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Abstract: In this work, new criteria were established for testing the oscillatory behavior of solutions of
a class of even-order delay differential equations. We follow an approach that depends on obtaining
new monotonic properties for the decreasing positive solutions of the studied equation. Moreover,
we use these properties to provide new oscillation criteria of an iterative nature. We provide an
example to support the significance of the results and compare them with the related previous work.
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1. Introduction

The aim of this study is to obtain new monotonic properties of positive solutions to
even-order delay differential equations (DDE)(

b(l)
(

y(n−1)(l)
)κ)′

+ q(l)yκ(g(l)) = 0, l ≥ l0, (1)

where n ≥ 4 is an even natural number, κ is a ratio of odd positive integers (∈ Q+
odd), b, q,

g ∈ C[l0,+∞), b(l) > 0, b′(l) ≥ 0, q(l) ≥ 0, g′(t) ≥ 0, g(l) ≤ l, and liml→+∞ g(l) = +∞.
We, moreover, establish a new oscillation criterion for the solutions of (1) in the non-
canonical case, that is, ∫ +∞

l0
b−1/κ(η)dη < +∞. (2)

By a proper solution of (1), we mean a function y ∈ Cn−1[l0,+∞) which has the
properties

b
(

y(n−1)
)κ
∈ C1([l0,+∞)), sup{|y(l)| : l ≥ l∗} > 0, for l∗ ∈ [l0,+∞),
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and y satisfies (1) on [l0,+∞). A solution y of (1) is called non-oscillatory if it is eventually
positive or eventually negative; otherwise, it is called oscillatory.

DDEs are a type of functional differential equations and are also a better method
to model natural phenomena. This is because the DDEs take into account the temporal
memory of the phenomena. There is an active research movement to verify the qualitative
properties (oscillatory, periodicity, stability, boundedness, etc.) for solutions of these
equations, see for example [1–18] as well as the references listed in them. Oscillation theory
is one of the branches of the qualitative theory of differential equations, which deals with
the issue of oscillatory and non-oscillatory behavior of solutions to differential equations,
as well as discusses the issue of the zeros of the solutions and the distances between them.

In canonical case, namely, ∫ +∞

l0
b−1/κ(η)dη = +∞,

many works dealt with the issue of the oscillatory and non-oscillatory behavior of solutions
of DDE ((

y(n−1)(l)
)κ)′

+ q(l)yγ(g(l)) = 0, (3)

and special cases of it, where γ ∈ Q+
odd, see for example [19–21]. In [22], Grace et al. studied

the oscillation of the more general form of canonical DDE(
b3

(
b2
(
b1y′

)′)′)′
(l) + q(l)y(g(l)) = 0,

under the condition ∫ +∞

l0
b−1

i (η)dη = +∞, i = 1, 2, 3.

For the non-canonical case (2), Baculikova et al. [23] presented comparative results
for (1) with three DDEs of first order. For the reader’s convenience, we review Corollary 4
in [23].

Theorem 1. Let (2) hold, and assume that, for some $ ∈ (0, 1), and every l1 ≥ l0, both

lim inf
l→+∞

∫ l

g(l)
q(η)

$

(n− 1)!
gn−1(η)

b1/κ(g(η))
dη >

1
e

(4)

and

lim inf
l→+∞

∫ l

g(l)

1
b1/κ(u)

(∫ u

l0
q(η)

(
$

(n− 2)!
gn−2(η)

)κ

dη

)1/κ

du >
1
e

, (5)

are satisfied. Then, every nonoscillatory solution of (1) tends to zero as l → +∞.
Assume, in addition, that there exists ξ(l) ∈ C([l0,+∞)) where ξ1(l) = ξ(l) and ξi+1(l) =

ξi(ξ(l)), such that

ξ(l) is nondecreasing, ξ(l) > l and ξn−2(τ(l)) < l

and

lim inf
l→+∞

∫ l

ξn−2(τ(l))
b−1/κ(u)

(∫ u

l1
q(η)dη

)1/κ

(Jn−2(g(u)))1/κdu >
1
e

,

where J1(l) = ξ(l)− l and Ji+1(l) =
∫ ξ

l Ji(s)ds.

