finally, through analysis of official data, we select two groups of
parameters to simulate the actual epidemic situation of countries with low vaccination rates and
countries with high vaccination rates. On this basis, we select the third group of parameters to
simulate the ideal situation in which the epidemic can be well controlled. Through comparative
analysis of the numerical simulations, we concluded that the most appropriate time for vaccination is
to vaccinate with the booster shot 6 months after the basic vaccine. The priority for countries with
low vaccination rates is to increase vaccination rates; otherwise, outbreaks will continue. Countries
with high vaccination rates need to develop more effective vaccines while maintaining their coverage
rates. When the vaccine lasts longer and the failure rate is lower, the epidemic can be well controlled
within 20 years.

Keywords: COVID-19 epidemic; booster vaccination; two delays; Hopf bifurcation; numerical
simulations

MSC: 34K18

1. Introduction
1.1. Research Background

At present, the Coronavirus Disease 2019 (COVID-19) epidemic has not been com-
pletely controlled. The virus (SARS-CoV-2) is highly contagious, spreads by a wide range
of routes, and constantly mutates as it spreads, making COVID-19 difficult to control [1].
Since there is no specific treatment for COVID-19, promoting a scale-up of vaccination and
building herd immunity is the most effective measure to control the epidemic.

It has always been a hot topic to study the impact of vaccines on the spread of infectious
diseases by analyzing the dynamic characteristics of the system [2–7]. Among them, De la
Sen et al. [4] and Thater et al. [5] proposed different SEIR models of disease transmission for
vaccination and developed optimal vaccination strategies. Scherer et al. [6] calculated the
threshold vaccination rate to eradicate an infection, and they explored the impact of vaccine-
induced immunity that diminishes over time. Many researchers also considered vaccines
in their models of COVID-19 epidemics. For example, Yang et al. [8] studied vaccination
control in an epidemic model with time delay and applied it to COVID-19. These studies
all have shown that vaccination has a significant effect on the control of diseases.
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However, the level of neutralizing antibodies decreases over time, and the protec-
tive effect of the vaccine diminishes, which also needs to be considered in the model of
COVID-19. For example, the SVIR model developed by Duan et al. [9] takes into account
that vaccines lose their protective properties over time, allowing vaccinated individuals to
become susceptible again. Wald et al. [10] suggest it is necessary to reduce SARS-CoV-2
transmission and infection through enhanced vaccination. This suggests that an additional
vaccination regime, called booster immunization, is needed to restore immunity in previ-
ously vaccinated populations. Salvagno et al. [11] found a significant decrease in antibodies
6 months after basic vaccination, which is consistent with the need for a vaccine booster.
However, few studies have considered the COVID-19 booster vaccine in mathematical
models, so we believe that dynamic analysis of the impact of the COVID-19 booster vaccine
on epidemic control is needed at present.

There is always a considerable difference between the actual behavior of disease and
the response of its mathematical model. In 1979, Cooke proposed the theory of “time delay”
in his study of infectious disease transmission, which made the model more realistic [12].
Since then, many researchers have tried to take time delays into account in their models.
Zhai et al. [13] studied studies a SEIR epidemic model with time delay and vaccination
control. In the infectious disease model for COVID-19, many studies consider a single
time delay. For example, Rong et al. [14] studied the effect of delay in diagnosis on the
transmission of COVID-19.

Much research shows two delays can reflect the actual problem more clearly. For in-
stance, Song et al. [15] studied a new SVEIRS infectious disease model with pulse and
two time delays. In the study of Jiang et al. [16], a SVEIRS epidemic model with two
time delays and a nonlinear incidence rate was developed, and they analyzed the dynamic
behavior of the model under pulse vaccination. An SEIR epidemic model with two time
delays and pulse vaccination was formulated in the study of Gao et al. [17]. However, there
are few infectious disease models studying the novel coronavirus that consider two delays.
Considering the characteristics of COVID-19 and vaccination, we believe that two time
delays can better solve the problems existing in the actual COVID-19 epidemic; that is, we
need to give booster shots at intervals after the basic vaccination and take into account
the fact that the vaccine does not provide permanent immunity and will lose effectiveness
some time after vaccination. Therefore, there are two time delays which cannot be ignored.

The stability of epidemic models and Hopf bifurcation analysis have always been the
focus of this kind of epidemic model. In ref [18], Zhang et al. analyzed the stability and
Hopf bifurcation of an SVEIR epidemic model with vaccination and multiple time delays.
The paper [19] written by Chen et al. mainly addressed stability analysis and estimation
of the domain of attraction for the endemic equilibrium of a class of susceptible–exposed–
infected–quarantine epidemic models. Li et al. [20] studied the stability and bifurcation
analysis of an SIR epidemic model with logistic growth and saturation processing. In the
study of Goel et al. [21], a time-delayed SIR epidemic model with a logistic growth of
susceptibles was proposed and analyzed mathematically. The stability behavior of the
model was analyzed for two equilibria: the disease-free equilibrium and the endemic
equilibrium. Further, they investigated the stability behavior, demonstrating the occurrence
of oscillatory and periodic solutions through Hopf bifurcation concerning every possible
grouping of two time delays as the bifurcation parameter.

1.2. Research Motivation

The research motivation of this paper is as follows. There have been mass vaccine
injections worldwide, but the level of antibodies in the receptor decreases over time, and
the protective effect of the vaccine diminishes, so we also need to strengthen immunity
to enhance the body’s ability to resist SARS-CoV-2. In such cases, increasing the number
of vaccinations is a measure to improve the level of immunity and increase protection.
Therefore, the booster shot we are considering is a dose of vaccine that is administered again
after the completion of the COVID-19 vaccine by antibody resolution in order to maintain



Mathematics 2022, 10, 1772 3 of 27

immunity to COVID-19. Currently, the third dose of inactivated COVID-19 vaccine is the
main booster vaccination in the world. The first and second doses of the COVID-19 vaccine
are commonly referred to as basic vaccines. If the basic vaccine protection effect is still good,
early booster vaccination wastes resources; if the interval between booster vaccination and
basic vaccination is too long, it can cause the failure of herd immunity, and the epidemic
will be out of control.

Thus, we first want to study the most appropriate time to give a booster vaccine.
Therefore, we create a mathematical model that takes into account both basic and booster
vaccination. Second, since the efficacy of the vaccine is unknown, we also consider the
effect of the duration of the booster vaccine on the timing of the booster vaccination. We
aim to develop a vaccine approach that can effectively help control the COVID-19 epidemic
through dynamic analysis of the model that takes these two time delays into account. Third,
different countries have different vaccine coverage rates and levels of concern. Our goal is
to select different parameter groups to simulate the epidemic in different countries and to
give the vaccination time requirements for epidemic control. At the same time, we select a
set of ideal parameters that represent that the epidemic can be well controlled and compare
them to the actual parameters to study what efforts we still need to make at present.

The structure of this paper is as follows. In Section 2, we establish an SVIR booster
vaccination model with two time delays. In Section 3, we analyze the existence and stability
of non-negative equilibria and discuss the existence of Hopf bifurcation. We deduce the
normal form of Hopf bifurcation in Section 4. In Section 5, we give some numerical
simulations and get the conclusion of strengthening inoculation time. Finally, conclusions
and suggestions are given in Section 6.

2. Mathematical Modeling

Different from the traditional infectious disease model, we redefined the cabin so
that our model could better depict the relationship between basic vaccination and booster
vaccination in order to study the role of booster vaccine in epidemic control. We divided
COVID-19 susceptible people into two groups. One group involves people who have
received basic but not booster shots (S), and the other group involves people who have
completed all vaccinations (V); both groups are at risk of contracting COVID-19 through
contact with infected people or other means and becoming infected (I). However, it should
be noted that the infection rate of the susceptible in V is much lower than that of the
susceptible in S. Some of the infected I will die of the disease, while others will recover (R)
after treatment. However, their vaccine will be ineffective to varying degrees according to
their conditions [22]. For people such as the elderly or those with underlying diseases who
have recovered, the antibodies produced by the vaccine are almost completely disabled,
and they need a basic injection to regain active antibodies. This group of people will
become S. Otherwise, people who maintain some antibody activity in their bodies just
need a booster shot to increase their resistance to SARS-CoV-2. They become V.

Taking all these factors into account, we get the concrete conversion between the four
cabins shown in Figure 1.

Figure 1. SVIR Model diagram.

Table 1 shows specific definitions of variables and parameters. In this table, all
parameters and variables are positive.
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Table 1. Description of variables and parameters in the model

Symbol Description

S Number of susceptible persons who have received basic but not booster shots
V Number of susceptible persons who have completed all vaccinations
I Number of patients affected
R Number of recovered persons
Λ Inoculation rate of basic vaccine
α Transition rate from S to I
β Transition rate from V to I

γ1 Transition rate from S to V
γ2 Transition rate from V to S
µ Transition rate from I to R; the cure rate of infected persons
σ1 Transition rate from R to S
σ2 Transition rate from R to V
c National case fatality rate of COVID-19
d Natural death rate of population
τ1 Time-delay for people who received the basic vaccine to receive the booster vaccine
τ2 Time-delay from people getting booster vaccination to their antibodies disappearing

For COVID-19 vaccines, susceptible people develop antibodies after vaccination,
but the vaccine cannot provide long-term protection according to the background in
Section 1.1. We assume that in our model, the basic vaccine’s activity declines over time,
but will become ineffective only if a person gets sick. Since the booster vaccine is only a
supplement to the basic vaccine, the dose is less than the basic vaccine. We assume that over
a long period, the potency of the antibody produced by the booster vaccine will gradually
decline until it disappears. We define the time delay of the booster vaccine’s failure in our
model as τ2. At the same time, as considered in Section 1.2, to keep the epidemic under
control and to maximize the use of resources, those who receive only the basic vaccine
need to receive booster shots after a certain time delay, as indicated by τ1. In general,
the duration of the vaccine’s effective protection must be longer than the interval between
vaccinations, so we specify τ2 > τ1 in our model. Therefore, we construct the following
differential equation:

dS(t)
dt

=Λ− γ1S(t− τ1) + γ2V(t− τ2)− αS(t)I(t) + σ1R(t)− dS(t),

dV(t)
dt

=γ1S(t− τ1)− γ2V(t− τ2)− βV(t)I(t) + σ2R(t)− dV(t),

dI(t)
dt

=αS(t)I(t) + βV(t)I(t)− µI(t)− (c + d)I(t),

dR(t)
dt

=µI(t)− σ1R(t)− σ2R(t)− dR(t).

