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Abstract: The Horner and Goertzel algorithms are frequently used in polynomial evaluation. Each of
them can be less expensive than the other in special cases. In this paper, we present a new compensated
algorithm to improve the accuracy of the Goertzel algorithm by using error-free transformations. We
derive the forward round-off error bound for our algorithm, which implies that our algorithm yields
a full precision accuracy for polynomials that are not too ill-conditioned. A dynamic error estimate in
our algorithm is also presented by running round-off error analysis. Moreover, we show the cases
in which our algorithms are less expensive than the compensated Horner algorithm for evaluating
polynomials. Numerical experiments indicate that our algorithms run faster than the compensated
Horner algorithm in those cases while producing the same accurate results, and our algorithm is
absolutely stable when the condition number is smaller than 1016. An application is given to illustrate
that our algorithm is more accurate than MATLAB’s fft function. The results show that the relative
error of our algorithm is from 1015 to 1017, and that of the fft was from 1012 to 1015.

Keywords: polynomial evaluation; goertzel algorithm; round-off error; error-free transformation;
compensated algorithm; numerical stability

MSC: 68U01

1. Introduction

Polynomial evaluation is ubiquitous in computational sciences and their applications,
such as interpolation and approximation practices and signal processing. This article will
investigate a broader situation of polynomial evaluation:

ω(z) =
N

∑
n=0

anzn, (1)

where z, a0, a1, . . . , aN ∈ C. The nested-type algorithms are usually used to evaluate polyno-
mials. The Horner algorithm is the most widely used polynomial evaluation algorithm [1].
In special cases, like z ∈ C and a0, a1, . . . , aN ∈ R, the Goertzel algorithm that can be
applied to compute the discrete Fourier transform (DFT) of specific indices in a vector [2,3]
is less expensive the Horner algorithm. The numerical stability of the Horner and Goertzel
algorithms was given by Wilkinson [4] and Smoktunowicz [5]. The computed results from
these algorithms are arbitrarily less accurate than the working precision u when the polyno-
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mial is ill-conditioned due to the round-off errors in floating-point arithmetic. The relative
accuracy of these algorithms verifies the following priori bound:

|ω(z)− ω̂(z)|
|ω(z)| ≤ cond(ω, z)×O(u), (2)

where ω̂(z) is the computed result and cond(ω, z) = ∑N
n=0 |an||z|n/|∑N

n=0 anzn| is the
condition number.

In order to improve the accuracy of double precision, Bailey [6] proposed a famous
library for double-double and quad-double arithmetic. However, this library needs to nor-
malize floating-point numbers in every operation, and thus the instruction level parallelism
is affected [7,8]. The compensated algorithm is improved to solve this problem with the
developments and applications of error-free transformation [9]. The relative accuracy of
compensated algorithms verifies the following priori bound:

|ω(z)−ω(z)|
|ω(z)| ≤ u + cond(ω, z)×O(u2), (3)

where ω(z) is the computed result of a compensated algorithm.
Recently, compensated algorithms have been widely studied in evaluating polynomi-

als. Graillat [10] proposed a compensated Horner algorithm that achieves full precision
accuracy for polynomials that are not excessively ill-conditioned. Aside from that, he
extended the error-free transformation and compensated Horner algorithm in complex
floating-point arithmetic [11,12] and applied a compensated Horner algorithm to evaluate
rational functions [13] and solve all polynomial roots [14]. Polynomial series represented in
other basis were also considered, such as the Chebyshev form evaluated by a compensated
Chenshaw algorithm [15], the Bernstein form evaluated by a compensated de Casteljau
algorithm [16], and a compensated Volk and Schumaker(VS) algorithm [17]. Furthermore,
the compensated idea is also applied to matrix multiplication to obtain more accurate
results [18–20].