Then, (1) is oscillatory.
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Recently, Moaaz and Muhib [16] studied the oscillation of the fourth-order DDE(
b(l)

(
y′′′(l)

)κ
)′

+ f (l, y(g(l))) = 0, (6)

where f (l, y) ≥ q(l)yγ(l), and γ ∈ Q+
odd. They used a generalized Riccati substitution and

presented nontraditional oscillation conditions, as in the following theorem:

Theorem 2. Assume that (2) hold, and the following DDE is oscillatory for some λ0 ∈ (0, 1):

y′(l) + q(l)
(

λ0g3(l)
3!b1/κ(g(l))

)γ

yγ/κ(g(l)) = 0. (7)

If there are ρ, θ ∈ C1([l0,+∞),R+) with

lim
l→+∞

sup
ϕκ

0(l)
ρ(l)

∫ l

l0

(
ρ(η)q(η)h(η)

(
λ

2!
g2(η)

)γ

− b(η)(ρ′(η))κ+1

(κ + 1)(κ+1)ρκ(η)

)
dη > 1 (8)

and

lim
l→+∞

sup
ϕκ

2(l)
θ(l)

∫ l

l0

(
θ(η)q(η)µ(η)− (θ′(η))κ+1

(κ + 1)(κ+1)θκ(η)ϕκ
1(η)

)
dη > 1 (9)

for some λ1 ∈ (0, 1), and any positive constants ci and ki, then (6) is oscillatory, where

ϕ0(l) :=
∫ +∞

l

1
b1/κ(η)

dη, ϕm(l) :=
∫ +∞

l
ϕm−1(η)dη for m = 1, 2, (10)

h(l) :=
{

cκ−γ
1 if κ > γ

c2 ϕγ−κ(l) if κ < γ
and µ(l) :=

{
kκ−γ

1 if κ > γ

k2 ϕ
γ−κ
2 (l) if κ < γ

.

On the other hand, recently, many interesting works have appeared which contribute
significantly to the development of the study of second-order DDEs. From these works,
Baculikova [5] presented a new approach based on the improvement of the monotonic
properties of a class of positive solutions of linear DDE(

b(l)
(
y′(l)

))′
+ q(l)y(g(l)) = 0.

In this paper, as an extension of Baculikova’s results in [5] to the quasi-linear case and
the higher-order, we present new monotonic properties of the decreasing positive solutions
of (1) in the non-canonical case. We obtain a comparison result in which oscillation (1) is
deduced from oscillation of a first-order DDE in addition to some previous conditions. Our
new results improve Theorems 1 and 2. Finally, an example is provided to support the
significance of the new results.

2. Main Results

For the convenience of presenting the results, we define

ϕ0(l) :=
∫ +∞

l
b−1/κ(η)dη,

and
ϕj(l) :=

∫ +∞

l
ϕj−1(η)dη, for j = 1, 2, . . . , n− 2.

Lemma 1. Assume that y ∈ S+ and y satisfies

y(s)(l)y(s+1)(l) < 0 for s = 0, 1, . . . , n− 2, (11)
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for l ≥ l1 ∈ [l0,+∞). If

∫ +∞

l0

(
1

b(u)

∫ u

l0
q(η)dη

)1/κ

du = +∞, (12)

then
(−1)j+1y(n−j−2)(l) ≤ b1/κ(l)y(n−1)(l)ϕj(l) for j = 0, 1, . . . , n− 2, (13)

lim
l→+∞

y(l) = 0 (14)

and (
y(l)

ϕn−2(l)

)′
≥ 0. (15)

Proof. Assume that y ∈ S+ and satisfies (11) for l ≥ l1. for some l1 ∈ [l0,+∞). Then, there
is a l2 ≥ l1 with y(g(l)) > 0 for all l2, and hence, from (1), we have(

b(l)
(

y(n−1)(l)
)κ)′

= −q(l)yκ(g(l)) ≤ 0.