(1)

The meanings of variables and parameters are given in Table 1. Timely booster vacci-
nations prevent inadequate antibody levels in individuals, which could lead to increased
infection rates and the situation of the epidemic being out of control. Therefore, it is partic-
ularly important to choose the right timing for booster vaccination to control the epidemic.

3. Stability Analysis of Equilibria and Existence of Hopf Bifurcation

In this section, System (1) is considered. Obviously, System (1) has three equilibria:

E1 = (S1, V1, 0, 0), E2l =
(
S2l , V2l , I2l , R2l

)
, l = 1, 2 (2)

where S1 = Λ
γ1−ξ+d , V1 = ξΛ

(γ1−ξ+d)γ2
, with ξ = γ1γ2

γ2+d , and R21 =
−Γ1−
√

Γ2
2−4Γ1Γ3

2Γ1
,

R22 =
−Γ1+
√

Γ2
2−4Γ1Γ3

2Γ1
, S2l = b− e f − egR2l , V2l = f + gR2l , I2l = aR2l , with a = σ1+σ2+d

µ ,
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b = µ+c+d
α , e = β

α , f = Λ−bd
d−ed , g = µd+(c+d)(σ1+σ2+d)

µ(ed−d) , Γ1 = βag, Γ2 = dg− σ2 + β f a + γ2g +

egγ1, Γ3 = d f + γ2 − γ1(b− e f ).
For equilibria E1, E2l , we consider the following assumption:

Hypothesis 1 (H1). γ1 − ξ + d > 0.

When (H1) holds, the equilibrium E1 exists and is non-negative.

Hypothesis 2 (H2). Γ1 < 0, Γ2 > 0, Γ3 < 0 or Γ1 < 0, Γ2 > 0, Γ3 > 0.

When (H2) holds, the equilibrium E21 exists and is positive.

Hypothesis 3 (H3). Γ1 < 0, Γ2 > 0, Γ3 < 0 or Γ1 < 0, Γ2 < 0, Γ3 > 0 .

When (H3) holds, the equilibrium E22 exists and is positive. We calculate the basic
reproduction number R0, the number of the suspected individuals who are infected by the
same infectious individual, and can estimate the infectiousness of an infectious disease.
According to System (1), we can get the new infections matrix F and the transition matrix V .

F =


0
0

αS(t)I(t) + βV(t)I(t)
0

,V =


−Λ + γ1S(t)− γ2V(t)− σ1R(t) + dS(t) + αS(t)I(t)
−γ1S(t) + γ2V(t) + βV(t)I(t)− σ2R(t) + dV(t)

µI(t) + cI(t) + dI(t)
−µI(t) + σ1R(t) + σ2R(t) + dR(t)

.

Then, we make F0 represent the derivative of F at E1 and V0 represent the derivative
of V at E1:

F0 =


0 0 0 0
0 0 0 0
0 0 αS1 + βV1 0
0 0 0 0

, V0 =


γ1 + d −γ2 αS1 −σ 1
−γ1 γ2 + d βV1 −σ 2

0 −ε µ + c + d 0
0 −γ1 −µ σ1 + σ2 + d

.

We can obtain:

F0V−1
0 =


0 0 0 0
0 0 0 0
0 0 αS1+βV1

µ+c+d 0
0 0 0 0

.

The maximum eigenvalue of F0V−1
0 is the basic regeneration number of System (1):

R0 = ρ(F0V−1
0 ) =

αS1 + βV1

µ + c + d
.

Transferring the equilibria Ek, (k = 1, 21, 22) to the origin point: S̃ = S − Sk, Ṽ =
V − Vk, Ĩ = I − Ik, R̃ = R − Rk and linearizing System (1) around them. Renewedly
denoting S̃, Ṽ, Ĩ, R̃ as S, V, I, R, we obtain the following model:

dS
dt

=− γ1S(t− τ1) + γ2V(t− τ2)− αSI + σ1R− dS− αSk I − αSIk,

dV
dt

=γ1S(t− τ1)− γ2V(t− τ2)− βVI − βVk I − βVIk + σ2R− dV,

dI
dt

=αSI + αSk I + αSIk + βVI + βVk I + βVIk − µI − (c + d)I,

dR
dt

=µI − σ1R− σ2R− dR.

(3)
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We can get the characteristic equation of the linearized system (1) as follows:

σ1e−λτ1
(

λ3 + B1λ2 + C1λ + D1

)
+ σ2e−λτ2

(
λ3 + B2λ2 + C2λ + D2

)
+λ4 + A3λ3 + B3λ2 + C3λ + D3 = 0,

(4)

where

B1 = σ1 + σ2 + 3d + µ + c + βIk − αSk − βVk,

C1 = (σ1 + σ2 + d)(2d + µ + c + βIk − αSk − βVk) + (d + µ + c)βIk + d(d + µ + c− αSk − βVk),

D1 = (σ1 + σ2 + d)[(d + µ + c)βIk + d(d + µ + c− αSk − βVk)− µσ1βIk − µσ2βIk],

B2 = σ1 + σ2 + 3d + µ + c + αIk − αSk − βVk,

C2 = (σ1 + σ2 + d)(2d + µ + c + αIk − αSk − βVk) + d(d + µ + c− αSk − βVk) + (d + µ + c)αIk,

D2 = (σ1 + σ2 + d)[(d + µ + c)αIk + d(d + µ + c− αSk − βVk)− µσ1αIk − µσ2αIk],

A3 = σ1 + σ2 + 4d + µ + c + αIk + βIk − αSk − βVk,

B3 =(σ1 + σ2 + d)(3d + µ + c + αIk + βIk − αSk − βVk) + [(d + αIk)(2d + µ + c + βIk − αSk − βVk)

+(d + βIk)(d + µ + c− αSk − βVk) + β2 IkVk + α2 IkSk

]
,

C3 =(σ1 + σ2 + d)[(d + αIk)(2d + µ + c + βIk − αSk − βVk) + (d + βIk)(d + µ + c− αSk − βVk)

+β2 IkVk + α2 IkSk

]
+ α2 IkSk(d + βIk)− µσ1αIk − µσ2βIk,

D3 = α2 IkSk(d + βIk)(σ1 + σ2 + d)− µσ1

(
αβI2

k + αdIk

)
− µσ2

(
αβI2

k + βdIk

)
, k = 1, 21, 22.

3.1. Analysis for Disease-Free Equilibrium E1
3.1.1. The Case for τ1 = 0, τ2 = 0

Firstly, we consider R0 < 1. The characteristic equation of the linearized system (1)
about E1 is as follows:

(λ + µa)(λ + µ + c + d− βV1 − αS1)
[(

(λ + d)2 + (λ + d)σ1e−λτ1 + (λ + d)σ2e−λτ2
)]

= 0. (5)

When τ1 = 0, τ2 = 0, it turns to

(λ + σ1 + σ2 + d)(λ + µ + c + d− βV1 − αS1)(λ + d)(λ + d + σ1 + σ2) = 0. (6)

Obviously, all the roots of Equation (6) have negative real parts due to R0 < 1, σ1 >
0, σ2 > 0, d > 0. We can conclude the disease-free equilibrium E1 is locally asymptotically
stable when τ1 = 0, τ2 = 0.

When R0 > 1, Equation (6) has a positive root. Thus, the disease-free equilibrium E1
is unstable when τ1 = 0, τ2 = 0.

3.1.2. The Case for τ1 = 0, τ2 > 0

When τ2 > 0, for equilibrium E1, we simply need to think about the following equation

(λ + d)2 + (λ + d)σ1 + (λ + d)σ2e−λτ2 = 0. (7)

To discuss the existence of Hopf bifurcation for E1, we assume that λ = iω1 (ω1 > 0)
is a pure imaginary root of Equation (7). Substituting it into Equation (7) and separating
the real and imaginary parts, we obtain:{

γ2ω1 sin(ω1τ2) + dγ2 cos(ω1τ2) = ω2
1 − d2 − dγ1

dγ2 sin(ω1τ2)− γ2ω1 cos(ω1τ2) = ω1(2d + γ1)
(8)
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Equation (8) derives to:
sin(ω1τ2) =

ω3
1−(d2+dγ1)ω1+(2d2γ2+dγ1γ2)ω1

γ2(ω2
1+d2)

,

cos(ω1τ2) =
−(dγ2+γ1γ2)ω

2
1−d3γ2−d2γ1γ2

γ2(ω2
1+d2)

.
(9)

Adding the square of two equations in Equation (8) and letting z = ω2
1, we get

h(z) = z2 + c1z + c0 = 0, (10)

where c1 =
[
(2d + γ1)

2 − γ2
2 − 2

(
d2 + dγ1

)]
, c0 =

(
d2 + dγ1

)2 − d2γ2
2.

Therefore, we show the following assumptions:

Hypothesis 4 (H4). c0 < 0;

Hypothesis 5 (H5). c2
1 − 4c0 > 0, c1 < 0, c0 > 0;

Hypothesis 6 (H6). c2
1 − 4c0 < 0, c0 > 0 or c2

1 − 4c0 > 0, c1 > 0, c0 > 0.

Under (H4), Equation (10) has the unique positive root z1. If (H5) holds, Equation (10)
has two positive roots: z2 and z3(z2 < z3). Under (H6), Equation (10) has no root. Substi-
tuting ω1k =

√
zk(k = 1, 2, 3) into Equation (9), we get the expression of τ2:

τ
(j)
2k =

{
1

ω1k
[arccos(Pk) + 2jπ], Qk ≥ 0,

1
ω1k

[2π − arccos(Pk) + 2jπ], Qk < 0, k = 1, 2, 3 j = 0, 1, 2, · · · ,
(11)

where Qk = sin(ω1kτ
(j)
2k ), Pk = cos(ω1kτ

(j)
2k ).

If R0 < 1, when τ2 = τ
(j)
2k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), then Equation (7) has a pair of

pure imaginary roots ±iω1k, and all the other roots of Equation (7) have nonzero real parts.
Furthermore, let λ(τ) = α(τ) + iω1(τ) be the root of Equation (7) satisfying α(τ

(j)
k ) = 0,

ω(τ
(j)
k ) = ω1k ( k = 1, 2, 3; j = 0, 1, 2, · · · ). Thus, zk = ω2

1k, h′(zk) 6= 0, where h′(z) is the
derivative of h(z) with respect to z. Then, we have the following transversality condition:

Re(
dτ

dλ
)

∣∣∣∣τ=τ
(j)
2k

= Re(
dλ

dτ
)−1
∣∣∣∣τ=τ

(j)
2k

=
h′
(
ω2

1k
)

γ2
2
(
ω2

1k + d2
) 6= 0, k = 1, 2, 3 j = 0, 1, 2, · · · .