With the wide application of floating-point numbers and floating-point operations
in numerical computing, the analysis of rounding errors has become the focus [21,22].
Running round-off errors are analyzed and applied to many algorithms of polynomial eval-
uation [23]. Delgado [17] proposed an adaptive evaluation algorithm by using the de Castel-
jau algorithm and compensated VS algorithms with a dynamic error estimate. Jiang [24]
presented running round-off error analysis for evaluating elementary symmetric functions
in real and complex floating-point arithmetic. Barrio [25] developed a more complete
compensated algorithm library to evaluate orthogonal polynomial series with dynamic
error estimates. In addition, error analysis can also be used for machine learning and the
numerical solution of differential equations [26].

In this paper, our contributions are as follows:

• We design a new compensated Goertzel algorithm and prove that our algorithm can
almost yield full working precision to evaluate polynomials (1);

• We propose dynamic error estimates, which can offer a sharper bound for our approach
without considerably increasing its computing complexity;

• Numerical experiments show that our algorithm runs faster than the compensated
Horner algorithm in some cases while keeping a similar precision accuracy;

• An application is given to illustrate that our algorithm outperforms MATLAB’s fft
when dealing with the DFT.

The rest of this paper is organized as follows. Section 2 introduces our compensated
Goertzel algorithm. A dynamic error estimate is proposed in Section 3. Section 4 analyzes
numerical experiment results and gives an application to illustrate that our algorithm
outperforms them. Finally, the full paper is summarized in Section 5.
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2. Goertzel Compensated Algorithm

We assume working with IEEE-754 floating-point standard [27] rounding to the near-
est value in this paper. Let F be the set of floating-point numbers, C represent the complex
number, and {⊕,	,⊗,�} represent a floating-point operation. This part presents how to
design the Goertzel compensated algorithm. First, the Goertzel algorithm and its relation-
ship with the Clenshaw algorithm are listed. Then, the error-free transformations and sum
of squares algorithm are recalled. At last, we present the compensated Goertzel algorithm.

2.1. Goertzel Algorithm

By assuming λ, z ∈ C and z = x + iy, then we have a quadratic polynomial

(λ− z)(λ− z̄) = λ2 − pλ + q, (4)

where p = 2x and q = |z|2. By dividing the polynomial in Equation (1) by that in Equation (4),
we obtain

ω(λ) = b0 + b1λ + (λ− z)(λ− z̄)
N

∑
n=2

bnλn−2, (5)

where 

a0 = b0 + qb2,

a1 = b1 − pb2 + qb3,
...

an = bn − pbn+1 + qbn+2.

(6)

Thus, the evaluated result of the polynomial in Equation (1) is

ω(z) = b0 + b1z. (7)

Above Equations (5)–(7), we can find the Goertzel algorithm [2] with Algorithm 1.

Algorithm 1 Polynomial evaluation by Goertzel algorithm

Function : ω(z) = Goertzel((an)N
n=0, z)

Require : z = x + iy ∈ C, (an)N
n=0 ∈ C

Ensure : ω(z) = ∑N
n=0 anzn

p = 2x, q = x2 + y2

bN+1 = bN+2 = 0
for n = N, N − 1, ..., 1

bn = an + pbn+1 − qbn+2
end
b0 = a0 + xb1 − qb2
ω(z) = b0 + iyb1

In floating-point arithmetic, a backward error bound for the computed result of the
polynomial evaluation by Algorithm 1 is presented by Smoktunowicz [5] as Theorem 1:

Theorem 1. Assume z, an ∈ F+ iF for n = 0, . . . , N. Let 10N2u ≤ 0.1. Then the Goertzel
algorithm for evaluating the polynomial in Equation (1) is componentwise backward stable such that

ω̂(z) =
N

∑
n=0

an(1 + ∆n)zn, (8)

where
|∆n| ≤ 10N2u +O(u2). (9)
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In fact, Algorithm 1 is a special case of the Clenshaw algorithm [2,5]. When we let
t = x/|z| and Bn = bn|z|n, Algorithm 1 can be represented in Clenshaw form [28]:

Bn = an|z|n + 2tBn+1 − Bn+2. (10)

According to the properties of the Chebyshev polynomial series [29] evaluated by the
Clenshaw algorithm, we have

bn =
N

∑
k=n

ak|z|k−nUk−n(t),

b0 =
N

∑
k=0

ak|z|kTk(t),

n = 1, 2, . . . , N.