From (11), we get

−y(n−2)(l) ≤ y(n−2)(+∞)− y(n−2)(l) =
∫ +∞

l

b1/κ(η)y(n−1)(η)

b1/κ(η)
dη ≤ b1/κ(l)y(n−1)(l)ϕ0(l),

and so
y(n−2)(l) ≥ −b1/κ(l)y(n−1)(l)ϕ0(l). (16)

Integrating (16) n− 2 times over [l,+∞), and using (11), we arrive at (13).
Since y′ < 0, we get that liml→+∞ y(l) = k ≥ 0. Let k > 0, and so, there is a l2 ≥ l1

with y(l) ≥ k for l ≥ l2. Then, (1) becomes(
b(l)

(
y(n−1)(l)

)κ)′
≤ −kκq(l).

Integrating the above inequality over [l2, l), we obtain

b(l)
(

y(n−1)(l)
)κ
− b(l2)

(
y(n−1)(l2)

)κ
≤ −

∫ l

l2
kκq(η)dη.

From (11), we have y(n−1)(l) < 0 for l ≥ l1. Then, b(l2)
(

y(n−1)(l2)
)κ

< 0, and so

y(n−1)(l) ≤ −k
(

1
b(l)

∫ l

l2
q(η)dη

)1/κ

. (17)

Integrating (17) over [l2, l), we have

y(n−2)(l) ≤ y(n−2)(l2)− k
∫ l

l2

(
1

b(u)

∫ u

l2
q(η)dη

)1/κ

du,

which with (12) gives liml→+∞ y(n−2)(l) = −∞, a contradiction. Therefore, liml→+∞ y(l) = 0.
Now, using (13) at j = 0, we get that(

y(n−2)(l)
ϕ0(l)

)′
=

1
ϕ2

0(l)

(
ϕ0(l)y(n−1)(l) + b−1/κ(l)y(n−2)(l)

)
≥ 0,
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which leads to

−y(n−3)(l) ≥
∫ +∞

l
ϕ0(η)

y(n−2)(η)

ϕ0(η)
dη ≥ y(n−2)(l)

ϕ0(l)
ϕ1(l).

This implies(
y(n−3)(l)

ϕ1(l)

)′
=

1
ϕ2

1(l)

(
ϕ1(l)y(n−2)(l) + ϕ0(l)y(n−3)(l)

)
≤ 0.

By repeating a similar approach, we obtain (15). This proves the lemma.

Theorem 3. Assume that y ∈ S+ and satisfies (11). If (12) holds and

ϕ1+κ
n−2(l)ϕ−1

n−3(l)q(l) ≥ κ$0, (18)

for some $0 ∈ (0, 1), then

(A1,0)
(

y(l)/ϕ
$0
n−2(l)

)′
≤ 0,

(A2,0) liml→+∞ y(l)/ϕ
$0
n−2(l) = 0.

Proof. Assume that y ∈ S+ and satisfies (11) for l ≥ l1 for some l1 ∈ [l0,+∞). Then, from
Lemma 1, we have that (13)–(15) hold.

(A1,0): The quantity (b(l)
(

y(n−1)(l)
)κ

)′ can be written in the following form

(b(l)
(

y(n−1)(l)
)κ

)′ =
((

b1/κ(l)y(n−1)(l)
)κ)′

= κ
(

b1/κ(l)y(n−1)(l)
)κ−1(

b1/κ(l)y(n−1)(l)
)′

, (19)

using (1) and (19), we get

κ
(

b1/κ(l)y(n−1)(l)
)κ−1(

b1/κ(l)y(n−1)(l)
)′
≤ −q(l)yκ(g(l))

and so (
b1/κ(l)y(n−1)(l)

)′
≤ −1

κ

(
b1/κ(l)y(n−1)(l)

)1−κ
q(l)yκ(g(l)), (20)

using (13) at j = n− 2, we have

− y(l)
ϕn−2(l)

≤ b1/κ(l)y(n−1)(l)

and so (
y(l)

ϕn−2(l)

)1−κ

=

(
− y(l)

ϕn−2(l)

)1−κ

≤
(

b1/κ(l)y(n−1)(l)
)1−κ

. (21)

Combining (20) and (21), we find

(
b1/κ(l)y(n−1)(l)

)′
≤ −1

κ

(
y(l)

ϕn−2(l)

)1−κ

q(l)yκ(g(l)) (22)