Lemma 1. If R0 < 1 holds, the equilibrium E1 is stable and undergoes Hopf bifurcation at
τ = τ

(j)
2k ( k = 1, 2, 3; j = 0, 1, 2, · · · ), where τ

(j)
2k is given by Equation (11). Further, we denote

the stable region of E1 as I.

3.1.3. The Case for τ1 > 0, τ2 > 0

With the above analysis, we choose τ2 = τ2∗ ∈ I as a parameter; the characteristic
equation of system (1) is rewritten as follows:

(λ + d)2 + (λ + d)σ1e−λτ1 + (λ + d)σ2e−λτ2∗ = 0.

Letting λ = iω̃1 (ω̃ > 0) be the root of the above equation, then separating the real
and imaginary parts for the above equation, we get{

ω̃2
1 − d2 − γ2ω̃1 sin(ω̃1τ2∗)− dγ2 cos(ω̃1τ2∗) = γ1ω̃1 sin(ω̃1τ1) + dγ1 cos(ω̃1τ1),

2dω̃1 − dγ2 sin(ω̃1τ2∗) + γ2ω̃1 cos(ω̃1τ2∗) = dγ1 sin(ω̃1τ1)− γ1ω̃1 cos(ω̃1τ1),
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which leads to

F1(ω̃1) =ω̃4
1 +

(
2d2 − γ2

1 + γ2
2

)
ω̃2

1 + d4 − d2γ2
1 + d2γ2

2

− 2
(

ω̃2
1 − d2

)[
γ2 sin

(
ω̃1τ2∗)

)
ω̃1 + dγ2 cos(ω̃1τ2∗)

]
+ 4dω̃1[γ2ω̃1 cos(ω̃1τ2∗)− dγ2 sin(ω̃1τ2∗)].

(12)

Suppose

Hypothesis 7 (H7). d4 − 2γ2d3 −
(
γ2

1 − γ2
2
)
d2 < 0. Then, we have F1(0) < 0 and F1(∞) > 0.

Hence, F1(ω̃1) = 0 has definite positive roots ω̃1k, k = 0, 1, 2. For every fixed ω̃1k, there
is a sequence of τ1 defined by:

τ
(j)
1k =

{
1

ω̃1k
[arccos(P1k) + 2jπ], Q1k ≥ 0,

1
ω̃1k

[2π − arccos(P1k) + 2jπ], Q1k < 0, k = 1, 2 j = 0, 1, 2, · · · ,
(13)

where
Q1k

∆
= sin

(
ω̃1τ

(j)
1k

)
=

ω̃1[ω̃2
1−d2−γ2 sin(ω̃1τ2∗)ω̃1−dγ2 cos(ω̃1τ2∗)]+d[2dω̃1+γ2ω̃1 cos(ω̃1τ2∗)−dγ2 sin(ω̃1τ2∗)]

γ1(ω̃2
1+d2)

,

P1k
∆
= cos

(
ω̃1τ

(j)
1k

)
=

d[ω̃2
1−d2−γ2 sin(ω̃1τ2∗)ω̃1−dγ2 cos(ω̃1τ2∗)]−ω̃1[2dω̃1+γ2ω̃1 cos(ω̃1τ2∗)−dγ2 sin(ω̃1τ2∗)]

γ1(ω̃2
1+d2)

.

Lemma 2. Let τ1∗ = minτ
(j)
1k , i = 0, 1, 2, j = 0, 1, 2, · · · , when τ1 = τ1∗, Equation (12) has a

pair of purely imaginary roots ±iω̃1 for τ2 ∈ I. Assume Re( dτ
dλ )

∣∣∣∣τ=τ
(j)
1k
6= 0. Thus, the equilibrium

E1 is locally asymptotically stable when τ1 ∈ [0, τ1∗) .

Theorem 1. For equilibrium E1, we have the following conclusions.
When (H1) does not hold or R0 > 1 holds, equilibrium E1 is unstable; When (H1) and R0 < 1 hold,

(1) τ1 = 0, τ2 = 0

Equilibrium E1 is locally asymptotically stable;

(2) τ1 = 0, τ2 > 0

(a) If (H4) holds, h(z) has only one positive root z1, when τ1 ∈ [0, τ
(0)
21 ), the equilibrium

E1 is locally asymptotically stable;
(b) If (H5) holds, h(z) has two positive roots z2 and z3, then we suppose z2 < z3, and we

get h′(z2) < 0, h′(z3) > 0. Then ∃m ∈ N, which can make 0 < τ
(0)
23 < τ

(0)
22 <

τ
(1)
23 < τ

(1)
22 < · · · < τ

(m)
23 < τ

(m+1)
23 . When τ ∈ (0, τ

(0)
23 ) ∪

m⋃
l=1

(τ
(l−1)
22 , τ

(l)
23 ),

the equilibrium E1 of the model is locally asymptotically stable. When

τ ∈
m−1⋃
l=0

(τ
(l)
23 , τ

(l)
22 ) ∪ (τ

(m)
23 ,+∞), the equilibrium E1 is locally asymptotically unstable.

(3) τ1 > 0, τ2 > 0

Under (H7), the equilibrium E1 of system (1) is locally asymptotically stable when τ1 ∈ [0, τ1∗) for
the chosen τ2∗ based on Lemma 2.
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3.2. Analysis for Endemic Equilibrium E2l

3.2.1. The Case for τ1 = 0, τ2 = 0

When R0 > 1 and (H2) or (H3) holds, the equilibrium E1 is unstable and the other
equilibrium E2l for System (2) exists and is positive. For the equilibrium E2l , Equation (4) is
transformed into the following form when τ1 = τ2 = 0:

λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0, (14)

where
a1 = A3 + γ1 + γ2, a2 = B3 + B1γ1 + B2γ2,

a3 = C3 + C1γ1 + C2γ2, a4 = D3 + D1γ1 + D2γ 2.

According to the Routh–Hurwitz criterion, we show the following hypothesis:

Hypothesis 8 (H8). a1a2 − a3 > 0, a3(a1a2 − a3) > a2
1a4, a4 > 0.

If (H8) is satisfied, all eigenvalues of Equation (14) have negative real parts, the equi-
librium E2l of model (1) is locally asymptotically stable when τ1 = τ2 = 0.

Lemma 3. For equilibrium E2l , if R0 > 1 and (H8) holds, equilibrium E2l is locally asymptotically
stable. Further, when R0 < 1 or (H8) does not hold, equilibrium E2l is unstable when τ1 = τ2 = 0.

3.2.2. The Case for τ1 = 0, τ2 > 0

Similarly to the analysis of E1, for the equilibrium E2l , the characteristic equation
Equation (4) becomes the following form when τ1 = 0 and τ2 > 0:

λ4 + q1λ3 + q2λ2 + q3λ + q4 + γ2e−λτ2
(

λ3 + B2λ2 + C2λ + D2

)
= 0, (15)

where
q1 = A3 + γ1, q2 = B3 + B1γ1, q3 = C3 + C1γ1, q4 = D3 + D1γ 1.

Assuming that λ = iω2(ω2 > 0) is a pure imaginary root of Equation (15), substituting
it into Equation (15) and separating the real and imaginary parts, we have:

ω2
4 − q2ω2

2 + q4 = γ2

(
B2ω2

2 − D2

)
cos(ω2τ2) + γ2

(
ω2

3 − C2ω2

)
sin(ω2τ2),

−q1ω2
3 + q3ω2 = γ2

(
−B2ω2

2 + D2

)
sin(ω2τ2) + γ2

(
ω2

3 − C2ω2

)
cos(ω2τ2).

(16)

Thus,
sin(ω2τ2) =

(
−q1ω2

3 + q3ω2
)(
−B2ω2

2 + D2
)
−
(
ω2

4 − q2ω2
2 + q4

)(
−ω2

3 + C2ω2
)

γ2(−B2ω22 + D2)
2 + γ2(−ω23 + C2ω2)

2 ,

cos(ω2τ2) = −
(
ω2

4 − q2ω2
2 + q4

)(
−B2ω2

2 + D2
)
+
(
−q1ω2

3 + q3ω2
)(
−ω2

3 + C2ω2
)

γ2(−B2ω22 + D2)
2 + γ2(−ω23 + C2ω2)

2 .

(17)

Add the square of the two equations in Equation (17) and let z = ω2
2. So we get:

h(z) = z4 + c1z3 + c2z2 + c3z + c4 = 0, (18)
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where
c1 = −2q2 + q2

1 − γ2
2,

c2 = q2
2 + 2q4 − 2q1q3 − γ2

2

(
B2

2 − 2C2

)
,

c3 = −2q2q4 + q2
3 − γ2

2

(
−2B2D2 + C2

2

)
,

c4 = q2
4 − γ2

2D2
2.

We hypothesize that Equation (18) has l(l = 1, 2, 3, 4.) positive roots and mark as
z1 > z2 > z3 > z4. Substituting ω2l =

√
zl into Equation (17), we get the expression of τ:

τ
(j)
22,l =

{
1

ω2l
[arccos(P22,l) + 2jπ], Q22,l ≥ 0,

1
ω2l

[2π − arccos(P22,l) + 2jπ], Q22,l < 0,
(19)

where Q22,l = sin(ω2lτ
(j)
22,l), P22,l = cos(ω2lτ

(j)
22,l).

Thus, we have the transversality condition:

Re
(

dλ

dτ

)−1
∣∣∣∣∣
τ=τ

(j)
22,l

= Re
(

dτ

dλ

)∣∣∣∣
τ=τ

(j)
22,l

=
h′
(
ω2

2l
)

γ2
2

[(
B2ω2

2l − D2
)2

+
(
ω3

2l − C2ω2l
)2
] 6= 0(j = 0, 1...).

Under this condition, we get the minimum critical deley τ = τ22,l , and we suppose
equilibrium E2l is stable in region I’ when τ1 = 0 and τ2 > 0.

3.2.3. The Case for τ1 > 0, τ2 > 0

For equilibrium E2l , similar to the analysis of E1, we choose τ2 = τ22∗ ∈ I’ as a
parameter and let λ = iω̃2(ω̃2 > 0) be a pure imaginary root of characteristic equation
Equation (4) and substitute it into this equation. Then, separating the real part and the
imaginary part, we have:

ω̃4
2 − B3ω̃2

2 + D3 + γ2 cos(ω̃2τ22∗)
(
−B2ω̃2

2 + D2

)
+ γ2 sin(ω̃2τ22∗)

(
−ω̃3

2 + C2ω̃2

)
= −γ1

(
−B1ω̃2

2 + D1

)
cos(ω̃2τ1)− γ1

(
−ω̃3

2 + C1ω̃2

)
sin(ω̃2τ1),

− A3ω̃3
2 + C3ω̃2 + γ2 cos(ω̃2τ22∗)

(
−ω̃3

2 + C2ω̃2

)
− γ2 sin(ω̃2τ22∗)

(
−B2ω̃2

2 + D2

)
= γ1

(
−B1ω̃2

2 + D1

)
sin(ω̃2τ1)− γ1

(
−ω̃3

2 + C1ω̃2

)
cos(ω̃2τ1).