(11)

where Tk(t) and Uk(t) are Chebyshev polynomials of the first and second kinds, respectively.
They satisfy

|Tk(t)| ≤ 1, |Uk(t)| ≤ k + 1, (12)

and
zk

|z|k
= Tk(t) + i

y
|z|Uk−1(t) f or k = 0, 1, . . . , N. (13)

2.2. Error-Free Transformations and Sum of Squares Algorithm

The basic algorithms of error-free transformations are TwoSum and TwoProd, which
were presented by Knuth [30] and Dekker [31], respectively. Graillat [11] extended the addi-
tion and multiplication to complex number cases, which are TwoSumCplx and TwoProdCplx,
respectively. In this paper, we shall use a new product error-free transformation of one real
and one complex floating-point number, which is called TwoProdRC in Algorithm 2.

Algorithm 2 Error-free transformation of the product of real and complex floating-point
numbers
Function :[x, y] = TwoProdRC(a, b)
Require : a ∈ F, b = c + id ∈ F+ iF
Ensure : x + y = a× b
[p, e] = TwoProd(a, c)
[ f , g] = TwoProd(a, d)
x = p + i f
y = e + ig

The details of the error-free transformations above are presented in Table 1.

Table 1. Error-free transformations, their properties and operation costs.

Algorithm Properties Flops

[x, y] = TwoSum(a, b) x = a⊕ b, x + y = a + b 6
[x, y] = TwoProd(a, b) x = a⊗ b, x + y = a× b 17
[x, y] = TwoProdRC(a, b) x = a⊗ b, x + y = a× b 34
[x, y] = TwoSumCplx(a, b) x = a⊕ b, x + y = a + b 12
[p, e, f, g] = TwoProdCplx(a, b) p = a⊗ b, p + e + f + g = a× b 80
{⊕,⊗} represents {+,×} in floating-point operations.

Furthermore, the sum of squares algorithm [32] is given in Algorithm 3. It requires
42 flops.
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Algorithm 3 Sum of squares by two floating-point numbers
Function : [x, y] = SumOfSquares(a, b)
Require : a, b ∈ F
Ensure : x + y ≈ a2 + b2

[p, f ] = TwoProd(a, a)
[e, g] = TwoProd(b, b)
[x, h] = TwoSum(p, e)
y = f ⊕ g⊕ h

2.3. Compensated Goertzel Algorithm

Although Algorithm 1 is a special Clenshaw algorithm, computation via Equation (10)
is more expensive. Thus, using the compensated Clenshaw algorithm [28] to express the
compensated Goertzel algorithm is not a good idea. We design a compensated Goertzel
algorithm by using SumOfSquares, TwoSumCplx and TwoProdRC algorithms to record the
round-off errors.

Assume â ∈ F is a computed result in floating-point arithmetic, and its perturbation is
εa such that

â = a + εa. (14)

SumOfSquares can find the approximate round-off error ε̂q of q. Other round-off
errors in Algorithm 1 can be accurately computed by error-free transformation algorithms
TwoSumCplx and TwoProdRC. Then, we can combine all round-off errors by ̂̀n and find the
approximate perturbation ε̂bn of bn for n = N − 1, N − 2, . . . , 1 in each loop. The loop ends
using TwoProdRC and TwoSumCplx to calculate b̂0 and combines all round-off errors to obtain
the approximate perturbation. The round-off error of y⊗ b̂1 should also be considered by
TwoProdRC. The compensated Goertzel algorithm is presented in Algorithm 4, and Figure 1
shows the flow chart of this algorithm.