≤ −1
κ

(
y(l)

ϕn−2(l)

)1−κ

q(l)yκ(l)

≤ −1
κ

y(l)
ϕ1−κ

n−2(l)
q(l). (23)
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Integrating (23) over [l2, l), and using (18), we get

b1/κ(l)y(n−1)(l) ≤ b1/κ(l2)y(n−1)(l2)−
1
κ

∫ l

l2

y(s)
ϕ1−κ

n−2(s)
q(s)ds

≤ b1/κ(l2)y(n−1)(l2)−
1
κ

y(l)
∫ l

l2

q(s)
ϕ1−κ

n−2(s)
ds

≤ b1/κ(l2)y(n−1)(l2)− $0y(l)
∫ l

l2

ϕn−3(s)
ϕ2

n−2(s)
ds

≤ b1/κ(l2)y(n−1)(l2) + $0
y(l)

ϕn−2(l2)
− $0

y(l)
ϕn−2(l)

,

which, with (14), gives

b1/κ(l)y(n−1)(l) ≤ −$0
y(l)

ϕn−2(l)
. (24)

Thus, using (13) at j = n− 3, we obtain

y′(l)
ϕn−3(l)

≤ −$0
y(l)

ϕn−2(l)
.

Consequently,(
y(l)

ϕ
$0
n−2(l)

)′
=

(ϕn−2(l)y′(l) + $0y(l)ϕn−3(l))

ϕ
$0+1
n−2 (l)

≤ 0,

then (A1,0) holds.

(A2,0): Now, since
(

y/ϕ
$0
n−2

)′
≤ 0, we see that liml→+∞ y(l)/ϕ

$0
n−2(l) = k1 ≥ 0. Let k1 > 0,

and so, there is a l2 ≥ l1 with y(l)/ϕ
$0
n−2(l) ≥ k1 for l ≥ l2. Next, we define

F(l) :=
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

ϕ
$0
n−2(l)

.

Then, from (13), F(l) > 0 for l ≥ l2. Differentiating F(l) and using (18), (23) and (13),
we get

F′(l) =
1

ϕ
2$0
n−2(l)

[
ϕ

$0
n−2(l)

(
y′(l)− b1/κ(l)y(n−1)(l)ϕn−3(l) +

(
b1/κ(l)y(n−1)(l)

)′
ϕn−2(l)

)
+$0 ϕ

$0−1
n−2 (l)ϕn−3(l)

(
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

)]
≤ 1

ϕ
$0+1
n−2 (l)

[
−$0 ϕn−3(l)y(l) + $0 ϕn−3(l)

(
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

)]
≤ 1

ϕ
$0+1
n−2 (l)

[
−$0 ϕn−3(l)y(l) + $0 ϕn−3(l)y(l) + $0 ϕn−3(l)b1/κ(l)y(n−1)(l)ϕn−2(l)

]
≤ 1

ϕ
$0
n−2(l)

$0 ϕn−3(l)b1/κ(l)y(n−1)(l). (25)

Using the fact that y(l)/ϕ
$0
n−2(l) ≥ k1 with (24), we obtain.

b1/κ(l)y(n−1)(l) ≤ −$0
y(l)

ϕn−2(l)
≤ −$0k1 ϕ

$0−1
n−2 (l). (26)
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Combining (25) and (26), we get

F′(l) ≤ − k1

ϕn−2(l)
$2

0 ϕn−3(l) < 0.

Integrating this inequality over [l2, l), we find

F(l)− F(l2) ≤ −k1$2
0

∫ l

l2

ϕn−3(s)
ϕn−2(s)

ds

≤ −k1$2
0 ln

ϕn−2(l2)
ϕn−2(l)

and so

−F(l2) ≤ −k1$2
0 ln

ϕn−2(l2)
ϕn−2(l)

→ −∞ as l → +∞,

we arrive at a contradiction, and so k1 = 0. Then, (A2,0) holds. This proves the theorem.

The asymptotic and monotonous properties of positive solutions are of great benefit
in improving oscillation criteria. So, in the following theorem, we improve the properties
by assuming that

$1 := $0
λκ$0

1− $0
,

and proving these properties for $1.