(20)

Then, we can obtain:

sin(ω̃2τ1) =[
ω̃4

2 − B3ω̃2
2 + D3 − γ2 cos(ω̃2τ22∗)

(
B2ω̃2

2 − D2
)
− γ2 sin(ω̃2τ22∗)

(
ω̃3

2 − C2ω̃2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
]

−
[
−A3ω̃3

2 + C3ω̃2 − γ2 cos(ω̃2τ22∗)
(
ω̃3

2 − C2ω̃2
)
+ γ2 sin(ω̃2τ22∗)

(
B2ω̃2

2 − D2
)](

B1ω̃2
2 − D1

)
γ1[
(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2 .

cos(ωτ1) =[
ω̃4

2 − B3ω̃2
2 + D3 − γ2 cos(ω̃2τ22∗)

(
B2ω̃2

2 − D2
)
− γ2 sin(ω̃2τ22∗)

(
ω̃3

2 − C2ω̃2
)](

B1ω̃2
2 − D1

)
γ1

[(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
]

+

[
−A3ω̃3

2 + C3ω̃2 − γ2 cos(ω̃2τ22∗)
(
ω̃3

2 − C2ω̃2
)
+ γ2 sin(ω̃2τ22∗)

(
B2ω̃2

2 − D2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
] .

(21)

Adding the square of two equations in (20), we have:
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F2(ω̃2) =
(

ω̃4
2 − B3ω̃2

2 + D3

)2
+
(
−A3ω̃3

2 + C3ω̃2

)2
+ γ2

2

(
−B2ω̃2

2 + D2

)2
+ γ2

2

(
−ω̃3

2 + C2ω̃2

)2

+ 2γ2 cos(ω̃2τ22∗)
[(

D2 − B2ω̃2
2

)(
ω̃4

2 − B3ω̃2
2 + D3

)
+
(

C2ω̃2 − ω̃3
2

)(
C3ω̃2 − A3ω̃3

2

)]
+ 2γ2 sin(ω̃2τ22∗)

[(
C2ω̃2 − ω̃3

2

)(
ω̃4

2 − B3ω̃2
2 + D3

)
−
(

D2 − B2ω̃2
2

)(
C3ω̃2 − A3ω̃3

2

)]
− γ1

2
(
−B1ω̃2

2 + D1

)2
− γ1

2
(
−ω̃3

2 + C1ω̃2

)2
= 0.

(22)

Then, we give the following assumption:

Hypothesis 9 (H9). D2
3 + γ2

2D2
2 + 2γ2D2D3 − γ1

2D2
1 < 0

Under (H9), we can deduce F2(0) < 0 and F2(∞) > 0. Thus, F2(ω̃2) = 0 must have a
positive root. We assume there are l positive roots of F2(ω̃2) = 0 and denote as ω̃2l .

τ
(j)
12,l =

{
1

ω̃2l
[arccos(P12,l) + 2jπ], Q12,l ≥ 0,

1
ω̃2l

[2π − arccos(P12,l) + 2jπ], Q12,l < 0,
(23)

where

Q12,l =

[
ω̃4

2 − B3ω2
0 + D3 + γ2 cos

(
ω̃2τ∗1

)(
D2 − B2ω̃2

2
)
+ γ2 sin

(
ω̃2τ∗1

)(
C2ω̃2 − ω̃3

2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
]

+

[
C3ω̃2 − A3ω̃3

2 + γ2 cos
(
ω̃2τ∗1

)(
C2ω̃2 − ω̃3

2
)
− γ2 sin

(
ω̃2τ∗1

)(
D2 − B2ω̃2

2
)](

D1 − B1ω̃2
2
)

γ1[
(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2 ,

P12,l =

[
ω̃4

2 − B3ω̃2
2 + D3 + γ2 cos

(
ω̃2τ∗1

)(
D2 − B2ω̃2

2
)
+ γ2 sin

(
ω̃2τ∗1

)(
C2ω̃2 − ω̃3

2
)](

B1ω̃2
2 − D1

)
γ1

[(
−B1ω2

0 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
]

+

[
C3ω̃2 − A3ω̃3

2 + γ2 cos
(
ω̃2τ∗1

)(
C2ω̃2 − ω̃3

2
)
− γ2 sin

(
ω̃2τ∗1

)(
D2 − B2ω̃2

2
)](

ω̃3
2 − C1ω̃2

)
γ1

[(
−B1ω̃2

2 + D1
)2

+
(
−ω̃3

2 + C1ω̃2
)2
] .

Let τ12∗ = minτ
(j)
12,l , j = 0, 1, 2, . . . ; when τ1 = τ12∗, Equation (22) has a pair of purely

imaginary roots ±iω12∗. Assume

Hypothesis 10 (H10). Re
(

dλ
dτ1

)−1
∣∣∣∣
τ1=τ12∗

6= 0

Under (H10), the equilibrium E2l is locally asymptotically stable when τ1 ∈ [0, τ12∗)
and τ2 = τ22∗.

Theorem 2. For equilibrium E2l , we have the following conclusions.
If (H2) or (H3) holds, the equilibrium E21 or E22 of the model is positive. Under this condition, we
consider the following case.

(1) τ1 = 0, τ2 = 0

Based on Lemma 3, if R0 > 1 and (H8) holds, equilibrium E2l is locally asymptotically stable.
If R0 < 1 or (H8) does not hold, equilibrium E2l is unstable.

(2) τ1 = 0, τ2 > 0

(a) If h(z) of Equation (18) has no positive root, the equilibrium E2l is locally asymptoti-
cally stable when τ2 > 0;
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(b) If h(z) only has one positive root z1, in System (1) Hopf bifurcation occurs at E2l

when τ2 = τ
(j)
22,1 and h′(z1) > 0. We get ∀0 < τ2 < τ

(0)
22,1, the equilibrium E2l is

asymptotically stable, and when ∀ τ2 > τ
(0)
22,1, the equilibrium E2l is unstable;

(c) If h(z) has two positive roots z1, z2, in System (1) Hopf bifurcation occurs at E2l

when τ2 = τ
(j)
22,1 and τ2 = τ

(j)
22,2. We assume z2 < z1, we get h′(z1) > 0, h′(z2) < 0.

Thus, assuming τ
(0)
22,1 < τ

(0)
22,2, there exists k, which makes: 0 < τ

(0)
22,1 < τ

(0)
22,2 <

τ
(1)
22,1 < τ

(1)
22,2 < · · · < τ

(k)
22,1 < τ

(k+1)
22,1 . When τ2 ∈

[
0, τ

(0)
22,1

)
∪ ⋃k

i=1 (τ
(i−1)
22,2 , τ

(i)
22,1),

the equilibrium is locally asymptotically stable. When τ1 ∈
⋃k−1

i=0 (τ
(i)
22,1, τ

(i)
22,2) ∪

(τ
(k)
22,1,+∞), the equilibrium is unstable;

(d) If h(z) has three positive roots z1, z2, z3, in System (1) Hopf bifurcation occurs at

E2l when τ2 = τ
(j)
22,l , (l = 1, 2, 3). We assume z3 < z2 < z1, so we have h′(z1) >

0, h′(z2) < 0, h′(z3) > 0. Similar to the analysis of (c), the equilibrium E2l switches
between stability and instability with the increase of τ1. Finally, the equilibrium
is unstable.

(e) If h(z) has four positive roots z1, z2, z3 and z4, in System (1) Hopf bifurcation occurs

at E2l when τ2 = τ
(j)
22,l , (l = 1, 2, 3, 4). Assuming that z4 < z3 < z2 < z1, we can

obtain h′(z1) > 0, h′(z2) < 0, h′(z3) > 0, h′(z4) < 0. Similar to the analysis of (c),
the equilibrium E2l switches between stability and instability with the increase of τ2.
Finally, the equilibrium is unstable.

(3) τ1 > 0, τ2 > 0

Under (H9) and (H10), the equilibrium E2l of system (1) is locally asymptotically stable when
τ1 ∈ [0, τ12∗) for the chosen τ22∗ under the stable conditions of (1) and (2).

4. Normal Form of Hopf Bifurcation

In this section, we derive the normal form of Hopf bifurcation for System (1) by using
the multiple time scales method. We consider the delay for people having COVID-19
booster vaccination and the delay of vaccine failure. In order to find the most appropriate
and effective booster vaccination time, we consider the time-delay τ1 as a bifurcation
parameter. Let τ1=τc + ετε, where τc is the critical value of Hopf bifurcation given in
Equation (13) or Equation (23), τε is the disturbance parameter, and ε is the dimensionless
scale parameter. Assuming that when τ1=τc, the characteristic equation Equation (4) has a
pair of pure imaginary roots λ = ±iωk at which System (1) undergoes Hopf bifurcation at
equilibrium Ek = (Sk, Vk, Ik, Rk), k = 1, 21, 22. The details of the calculation of the normal
form are in the Appendix A, and the normal form is as follows:

Ġ = MkτεG1 + HkG2
1Ḡ1, (24)

where Mk, Hk are given in Equation (A9) and Equation (A14).
Let G = γeiθ and substitute it into Equation (A15), we can obtain the normal form of

Hopf bifurcation in polar coordinates:{
ṙ = Re(Mk)τεr + Re(Hk)r3,
θ̇ = Im(Mk)τε + Im(Hk)r2.

(25)

Then, we have the theorem as follows.

Theorem 3. If Re(Mk)τε

Re(Hk)τc
< 0 holds (k = 1, 21, 22), System (1) has nontrivial fixed point r∗ =√

−Re(Mk)τε

Re(Hk)τc
, so System (1) has a periodic solution around the equilibrium Ek:

(1) If Re(Mk)τε < 0, the periodic solution of System (1) is unstable.
(2) If Re(Mk)τε > 0, the periodic solution of System (1) is stable.
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5. Numerical Simulations

In this section, we carry out numerical simulations to verify our theoretical analysis.
In order to simulate the optimal time of booster vaccination both in countries with low
vaccination rates and high vaccination rates, we choose two groups of actual parameters
under different vaccination rates according to official data. We also study the impact
of vaccine effectiveness on the epidemic by adding a third set of parameters. Then, we
calculate the equilibria and critical values of time delay through MATLAB. After that, we
simulate the change of the epidemic with different booster vaccination times. According to
the results, we give the conclusion on the most suitable booster vaccination time and give
some reasonable suggestions for epidemic control.