Algorithm 4 Polynomial evaluation by compensated Goertzel algorithm

Function: ω(z) = CompGoertzel((an)N
n=0, z)

Require: z = x + iy ∈ F+ iF, (an)N
n=0 ∈ F+ iF

Ensure: ω(z) ≈ ∑N
n=0 anzn

p = 2x
[q̂, ε̂q] = SumOfSquares(x, y)
b̂N = aN , b̂N+1 = ε̂bN = ε̂bN+1 = 0
for n = N − 1, N − 2..., 1
[rn, πn] = TwoProdRC(p, b̂n+1)

[sn, σn] = TwoProdRC(−q̂, b̂n+2)
[tn, ηn] = TwoSumCplx(rn, sn)

[b̂n, ξn] = TwoSumCplx(tn, an)̂̀n = πn ⊕ σn ⊕ ηn ⊕ ξn 	 ε̂q⊗ b̂n+2

ε̂bn = ̂̀n ⊕ p⊗ ε̂bn+1 	 q̂⊗ ε̂bn+2
end
[r0, π0] = TwoProdRC(x, b̂1)

[s0, σ0] = TwoProdRC(−q̂, b̂2)
[t0, η0] = TwoSumCplx(r0, s0)

[b̂0, ξ0] = TwoSumCplx(t0, a0)̂̀0 = π0 ⊕ σ0 ⊕ η0 ⊕ ξ0 	 ε̂q⊗ b̂2

ε̂b0 = ̂̀0 ⊕ x⊗ ε̂b1 	 q̂⊗ ε̂b2

[φ, ψ] = TwoProdRC(y, b̂1)

ê = ε̂b0 ⊕ i(ε̂b1 ⊗ y⊕ ψ)

ω̂(z) = b̂0 ⊕ iφ
ω(z) = ω̂(z)⊕ ê
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Figure 1. The flowchart of the compensated Goertzel algorithm.

We remark that if (an)N
n=0 ∈ F, then we shall replace TwoSumCplx and TwoProdRC with

TwoSum and TwoProd in Algorithm 4, respectively.

3. Round-Off Error and Complexity Analysis

In this section, we consider the error bound and complexity of Algorithm 4 through
Higham’s theories [33]. In our analysis, we assume that there is no computational overflow
or underflow. First, we present the priori bound by forward round-off error analysis. Then,
we show a dynamic error estimate by running round-off error analysis. At last, we compare
the complexities of Horner, Goertzel, their compensated algorithms and the compensated
Goertzel algorithm with a dynamic error estimate to evaluate the polynomial in Equation (1)
in real and complex coefficients.

3.1. Forward Round-Off Error Analysis

Let �∈ {⊕,	,⊗,�}, ◦ ∈ {+,−,×,÷} and a, b ∈ F. Then, a floating-point computa-
tion obeys the model

a � b = (a ◦ b)(1 + ε1) =
a ◦ b

1 + ε2
, (15)

where |ε1|, |ε2| ≤ u. We define

<N> := 1 + θN =
N

∏
n=1

(1 + εn)
ρn , (16)

where |εn| ≤ u, ρn = ±1 and

|θn| ≤ γn :=
nu

(1− nu)
, (17)

for n = 1, 2, . . . , N and Nu < 1. We assume that â and b̂ in real arithmetic are denoted by
c̃ = â ◦ b̂, which will be used in our later analysis.
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Lemma 1 summarizes the properties of the error-free transformations in Table 1:

Lemma 1. For a, b, x, y ∈ F, [x, y] = TwoSum(a, b) verifies

|y| ≤ u|x|, |y| ≤ u|a + b|, (18)

In addition, [x, y] = TwoProd(a, b) verifies

|y| ≤ u|x|, |y| ≤ u|a× b|. (19)