Theorem 4. Assume that y ∈ S+, y satisfies (11), (12) and (18) hold for some $0 ∈ (0, 1), and

ϕn−2(g(l))
ϕn−2(l)

≥ λ, (27)

for some λ ≥ 1. If $0 ≤ $1, then

(A1,1)
(

y(l)/ϕ
$1
n−2(l)

)′
≤ 0,

(A2,1) liml→+∞ y(l)/ϕ
$1
n−2(l) = 0.

Proof. Assume that y ∈ S+ and satisfies (11) for l ≥ l1 for some l1 ∈ [l0,+∞). From
Lemma 3, we have that (A1,0) and (A2,0) hold. Proceeding as in the proof of Theorem 3,
we arrive at (22) holds. Integrating (22) over [l2, l), we get

b1/κ(l)y(n−1)(l) ≤ b1/κ(l2)y(n−1)(l2)−
1
κ

∫ l

l2

(
y(η)

ϕn−2(η)

)1−κ

q(η)yκ(g(η))dη. (28)

Using (A1,0), we have that

y(g(l)) ≥ ϕ
$0
n−2(g(l))

y(l)
ϕ

$0
n−2(l)

.

Then, (28) becomes

b1/κ(l)y(n−1)(l) ≤ b1/κ(l2)y(n−1)(l2)−
1
κ

∫ l

l2

y1−κ(η)

ϕ1−κ
n−2(η)

q(η)
(

ϕ
$0
n−2(g(l))

)κ yκ(l)(
ϕ

$0
n−2(l)

)κ dη

≤ b1/κ(l2)y(n−1)(l2)−
1
κ

∫ l

l2

q(η)
ϕ1−κ

n−2(η)

(
ϕ

$0
n−2(g(η))

)κ

(
ϕ

$0
n−2(η)

)κ ϕ
$0
n−2(η)

y(η)
ϕ

$0
n−2(η)

dη,
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which, with the fact that y/ϕ
$0
n−2 is a decreasing function, gives

b1/κ(l)y(n−1)(l) ≤ b1/κ(l2)y(n−1)(l2)−
1
κ

y(l)
ϕ

$0
n−2(l)

∫ l

l2

q(η)
ϕ1−κ

n−2(η)

(
ϕ

$0
n−2(g(η))

)κ

(
ϕ

$0
n−2(η)

)κ ϕ
$0
n−2(η)dη.

Hence, from (18) and (27), we obtain

b1/κ(l)y(n−1)(l) ≤ b1/κ(l2)y(n−1)(l2)− $0λκ$0
y(l)

ϕ
$0
n−2(l)

∫ l

l2

ϕn−3(η)

ϕ
2−$0
n−2 (η)

dη

≤ b1/κ(l2)y(n−1)(l2)− $0
λκ$0

1− $0

y(l)
ϕ

$0
n−2(l)

(
1

ϕ
1−$0
n−2 (l)

− 1

ϕ
1−$0
n−2 (l2)

)

≤ b1/κ(l2)y(n−1)(l2) + $1
y(l)

ϕ
$0
n−2(l)

1

ϕ
1−$0
n−2 (l2)

− $1
y(l)

ϕn−2(l)
,

which, with the fact that liml→+∞ y(l)/ϕ
$0
n−2(l) = 0, gives

b1/κ(l)y(n−1)(l) ≤ −$1
y(l)

ϕn−2(l)
. (29)

Thus, from (13) at j = n− 3, we obtain

y′(l)
ϕn−3(l)

≤ −$1
y(l)

ϕn−2(l)
.

Consequently,(
y(l)

ϕ
$1
n−2(l)

)′
=

1

ϕ
$1+1
n−2 (l)

(
ϕn−2(l)y′(l) + $1 ϕn−3(l)y(l)

)
≤ 0,

then (A1,1) holds.

(A2,1): Now, since
(

y/ϕ
$1
n−2

)′
≤ 0, we see that liml→+∞ y(l)/ϕ

$1
n−2(l) = k2 ≥ 0. Let k2 > 0,

and so, there is a l2 ≥ l1 with y(l)/ϕ
$1
n−2(l) ≥ k2 for l ≥ l2. Next, we define

F(l) :=
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

ϕ
$0
n−2(l)

.