5.1. Determination for Parameter Values

In this section, we use statistical methods to analyze the values of parameters according
to the actual data obtained from several official websites. Then, we select three groups of
parameters with the highest research significance.

(1) COVID-19 mortality rate: c

Based on data from the official website of The World Health Organization (https:
//www.who.int/, accessed on 14 March 2022), we can obtain the COVID-19 mortality rates
of different countries. In order to ensure that the data can reflect the average, we take
representative data and eliminate outliers. Finally, we screen the death rates due to disease
for 29 countries. According to the data, we make a bar chart, which is presented in Figure 2.

Figure 2. COVID-19 mortality rates of 29 countries.

From Figure 2, it is easy to find that the COVID-19 mortality rates of these countries
are mostly in the range of 0.0008 to 0.001, so we choose the mean value of 0.0009 as the
value of c.

(2) Cure rate: µ

We obtained the cure rates of COVID-19 in different countries from the website of
the WHO. By eliminating the missing values and outliers, we obtain the cure rates of 62
countries (such as the USA, Japan, Germany, Austria, Italy, Canada, South Africa, France
and so on) and plot the scatter diagram in Figure 3.

As for cure rates µ, we can clearly see that it is almost at the same level through the
dotted line in Figure 3, so we figure out the average rate of 62 countries: 0.861 as the value
of µ.

(3) Infection rate: α, β

Infection rates can vary from country to country because of the spread of the disease
and the level of government concern. In addition, while antibodies are produced in
vaccinated people, an immune barrier is not yet fully formed. So they also have some rate
of transmission, but obviously, the people who get the booster vaccine have a lower rate of
infection than the people who just get the basic vaccine. We consult the relevant data from
the Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/2019

https://www.who.int/
https://www.who.int/
https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
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-ncov/index.html, accessed on 14 March 2022) and determine the values or range of α and
β in light of the actual situation. Then, we choose α = 0.007 and β = 0.0002.

(4) Re-vaccination rate: σ1, σ2

Figure 3. Cure rates of COVID-19 of 62 countries.

As we mentioned in the modeling, the level of antibody production after vaccination
depends on the individual [22]. For people such as the elderly or those with underlying
diseases who have recovered, the antibodies produced by the vaccine are almost completely
disabled, and they need a basic injection to regain active antibodies at a conversion rate of
σ1 from R to S. In addition, some people still have some antibody activity in their bodies,
and they only need to inject enhancers to increase their resistance to SARS-CoV-2 at a
conversion rate of σ2 from R to V. We think the difference is related to the age structure of
the infected person (see Figure 4).

Figure 4. Age structure of recovered people.

We find that recovered people between 20 and 50 years old account for 61% of the
total, and we assume that this group has better physical fitness than other age groups. So
we consider σ2

σ1
= 1.6, and choose σ1 = 0.2, σ = 0.32.

(5) Natural mortality rate: d

In order to find the value of natural mortality rate d, we select population data from the
National Bureau of Statistics (http://www.stats.gov.cn/enGliSH/, accessed on 14 March
2022) from 2006 to 2019, and we forecast a natural mortality rate d = 0.00707 in 2022 based
on trends (see Figure 5).

https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.cdc.gov/coronavirus/2019-ncov/index.html
http://www.stats.gov.cn/enGliSH/
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Figure 5. Natural mortality rate.

(6) Basic vaccination rate: Λ

Due to limited vaccine resources in some countries or insufficient attention to the
epidemic, vaccination rates vary significantly among countries. We classify countries in
terms of high and low vaccination rates and discuss the impact of booster vaccination on
epidemic control in both groups.

As we can see in Figures 6 and 7, we classify the data provided by the WHO and
select reasonable data to draw scatter plots. For countries with low vaccination rates, we
find vaccination rates are around 0.8, so we select Λ = 0.8 for the first set of parameters.
For countries with high vaccination rates, in which people recognize the effectiveness of
vaccines for epidemic control, vaccination rates reach 10, so we select Λ = 10.

Figure 6. The basic vaccination rates of 24 countries with low vaccination rates.

Figure 7. The basic vaccination rates of 23 countries with high vaccination rates.

(7) Booster vaccination rate: γ1

For booster vaccination, although the vaccination process is still going on and the rate
of booster vaccination is still a variable, we can still analyze it based on the available data
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from the WHO because the level of national interest in vaccines does not change very much
(see Figures 8 and 9).

Figure 8. The booster vaccination rates of 24 countries with low vaccination rates.

Figure 9. The booster vaccination rates of 29 countries with high vaccination rates.

It is clear that the low booster vaccination rate is between 0.4 and 0.5, so we choose γ1 =
0.45 as the booster vaccination rate for countries with low vaccination rates. In Figure 9,
an average of 0.864 is selected as the booster vaccination rate for countries with high
vaccination rates.

(8) The failure rate of booster vaccination: γ2

As for γ2, since the booster vaccine has just been developed, there is no exact failure
rate and expiry time. Therefore, we refer to other vaccine-related data from the official
website and select γ2 = 0.25 as the failure rate of vaccines in countries with high vaccination
rates and γ2 = 0.5 as the failure rate of vaccines in countries with low vaccination rates,
according to some experts’ prediction of the effectiveness of COVID-19 booster vaccines.
To study the impact of a lower vaccine failure rate on epidemic control, we select γ2 = 0.15
in the third group of parameters. This is consistent with the fact that the higher the failure
rate, the less willing people are to be vaccinated.

Based on the above consideration, we take the following two groups of parameters
(our parameters are all dimensionless):
(I): Λ = 0.8, d = 0.00707, µ = 0.861, c = 0.0009, α = 0.007, β = 0.0002, γ1 = 0.45, γ2 = 0.5,
σ1 = 0.2, σ2 = 0.32;
(II): Λ = 10, d = 0.00707, µ = 0.861, c = 0.0009, α = 0.007, β = 0.0002, γ1 = 0.864, γ2 =
0.25, σ1 = 0.2, σ2 = 0.32;
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(III): Λ = 10, d = 0.00707, µ = 0.861, c = 0.0009, α = 0.007, β = 0.0002, γ1 = 0.864, γ2 =
0.15, σ1 = 0.246, σ2 = 0.22.

Parameter (I) simulates countries with low vaccination rates and low vaccine effective-
ness, probably due to limited national resources and low level of development; Parameter
(II) simulates countries with high vaccination rates and average vaccine effectiveness, which
is consistent with the current reality of most countries; In order to study methods that can
better control the epidemic, we select a third group of parameters (III), which reduced the
failure rate compared with the second group of parameters.

5.2. Simulations and Verification

For the group of parameters (I):
Λ = 0.8, d = 0.00707, µ = 0.861, c = 0.0009, α = 0.007,
β = 0.0002, γ1 = 0.45, γ2 = 0.5, σ1 = 0.2, σ2 = 0.32.

This represents countries with low vaccination rates. We calculate the disease-free equi-
librium E1 = [59.95, 53.20, 0, 0]. Under this group of parameters, R0 < 1, so equilibria E2l
do not exist, and E1 = [59.95, 53.20, 0, 0] is locally asymptotically stable when τ1 = τ2 = 0
according to Theorem 1 and Theorem 2. When τ1 > 0, τ2 = 0, h(z) only has one positive
root, and ω11 = 0.0724, sin(ω11τ

(0)
21 ) = 0.1448, cos(ω11τ

(0)
21 ) = −0.9141, τ

(0)
21 = 37.62. We

choose τ2 = τ2∗ = 24 and substitute it into Equations (12) and (13); we get ω̃11 = 0.3814,
sin(ω̃11τ

(0)
11 ) = 0.5218, cos(ω̃11τ

(0)
11 ) = 0.8530, τ

(0)
11 = 1.44. If (H5) holds, the equilibrium E1

is locally asymptotically stable when τ1 ∈ [0, τ1∗) .
When τ2∗ = 24 ∈ (0, τ

(0)
21 ) = (0, 37.62), τ1∗ = 1 ∈ (0, τ

(0)
11 ) = (0, 1.44), the equilibrium

E1 is locally asymptotically stable according to Theorem 1; τ2∗ = 24 means the vaccine
will fail 24 months after injection and τ1∗ = 1 means that people begin to inject booster
vaccinations after 1 month to cope with the decrease of vaccine effectiveness. We choose
initial values [50, 50, 10, 10] and picture the number of people in different cabins changing
over time in Figure 10.
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Figure 10. When τ2∗ = 24, τ1∗ = 1, equilibrium E1 of System (1) is locally asymptotically stable.

The figure above shows that when the vaccine is available for two years, people who
get a booster vaccine within a month of getting the basic vaccine can get rid of all infections
within 20 months. In other words, herd immunity is achieved before the vaccine wears off.
S and V will stabilize after 400 months, and the epidemic will completely disappear.

Remark 1: Our simulations show that for low-coverage countries, when the vaccine is valid for two
years, people need to receive the booster vaccine promptly within one and a half months of receiving
the basic vaccine. After 1.5 months, an outbreak will occur. Further, the faster people are vaccinated,
the more effectively the epidemic is contained. However, it became clear that getting a booster vaccine
after a month would not meet the requirements of the vaccine for the human body. Most of these
countries are currently experiencing outbreaks. This is consistent with our simulation results.

For the group of parameters (II):
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Λ = 10, d = 0.00707, µ = 0.861, c = 0.0009, α = 0.007,
β = 0.0002, γ1 = 0.864, γ2 = 0.25, σ1 = 0.2, σ2 = 0.32.

This represents the situation for countries with high vaccination rates and average vaccine
effectiveness. We find R0 > 1, so equilibrium E21 make sense and is [104.47, 688.37, 255.14,
367.79]. Equilibrium E1 is unstable. Substituting this group of parameters into Equation (14),
(H6) is satisfied, so equilibrium E21 is locally asymptotically stable when τ1 = τ2 = 0
according to Theorem 2. When τ1 = 0, τ2 > 0, h(z) only has one positive root, and ω21 =

0.0805, τ
(0)
22,1 = 28.50. Selecting τ2∗ = 25, we obtain ω̃21 = 0.2157, sin(ω̃21τ

(0)
12,1) = 0.8118,

cos(ω̃21τ
(0)
12,1) = −0.5840, τ

(0)
12,1 = 10.17. Substituting the parameters (II) into Equations (A9)

and (A14), we have Re(Mk) > 0, Re(Hk) < 0. According to Theorem 3, we can deduce
τε > 0, Re(Mk)τε > 0; the periodic solution is stable. This means that the epidemic will
fluctuate greatly over time, and people’s means of controlling the epidemic have no obvious
effect on controlling the epidemic. However, there will not be a sudden increase in the
number of infected people at a certain moment, and the epidemic situation will not be
uncontrollable.

Considering the vaccine developed at present is not an instantaneous failure, and
vaccines cannot be administered in a short time, τ1 = τ2 = 0 is impossible.

According to existing medical research, we believe that the validity period of the
vaccine is 23–32 months, so we choose τ2∗ = 25 as the validity period of a booster vaccine.
Our purpose is to study the impact of different booster vaccine inoculation times on the
epidemic situation. Through our simulation under this set of parameters, we find two
important time nodes—6 months and 10 months—to get booster vaccination after basic
vaccination. Vaccination after 10 months will lead to an outbreak, which is consistent with
our theoretical analysis. Vaccination within six months makes a difference in the epidemic
compared to the situation in which people get vaccinated after 6 months.

When τ2∗ = 25, τ1∗ = 7 that means the vaccine will expire after 25 months and booster
vaccination will be carried out after 7 months. We still choose [100, 500, 200, 300] as the
initial values; the epidemic situation is shown in Figure 11.
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Figure 11. τ2∗ = 25, τ1∗ = 7, equilibrium E21 of System (1) is locally asymptotically stable.

While the vaccine is still valid for 25 months, people getting booster shots within 7
months will have an overall increase in infections for 500 months, meaning that the number
of infections will be high for a long time. This situation can only keep the epidemic under
control but does not reduce the number of infected people.

When τ2∗ = 25 ∈ (0, τ
(0)
22,1) = (0, 28.5), τ1∗ = 6 ∈ (0, τ

(0)
12,1) = (0, 10.17) that means the

vaccine expire after 25 months, and we inject the booster vaccine after 6 months; we choose
[100, 500, 200, 300] as the initial values (see Figure 12).
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Figure 12. τ2∗ = 25, τ1∗ = 6, equilibrium E21 of System (1) is locally asymptotically stable.

We can see that the epidemic has fluctuated over 500 months. This is consistent
with our reality. Currently, we are required to get a booster shot six months after the
basic vaccine. Even then, the epidemic does not disappear completely. There are periodic
fastigiums in the number of infections. However, by vaccinating we can prevent the number
of infections from increasing or staying high and stabilize the epidemic over many years.
That is, the booster vaccination has a positive effect on the development of the epidemic,
and the trend will be better with the booster vaccination in time.

Remark 2: This means that under this set of parameters, people will inevitably live with the virus
for a long time, and a booster vaccination at the right time will only have a temporary effect on
reducing the number of infections.

For the group of parameters (III):
Λ = 10, d = 0.00707, µ = 0.861, =̧0.0009, α = 0.007,
β = 0.0002, γ1 = 0.864, γ2 = 0.15, σ1 = 0.246, σ2 = 0.22.

This set of parameters represents the ideal situation in which the outbreak can be well con-
tained. We find R0 > 1, so equilibrium E21 makes sense and is [100.92, 812.57, 169.97, 309.34].
Equilibrium E1 is unstable. Substituting this group of parameters into Equation (14), (H6) is
satisfied, so equilibrium E21 is locally asymptotically stable when τ1 = τ2 = 0 according to
Theorem 2. When τ1 = 0, τ2 > 0, h(z) only has one positive root, and ω21 = 0.0576,
τ
(0)
22,1 = 38.78. Selecting τ2∗ = 32, we obtain ω̃21 = 0.1152, sin(ω̃21τ

(0)
12,1) = 0.7078,

cos(ω̃21τ
(0)
12,1) = −0.7064, τ

(0)
12,1 = 20.44. Substituting the parameters (II) into Equations (A9)

and (A14), we have Re(Mk) > 0, Re(Hk) < 0. According to Theorem 3, we can deduce
τε > 0, Re(Mk)τε > 0, which means under this set of parameters, if the equilibrium E21 is
unstable, a stable Hopf bifurcation periodic solution will appear. This means that although
there will not be a large number of people infected with the novel coronavirus and the
number of cases will surge, people’s methods are still ineffective, and people need to find
better ways to control the epidemic.

When τ2∗ = 32 ∈ (0, τ
(0)
22,1) = (0, 38.78), τ1∗ = 6 ∈ (0, τ

(0)
12,1) = (0, 20.44) that means the

vaccine expires after 32 months and people inject the booster vaccine after 6 months, we
choose [100, 1000, 200, 300] as the initial values (see Figure 13).
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Figure 13. τ2∗ = 32, τ1∗ = 6, equilibrium E21 of System (1) is locally asymptotically stable.

Figure 13 shows a declining trend in the number of infections under the third set of
parameters, which stabilizes and approaches almost zero after two decades. This suggests
that when the validity of the vaccine is increased to 32 months and the vaccine failure rate
is reduced to 0.15, people who receive the booster vaccine 6 months after the basic vaccine
can control the outbreak more effectively without long-term coexistence with the virus. In
other words, if the vaccine is effective enough, we can expect to be free of COVID-19 by
2042 or earlier. However, this is a relatively ideal situation because many factors in reality
can cause the values of parameters in the model to change at any time, and our simulation
is based on only a set of constant parameters.

To make the simulation results closer to reality, we can change the value of parameters
in real-time according to the actual situation of the epidemic development and use our
model to predict the development of the epidemic under different factors such as infection
rate, cure rate and vaccine effectiveness. We can provide ideas for the country to control
the epidemic by analyzing the simulation results.

When τ2∗ = 32, τ1∗ = 14.5 that means the vaccine expires after 32 months, but people
inject the booster vaccine after 14.5 months; we choose [100, 1000, 200, 300] as the initial
values (see Figure 14).
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Figure 14. τ2∗ = 32, τ1∗ = 14.5, equilibrium E21 of System (1) is locally asymptotically stable.

Remark 3: Comparing Figure 13 with Figure 14, it can be found that when the booster vaccination
time is 14.5 months, although the system fluctuation trend becomes smaller and the number of
infected people also decreases, it takes longer for the system to stabilize than when the booster
vaccination time is 6 months. As shown in Figure 14, the system is not stable after 500 months,
which has a bad impact on the country’s economy and development. Therefore, it is necessary to
implement the booster vaccine as soon as the effectiveness of the vaccine is certain.
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5.3. Analysis of Simulations

Based on the above simulations, we have the following conclusions:
(1) When the time of vaccine expiration is determined, the less time people have

between a basic vaccine and a booster, the better the outbreak will be contained in both
low and high coverage countries, and when the time of booster vaccination exceeds the
critical value, System (1) will be unstable and the epidemic will be out of control. The
critical time for the booster vaccination is 1.4 months for countries with low vaccination
rates and 10.17 months for countries with high vaccination rates. It is clear that increasing
vaccination rates have had a positive impact on epidemic control.

(2) We select the parameters (I) and (II) closest to the current epidemic situation,
and the simulation results are consistent with the real situation. Due to limited vaccine
resources or other reasons, some countries have low vaccination rates. For them, booster
vaccination is not completed effectively and on time. As for the critical time of 1.44 months
in our simulation results, it is impossible to complete in reality. We look at the epidemic
status of most countries with low vaccination rates and found that most of them are in an
uncontrolled state of the epidemic, which is consistent with our simulations. For countries
with high vaccination rates, we found that the critical time for booster vaccination is
10.17 months, which can be achieved in reality. Given the physical demands of vaccination,
most countries require people to receive the booster vaccine promptly 6 months after
receiving the basic vaccine. In our simulations, 6 months is also considered to be the most
suitable optimal time for booster vaccination. In this case, there will be some fluctuations
in the current epidemic, but the number of infections will not be at a high level all the
time, and people will be able to control the epidemic within a certain range and eventually
stabilize it. When the inoculation time is 7 months, although the epidemic does not fluctuate
greatly in the near stage and eventually tends to stabilize, the number of infected people will
remain at a high level. This means that under the second set of parameters, the effectiveness
of the vaccine will not be enough to eliminate the epidemic, and even if people are actively
vaccinated and have high vaccination rates, they will inevitably live with COVID-19 for a
long time.

(3) Due to the short development time of the vaccine, its effectiveness is still unclear.
In our numerical simulations, different parameters are used to study the impact of vaccine
effectiveness on the epidemic. We choose parameters (III) to simulate a better epidemic
scenario. Compared with the groups of parameters (I) and (II), the third group has a higher
vaccination rate and lower vaccine failure rate, the basal shot is less likely to fail, and the
proportion of recovered patients who retain antibodies from the basal shot increased.
Through our simulation, we found that under the third set of parameters, when the validity
of the vaccine is 32 months and the booster vaccination time is controlled within 20 months,
the number of infections decreased and eventually approached zero, the system stabilized,
and the epidemic almost disappeared. Changing the timing of the booster vaccine, we
found that when the booster vaccine is given at 6 months, the epidemic could be virtually
eliminated by 2042. Even though the parameters can change over time in the real world,
and this is an ideal situation for us to simulate with a constant set of parameters, we can
still conclude that the longer the interval between actual vaccinations, the longer it takes
for the epidemic to stabilize. Therefore, considering the economic level of the country
and the requirements of the vaccine for the human body, we believe that under the third
group of parameters we selected, timely vaccination after 6 months is the ideal epidemic
control means.

Compared with the second group of parameters (II), the failure rate of the third group
(III) of enhanced vaccines is reduced, the validity period is longer, and the epidemic can be
effectively controlled, or even almost disappear. Under the second set of parameters (II),
the vaccine is not effective enough, and the epidemic continues. This shows the importance
of vaccine effectiveness in controlling outbreaks. In order to better control the epidemic,
we need to work to develop a more effective vaccine.
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(4) In our simulations above, we select parameters consistent with the current epidemic
situation in 2022 and obtain simulation results consistent with the real situation. In fact,
our simulations can change with reality, which means that our models are very broad.
For example, if a country wants to study epidemic prevention and control strategies for
itself, we can bring in the country’s data, take into account the comprehensive strength of
the country and the requirements of economic development, analyze the data and select
reasonable parameters for simulation to obtain the best time for strengthening vaccination
and provide targeted strategies for epidemic control. Our model can also simulate the
situation as the virus mutates by changing the infection rate α and β. Global vaccination
is still ongoing, so vaccination rates are constantly changing, and we can change the
vaccination rates in the parameters to change our conclusions in real-time. Once the
parameters are determined, we can calculate the corresponding critical booster timing and
make recommendations that are appropriate to the current epidemic situation.