Then, from (13), F(l) > 0 for l ≥ l2. Differentiating F(l) and using (18), (23) and (13),
we get

F′(l) =
1

ϕ
2$0
n−2(l)

[
ϕ

$0
n−2(l)

(
y′(l)− b1/κ(l)y(n−1)(l)ϕn−3(l) +

(
b1/κ(l)y(n−1)(l)

)′
ϕn−2(l)

)
+$0 ϕ

$0−1
n−2 (l)ϕn−3(l)

(
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

)]
≤ 1

ϕ
$0+1
n−2 (l)

[
−$0 ϕn−3(l)y(l) + $0 ϕn−3(l)

(
y(l) + b1/κ(l)y(n−1)(l)ϕn−2(l)

)]
≤ 1

ϕ
$0+1
n−2 (l)

[
−$0 ϕn−3(l)y(l) + $0 ϕn−3(l)y(l) + $0 ϕn−3(l)b1/κ(l)y(n−1)(l)ϕn−2(l)

]
≤ 1

ϕ
$0
n−2(l)

$0 ϕn−3(l)b1/κ(l)y(n−1)(l). (30)
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Using the fact that y(l)/ϕ
$0
n−2(l) ≥ k2 with (29), we obtain.

b1/κ(l)y(n−1)(l) ≤ −$1
y(l)

ϕn−2(l)
≤ −$1k2 ϕ

$0−1
n−2 (l). (31)

Combining (30) and (31), we get

F′(l) ≤ − k2

ϕn−2(l)
$0$1 ϕn−3(l) < 0.

Integrating this inequality over [l2, l), we find

F(l)− F(l2) ≤ −k2$0$1

∫ l

l2

ϕn−3(s)
ϕn−2(s)

ds

≤ −k2$0$1 ln
ϕn−2(l2)
ϕn−2(l)

and so

−F(l2) ≤ −k2$0$1 ln
ϕn−2(l2)
ϕn−2(l)

→ −∞ as l → +∞,

we arrive at a contradiction, and so k2 = 0. Then, (A2,1) holds. This proves the theorem.

Next, by defining the nondecreasing sequence
{

$j
}m

j=0 by

$j := $0
λκ$j−1

1− $j−1
, (32)

we can prove the properties

(A1,m)
(

y(l)/ϕ
$m
n−2(l)

)′
≤ 0,

(A2,m) liml→+∞ y(l)/ϕ
$m
n−2(l) = 0,

using the same approach as in Theorem 4.

Theorem 5. Assume that y ∈ S+, κ ≥ 1 and y satisfies (11). Let, for $0 ∈ (0, 1), (12) and (18) be
satisfied. If $i−1 ≤ $i < 1 for all i = 1, 2, . . . , m− 1, then the DDE

W ′(l) +
q(l)

κ(1− $m)
ϕκ

n−2(l)W(g(l)) = 0, (33)

has a positive solution, where λ and $j are defined as (27) and (32), respectively.

Proof. Assume that y ∈ S+ and satisfies (11) for l ≥ l1 for some l1 ∈ [l0,+∞). Then, it
follows from Theorem 3 that (A1,m) and (A2,m) hold.
Now, we define

W(l) := b1/κ(l)y(n−1)(l)ϕn−2(l) + y(l). (34)

Then, from (13) at j = n− 2, W(l) > 0 for l ≥ l2, and

W ′(l) =
(

b1/κ(l)y(n−1)(l)
)′

ϕn−2(l)− b1/κ(l)y(n−1)(l)ϕn−3(l) + y′(l), (35)
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using (13) at j = n− 3, we have

W ′(l) ≤
(

b1/κ(l)y(n−1)(l)
)′

ϕn−2(l) ≤ −
1
κ

y1−κ(l)
ϕ1−κ

n−2(l)
q(l)yκ(g(l))ϕn−2(l)

≤ −1
κ

y1−κ(g(l))
ϕ1−κ

n−2(l)
q(l)yκ(g(l))ϕn−2(l) ≤ −

1
κ

y(g(l))ϕκ
n−2(l)q(l). (36)

As in the proof of Theorem 3, we arrive at (29). From (34) and (29), we have

W(l) ≤ (1− $m)y(l).