5.4. Recommendations for Countries

(i) For countries with low vaccination rates:

Based on our simulations, it is clear that good control of the epidemic requires people
to get the booster vaccine within 1.5 months of getting the basic vaccine. However, a
1.5-month interval between basic and booster vaccination is not feasible in real life given
the requirements of the vaccine for people’s health conditions. That means it is very
difficult to control COVID-19 in these countries. Therefore, we call on countries with low
vaccination rates to increase their vaccination rates as soon as possible so that people pay
enough attention to COVID-19;otherwise, it will be difficult to control the epidemic.

(ii) For countries with high vaccination rates:

(1) It is clear that timely booster vaccination has a positive impact on controlling the out-
break. Controlling booster vaccination time within a critical period (10.2 months) can make
sure the epidemic is under control. Considering the requirements of booster vaccination on
the body, we believe that 6 months is the most appropriate time for booster vaccination.

(2) In countries that are already able to get the majority of people who get the basic
vaccine on time to get the booster vaccine 6 months later, we can see that there is an upper
bound in the number of infections in those countries, which means that the epidemic is
contained, and the number of infections does not peak all the time. However, the epidemic
is not completely under control. In these countries, the epidemic is cyclical at this stage,
with the number of cases going up and down. However, when we improve the effectiveness
of the vaccine, which means the duration of the vaccine is longer and the failure rate of
the vaccine is lower, the epidemic will be better controlled. The number of cases tends to
decrease and almost stabilize after 20 years. So we suggest that research into an effective
vaccine should continue, both to increase its longevity and to reduce the vaccine failure rate.

(3) Considering that the virus is still mutating, we suggest that countries make timely
policy changes based on the real-time situation of the epidemic.

6. Conclusions

In this paper, we have established an SVIR model on booster vaccination with two
time delays to study the most suitable time for booster vaccination. We have studied
the impact of the timing of booster vaccination and the expiration of booster vaccine
on outbreaks. We studied the stability of the equilibria of System (1) and determine
the stability and direction of the periodic bifurcation solution using the multi-time scale
method and obtain the standard form of Hopf bifurcation. Then we have carried out some
numerical simulations to verify the analytic results and give some reasonable suggestions
to control the epidemic.

We have found that high vaccination rates are necessary for the current epidemic
situation and that current vaccines are not effective as a specific method of controlling the
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epidemic. As well as improving vaccination rates, there are other measures that need to be
taken, such as reducing social interaction. Further, we have specific recommendations for
different countries as well.
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Appendix A

System (3) can be written as:

X′(t) = AX(t) + BX(t− τ1) + CX(t− τ2) + F[X(t), X(t− τ1), X(t− τ2)], (A1)

where X(t) = (Sk, Vk, Ik, Rk)
T , X(t− τ1) = (Sk(t− τ1), Vk(t− τ1), Ik(t− τ1), Rk(t− τ1))

T ,
X(t− τ2) = (Sk(t− τ2), Vk(t− τ2), Ik(t− τ2), Rk(t− τ2))

T , and

A =


−αIk − d 0 −αSk σ 1

0 −d− βIk −βVk σ 2
αIk βIk αSk + βVk − µ− c− d 0
0 0 µ −σ1 − σ2 − d

,

B =


−γ1 0 0 0
γ1 0 0 0
0 0 0 0
0 0 0 0

, C =


0 γ2 0 0
0 −γ2 0 0
0 0 0 0
0 0 0 0

, F =


−α SI
−β VI

αSI + β VI
0

.

We suppose hk = (hk1, hk2, hk3, hk4)
T is the eigenvector of the linear operator cor-

responding to the eigenvalue iω, and let hk
∗ = (h∗k1, h∗k2, h∗k3, h∗k4)

T be the normalized
eigenvector of the adjoint operator of the linear operator corresponding to the eigenvalues
−iω satisfying the inner product < hk

∗, hk >= 1, with h∗kj = dk h̃∗kj. By a simple calculation,
we can obtain:
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hk3 = 1,

hk4 =
µ

iω + σ1 + σ2 + d
,

hk2 =
(iω− αS∗ − βV∗ + µ + c + d)

(
iω + d + αI∗ + γ1e−iωτ1

)
γ2γ1e−iω(τ1+τ2) − (iω + d + αI∗ + γ1e−iωτ1)(iω + d + βI∗ + γ2e−iωτ2)

+
αS∗γ1e−iωτ1 −

(
σ1γ1e−iωτ1 +

(
iω + d + αI∗ + γ1e−iωτ1

)
σ2
)
hk4

γ2γ1e−iω(τ1+τ2) − (iω + d + αI∗ + γ1e−iωτ1)(iω + d + βI∗ + γ2e−iωτ2)
,

hk1 =
−(iω− αS∗ − βV∗ + µ + c + d) + βI∗hk2

−αI∗
,

h̃∗k3 = 1,

h̃∗k1 =

(
−iω + d + αI∗ + γ1e−iωτ1

)
(−βI∗)− αI∗γ2e−iωτ2

γ2γ1e−iω(τ1+τ2) − (−iω + d + αI∗ + γ1e−iωτ1)(−iω + d + βI∗ + γ2e−iωτ2)
,

h̃∗k2 =
γ1e−iωτ1 βI∗ + αI∗

(
−iω + d + βI∗ + γ2e−iωτ2

)
(−iω + d + αI∗ + γ1e−iωτ1)(−iω + d + βI∗ + γ2e−iωτ2)− γ2γ1e−iω(τ1+τ2)

,

h̃∗k4 =
σ1h̃∗k1 + σ2h̃∗k2

−iω + σ1 + σ2 + d
,

(A2)

where dk =
1

hk1 h̃∗k1+hk2 h̃∗k2+hk3 h̃∗k3+hk4 h̃∗k4

, (k = 1, 21, 22, j = 1, 2, 3, 4.).

X(t) can be written as:

X(t) = X(T0, T1, T2, · · · ) =
∞

∑
k=1

εkXk(T0, T1, T2, · · · ), (A3)

X′(t) can be written as:

X′(t) =
dX(t)

dt
= ε

dX1

dt
+ ε2 dX2

dt
+ ε3 dX3

dt
+ · · ·

=ε(
∂X1

∂T0
+ ε

∂X1

∂T1
+ ε2 ∂X1

∂T2
) + ε2(

∂X2

∂T0
+ ε

∂X2

∂T1
) + ε3 ∂X3

∂T0
+ · · ·

=εD0X1 + ε2D1X1 + ε3D2X1 + ε2D0X2 + ε3D1X2 + ε3D0X3 + · · · .

(A4)

where Di =
∂

∂Ti
(i = 1, 2, 3, · · · ) is a differential operator.

Since we are more concerned about the influence of booster vaccination time, we take
τ1 as the bifurcation parameter. We let τ1 = τc + ετε, where τc is the critical time delay given
in Equation (13) or Equation (23), τε is the disturbance parameter and ε is the dimensionless
scale parameter. Using Taylor expansion of X(t− τ2) and X(t− τ1), respectively, we have:

X(t− τ2) =εX1,τ2 + ε2(X2,τ2 − D1X1,τ2) + ε3(X3,τ2 − D1X2,τ2 − D2X1,τ2) + · · · ,

X(t− τ1) = = εX1,τc + ε2X2,τc + ε3X3,τc − ε2τεD0X1,τc − ε3τεD0X2,τc − ε2τcD1X1,τc

− ε3τεD1X1,τc − ε3τcD2X1,τc − ε3τcD1X2,τc + · · · ,

(A5)

where Xj,τ2 = Xj(T0 − τ2, T1, T2, · · · ), Xj,τc = Xj(T0 − τc, T1, T2, · · · ), j=1,2,3. Then, we
substitute Equations (A3)–(A5) into Equation (A1). For the ε-order terms, we have:

D0S1 + γ1S1,τc − γ2V1,τ2 − σ1R1 + dS1 + αS1 I∗ + αS∗ I1 = 0,

D0V1 − γ1S1,τc + γ2V1,τ2 + βV1 I∗ + βV∗ I1 − σ2R1 − dV1 = 0,

D0 I1 − αS1 I∗ − αS∗ I1 − βV1 I∗ − βV∗ I1 + µI1 + cI1 + dI1 = 0,

D0R1 − µI1 + σ1R1 + σ2R1 + dR1 = 0.

(A6)
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Since ±iω∗k (k = 1, 2) are the eigenvalues of the linear part of Equation (A1), the solution of
Equation (A6) can be expressed in the following form:

X1(T1, T2, T3, · · · ) = G(T1, T2, T3, · · · )eiω∗k T0 hk + Ḡ(T1, T2, T3, · · · )e−iω∗k T0 h̄k, k = 1, 2. (A7)

where hk is given in Equation (A2).
For the ε2-order terms, we obtain:

D0S2 + γ1S2,τc − γ2V2,τ2 − σ1R2 + dS2 + αS2 I∗ + αS∗ I2

= −D1S1 + γ1(τεD0S1,τc + τcD1S1,τc)− γ2D1V1,τ2 − αS1 I1,

D0V2 − γ1S2,τc + γ2V2,τ2 + βV2 I∗ + βV∗ I2 − σ2R2 − dV2

= −D1V1 − γ1(τεD0S1,τc + τcD1S1,τc) + γ2D1V1,τ2 − βV1 I1,

D0 I2 − αS2 I∗ − αS∗ I2 − βV2 I∗ − βV∗ I2 + µI2 + cI2 + dI2 = −D1 I1 + αS1 I1 + βV1 I1,

D0R2 − µI2 + σ1R2 + σ2R2 + dR2 = −D1R1.

(A8)

Then we substitute Equation (A7) into the right side of Equation (A8) and mark the
coefficient before eiωT0 as vector m1. In accordance with the solvability condition: <
h∗k , m1 >= 0, we can obtain the expression of ∂G

∂T1
:

∂G
∂T1

= MkτεG, (A9)

where Mk =
γ1iω(hk1 h̃∗k1−hk1 h̃∗k2)

1+γ2e−iωτ2(hk2 h̃∗k1−hk2 h̃∗k2)+γ1τce−iωτc(hk1 h̃∗k2−hk1 h̃∗k1)
, k = 1, 2.

We assume the solution of Equation (A8) is the following form:

S2,k =gk1e2iωkτcT0 G2 + ḡk1e−2iωkτcT0 Ḡ2 + lk1GḠ,

V2,k =gk2e2iωkτcT0 G2 + ḡk2e−2iωkτcT0 Ḡ2 + lk2GḠ,

I2,k =gk3e2iωkτcT0 G2 + ḡk3e−2iωkτcT0 Ḡ2 + lk3GḠ,

R2,k =gk4e2iωkτcT0 G2 + ḡk4e−2iωkτcT0 Ḡ2 + lk4GḠ.

(A10)

Substituting them into Equation (A8), we can solve the expression of g1, g2, g3, g4, l1, l2, l3, l4
from the following equations.

(2iω + η1) −γ2e−iωτ2 αS∗ −σ1
−γ1e−iωτc (2iω + η2) βV∗ −σ2

0 −αI∗ − βI∗ (2iω + η3) 0
0 0 −µ (2iω + η4)




g1
g2
g3
g4

 =


−αh1h3
−βh2h3

αh2h3 + βh1h3
0

, (A11)


η1 −γ2 αS∗ −σ1
−γ1 η2 βV∗ −σ2

0 −αI∗ − βI∗ η3 0
0 0 −µ η4




l1
l2
l3
l4

 =


−αh1h̄3 − αh̄1h3
−βh̄2h3 − βh2h̄3

αh1h̄3 + αh̄1h3 + βh̄2h3 + βh2h̄3
0

, (A12)

where
η1 = γ1e−iωτc − d + αI∗, η2 = γ2e−iωτ2 + βI∗ − d,

η3 = −αS∗ − βV∗ + µ + c + d, η4 = σ1 + σ2 + d.
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For ε3-term, we have:

D0S3 + γ1S3,τc − γ2V3,τ2 − σ1R3 + dS3 + αS3 I∗ + αS∗ I3
= −D2S1 − D1S2 + γ1(τεD0S2,τc + τcD1S1,τc + τεD1S1,τc + τcD2S1,τc)
−γ2

(
D2V1,τ2 + D1V2,τ2

)
− α(S2 I1 + S1 I2),

D0V3 − γ1S3,τc + γ2V3,τ2 + βV3 I∗ + βV∗ I3 − σ2R3 − dV3
= −D1V2 − D2V1 − γ1(τεD0S2,τc + τcD1S1,τc + τεD1S1,τc + τcD2S1,τc)
+γ2

(
D2V1,τ2 + D1V2,τ2

)
− β(V2 I1 + V1 I2),

D0 I3 − αS3 I∗ − αS∗ I3 − βV3 I∗ − βV∗ I3 + µI3 + cI3 + dI3
= −D2 I1 − D1 I2 + α(S1 I2 + S2 I1) + β(V1 I2 + V2 I1),

D0R3 − µI3 + σ1R3 + σ2R3 + dR3
= −D1R2 − D2R1.

(A13)

We substitute Equations (A7), (A9) and (A10) into the right expression of Equation (A13)
and note the coefficient of eiωkT0 as vector m2. According to solvability condition <
h∗k , m2 >= 0, we have the expression of ∂G

∂T2
. Since τ2

ε has less impact on normal form,
we can ignore the τ2

ε G term. Thus, we can obtain:

∂G
∂T2

= HkG2Ḡ, (A14)

where

Hk =
∂G1
∂T2

=
α
(
h1l3 + h̃1g3 + h3l1 + h̃3g1

)(
h̃∗3 − h̃∗1

)
+ β

(
h2l3 + h̃2g3 + h3l2 + h̃3g2

)(
h̃∗3 − h̃∗2

)
1 + γ2

(
h2h̄∗1 − h2h̄∗2

)
e−iwτ2 + γ1τce−iωτc

(
h1h̄∗2 − h1h̄∗1

) .

Then, we let G → G/ε. Therefore, we get the normal form of Hopf bifurcation for
System (1):

Ġ = MkτεG1 + HkG2
1Ḡ1, (A15)

where Mk, Hk are given in Equation (A9) and Equation (A14).

References
1. Nathan, D.G; Emma, B.H.; Joseph, R.F; Alexandra, L.P.; MugeCevik Public health actions to control new SARS-CoV-2 variants.

Cell 2021, 184, 1127–1132.
2. Pei, Y.Z.; Li, S.P.; Li, C.G.; Chen, S.Z. The effect of constant and pulse vaccination on an SIR epidemic model with infectious

period. Appl. Math. Model. 2011, 35, 3866–3878.
3. Cao, B.Q.; Shan, M.J.; Zhang, Q.M.; Wang, W.M. A stochastic SIS epidemic model with vaccination. Physica A 2017, 486, 127–143.

[CrossRef]
4. De la Sen, M.; Alonso-Quesada, S. Vaccination strategies based on feedback control techniques for a general SEIR-epidemic

model. Appl. Math. Comput. 2011, 218, 3888–3904. [CrossRef]
5. Khyar, O.; Allali, K. Optimal vaccination strategy for an SEIR model of infectious diseases with Logistic growth. Math. Biosci.

Eng. 2017, 15, 485–505.
6. Scherer, A.; McLean, A. Mathematical models of vaccination. Brit. Med. Bull. 2002, 62, 187–199. [CrossRef]
7. Bjornstad, O.N.; Shea, K.; Krzywinski, M.; Altman, N. The SEIRS model for infectious disease dynamics. Nat. Methods 2020, 17,

557–558. [CrossRef]
8. Yang, B.; Yu, Z.H.; Cai, Y.L. The impact of vaccination on the spread of COVID-19: Studying by a mathematical model. Nonlinear

Dyn. 2022, 590, 126717. [CrossRef]
9. Duan, X.C.; Yuan, S.l.; Li, X.Z. Global stability of an SVIR model with age of vaccination. Appl. Math Comput. 2014, 226, 528–540.

[CrossRef]
10. Anna, W. Booster Vaccination to Reduce SARS-CoV-2 Transmission and Infection. JAMA-J. Am. Med. Assoc. 2012, 327, 327–328.
11. Salvagno, G.L.; Henry, B.M.; Pighi, L.D.N.; Simone, D.N.; Gianluca.G.; Giuseppe, L. The pronounced decline of anti-SARS-CoV-2

spike trimeric IgG and RBD IgG in baseline seronegative individuals six months after BNT162b2 vaccination is consistent with
the need for vaccine boosters. Clin. Chem. Lab. Med. 2022, 60, E29–E31. [CrossRef] [PubMed]

12. Cooke, K.L. Stability analysis for a vector disease model. J. Math. Biol. 1996, 35, 240–260. [CrossRef] [PubMed]
13. Zhai, S.D.; Luo, G.Q.; Huang, T.; Wang, X.; Tao, J.L.; Zhou, P. Vaccination control of an epidemic model with time delay and its

application to COVID-19. Nonlinear Dyn. 2021, 106, 1279–1292. [CrossRef] [PubMed]

http://doi.org/10.1016/j.physa.2017.05.083
http://dx.doi.org/10.1016/j.amc.2011.09.036
http://dx.doi.org/10.1093/bmb/62.1.187
http://dx.doi.org/10.1038/s41592-020-0856-2
http://dx.doi.org/10.1016/j.physa.2021.126717
http://dx.doi.org/10.1016/j.amc.2013.10.073
http://dx.doi.org/10.1515/cclm-2022-0212
http://www.ncbi.nlm.nih.gov/pubmed/35303764
http://dx.doi.org/10.1007/s002850050051
http://www.ncbi.nlm.nih.gov/pubmed/9008370
http://dx.doi.org/10.1007/s11071-021-06533-w
http://www.ncbi.nlm.nih.gov/pubmed/34092918


Mathematics 2022, 10, 1772 27 of 27

14. Rong, X.M.; Yang, L.; Chu, H.D.; Fan, M. Effect of delay in diagnosis on transmission of COVID-19. Math. Biosci. Eng. 2020, 17,
2725–2740. [CrossRef]

15. Song, X.Y.; Jiang, Y.; Wei, H.M. Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Appl.
Math. Comput. 2009, 214, 381–390. [CrossRef]

16. Jiang, Y.; Mei, L.Q.; Song, X.Y. Global analysis of a delayed epidemic dynamical system with pulse vaccination and nonlinear
incidence rate. Appl. Math. Model. 2011, 35, 4865–4876. [CrossRef]

17. Gao, S.J.; Teng, Z.D.; Xie, D.H. The effects of pulse vaccination on SEIR model with two time delays. Appl. Math. Comput. 2008,
201, 282–292. [CrossRef]

18. Zhang, Z.Z.; Kundu, S.; Tripathi,J.P.; Bugalia, S. Stability and Hopf bifurcation analysis of an SVEIR epidemic model with
vaccination and multiple time delays. Chaos Soliton Fract. 2020, 131, 109483. [CrossRef]

19. Chen, X.Y.; Cao, J.D.; Park, J.H.; Qiu,J.L. Stability analysis and estimation of domain of attraction for the endemic equilibrium of
an SEIQ epidemic model. Nonlinear Dynam. 2018, 87, 975–985. [CrossRef]

20. Li, J.H.; Teng, Z.D.; Wang, G.Q.; Zhang, L.; Hu, C. Stability and bifurcation analysis of an SIR epidemic model with logistic
growth and saturated treatment. Chaos Soliton Fract. 2017, 99, 63–71. [CrossRef]

21. Goel, K.; Kumar, A.; Nilam Stability analysis of a logistic growth epidemic model with two explicit time-delays, the nonlinear
incidence and treatment rates. J. Appl. Math. Comput. 2021, 389–402.

22. Hye, K.L.; Ludwig, K.; Ludwig, K.S.; Sebastian, K.; Birgit, P. Robust immune response to the BNT162b mRNA vaccine in an
elderly population vaccinated 15 months after recovery from COVID-19. MedRxiv Preprint 2021, 5. [CrossRef]

http://dx.doi.org/10.3934/mbe.2020149
http://dx.doi.org/10.1016/j.amc.2009.04.005
http://dx.doi.org/10.1016/j.apm.2011.03.044
http://dx.doi.org/10.1016/j.amc.2007.12.019
http://dx.doi.org/10.1016/j.chaos.2019.109483
http://dx.doi.org/10.1007/s11071-016-3092-7
http://dx.doi.org/10.1016/j.chaos.2017.03.047
http://dx.doi.org/10.1101/2021.09.08.21263284

	Introduction
	Research Background
	Research Motivation

	Mathematical Modeling
	Stability Analysis of Equilibria and Existence of Hopf Bifurcation
	Analysis for Disease-Free Equilibrium E1
	The Case for 1=0, 2=0
	The Case for 1=0, 2>0
	The Case for 1>0, 2>0

	Analysis for Endemic Equilibrium E2l
	The Case for 1=0, 2=0
	The Case for 1=0, 2>0
	The Case for 1>0, 2>0


	Normal Form of Hopf Bifurcation
	Numerical Simulations
	Determination for Parameter Values
	Simulations and Verification
	Analysis of Simulations
	Recommendations for Countries

	Conclusions
	
	References