Thus, (36) becomes

W ′(l) +
q(l)

κ(1− $m)
ϕκ

n−2(l)W(g(l)) ≤ 0. (37)

Hence, W is a positive solution of (37). From Theorem 1 in [24], (33) has also a positive
solution. Therefore, the proof is complete.

Now, in the next part, we obtain new oscillation conditions for (1), using the previous
results.

Theorem 6. Assume that (12) and (18) hold for some $0 ∈ (0, 1), and that $j, λ are defined as in
Theorem 3. If, $i−1 ≤ $i < 1 for all i = 1, 2, . . . , m− 1, and all solutions of DDEs (33),

w′(l) + q(l)

(
ε1gn−1(l)

(n− 1)!
(
b1/κ(g(l))

))κ

w(g(l)) = 0 (38)

and

Ω′(l) +
ε2

(n− 2)!b1/κ(l)

(∫ l

l0
q(η)

(
gn−2(η)

)κ
dη

)1/κ

Ω(g(l)) = 0, (39)

are oscillatory, for some ε1, ε2, $m ∈ (0, 1), then every solution of (1) is oscillatory.

Proof. Assume the contrary that y ∈ S+. Then, from [25], we have the following three
cases, eventually:
(i) y(s)(l) > 0 for s = 0, 1, n− 1 and y(n)(l) < 0;
(ii) y(s)(l) > 0 for s = 0, 1, n− 2 and y(n−1)(l) < 0;
(iii) (−1)sy(s)(l) > 0 for s = 0, 1, . . . , n− 1.

In view of Theorem 3 in [23], the fact that the solutions of Equations (38) and (39)
oscillate, rules out the cases (i) and (ii), respectively. Then, we have (iii) hold. Using
Theorem 5, we get that Equation (33) has a positive solution, a contradiction. This proves
the theorem.

Corollary 1. Assume that (12), (18), (4) and (5) hold for some $0 ∈ (0, 1), and $j and λ are defined
as (32) and (27), respectively. If $i−1 ≤ $i < 1 for all i = 1, 2, . . . , m− 1,

lim inf
l→+∞

∫ l

g(l)
q(η)ϕκ

n−2(η)dη >
κ(1− $m)

e
, (40)

for some ε, $m ∈ (0, 1), then every solution of (1) is oscillatory.

Proof. In view of Corollary 2.1 in [26], conditions (40), (4) and (5) imply oscillation of the
solutions of (33), (38) and (39), respectively. Therefore, from Theorem 6, every solution
of (1) is oscillatory.
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Example 1. For l ≥ 1, consider the fourth-order delay differential equation(
ely′′′(l)

)′
+ q0ely(l − g0) = 0, (41)

where κ = 1, n = 4, q0 ∈ (0, 1), g0 > 0, b(l) = el , q(l) = q0el and g(l) = (l − g0). It is clear
that ϕi(u) = e−l , i = 0, 1, 2. Moreover, we find that (12) holds.

If we now set $0 = q0, then we conclude that (18) is satisfied. As a result of the calculations,
we see that (4) and (5) hold. Now, the condition (40) reduces to

q0g0 >
(1− $m)

e
. (42)

Hence, by using Corollary 1, every solution of (41) is oscillatory if (42) satisfied.

Remark 1. Consider the differential equation(
ely′′′(l)

)′
+ q0ely(l − 2) = 0.

This table compares between our criteria and the previous related one:

Theorem 1: q0 > 11.772.
Theorem 2: q0 > 0.25.
Corollary 1: q0 > 0.155 36.

We notice that Corollary 1 supports the most efficient condition. Thus, our results improve the
results in [16,23].

3. Conclusions

We established new oscillation criteria of (1) by finding new properties of positive
solutions. Our results improve and extend some of the results in the literature. It is
interesting to study differential equations(

b(l)
(
(y(l) + p(l)y(σ(l)))(n−1)

)κ)′
+ q(l)yκ(g(l)) = 0,

where σ(l) ≤ l and 0 ≤ p(l) ≤ p0 < +∞.
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