For a, b, x, y ∈ F+ iF, [x, y] = TwoSumCplx(a, b) verifies

|y| ≤ u|x|, |y| ≤ u|a + b|, (20)

Additionally, [x, y] = TwoProdRC(a, b) verifies

|y| ≤ u|x|, |y| ≤ u|a× b|. (21)

For a, b, p, e, f , g ∈ F+ iF, [p, e, f , g] = TwoProdCplx(a, b) verifies

|e + f + g| ≤
√

2γ2|a× b|. (22)

Proof. Equations (18)–(22) are presented in [9,11]. In Algorithm 2, it is easy to obtain
Equation (21) from Equation (18).

Lemma 2 shows the property of Algorithm 3:

Lemma 2. For a, b, x, y ∈ F, [x, y] = SumOfSquares(a, b) verifies

|x| ≤ (1 + γ2)|a2 + b2|,
|y| ≤ γ2|x|,
|x + y− (a2 + b2)| ≤ uγ3|a2 + b2|.

(23)

Proof. According to Algorithm 3 and Table 1, x = a⊗ a⊕ b⊗ b. With Lemma 1, we obtain
| f | ≤ u|p|, |g| ≤ u|e| and |h| ≤ u|x|. From Equations (15)–(17), we have

|x| = |a2<2>+ b2<2>| ≤ (1 + γ2)|a2 + b2|,
|y| = | f<1>+ g<2>+ h<1>| ≤ (1 + γ2)(| f |+ |g|+ |h|)
≤ u(1 + γ2)(|p|+ |e|+ |x|) ≤ 2u(1 + γ2)|x| = γ2|x|.

(24)

From Theorem 4.2 in [32], |x + y− (a2 + b2)| ≤ 3u2

1−3u2 |a2 + b2| ≤ uγ3|a2 + b2|.

Theorem 2 presents a priori error bound of Algorithm 4 to evaluate the polynomial in
Equation (1) in complex floating-point arithmetic.

Theorem 2. Assume z, an ∈ F+ iF for n = 0, . . . , N. Then, the relative forward round-off error
bound in the compensated Goertzel algorithm for evaluting ω(z) = ∑N

n=0 anzn in floating-point
arithmetic satisfies

|CompGoertzel((an)N
n=0, z)−ω(z)|

|ω(z)| ≤ u + 3N2γ15γ3N+1cond(ω, z). (25)

Proof. Assume the error of ω̂(z) is e (i.e., ω̂(z) + e = ω(z)). Then, we have

|ω(z)−ω(z)| = |(ω̂(z)⊕ ê)−ω(z)| = |(1 + ε)(ω̂(z) + ê)−ω(z)|
= |(1 + ε)(ω(z)− e + ê)−ω(z)| ≤ u|ω(z)|+ (1 + u)|e− ê|,

(26)
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and
e = εb0 + i(εb1y + ψ), (27)

where εb0 and εb1 are the error of b0 and b1, respectively, such that

εbn = `n + pεbn+1 + qεbn+2,

εb0 = `0 + xεb1 + qεb2,
(28)

where `n = πn + σn + ηn + ξn − εqbn+2 for n = N − 1, N − 2 . . . , 0. Similarly, let

ẽ = ε̃b0 + i(ε̃b1y + ψ),

ê = ε̂b0 ⊕ i(ε̂b1 ⊗ y⊕ ψ),
(29)

where

ε̃bn = ̂̀n + pε̃bn+1 + q̂ε̃bn+2,

ε̃b0 = ̂̀0 + xε̃b1 + q̂ε̃b2,
(30)

and

ε̂bn = ̂̀n ⊕ p⊗ ε̂bn+1 ⊕ q̂⊗ ε̂bn+2,

ε̂b0 = ̂̀0 ⊕ x⊗ ε̂b1 ⊕ q̂⊗ ε̂b2,
(31)

where ̂̀n = πn ⊕ σn ⊕ ηn ⊕ ξn 	 ε̂q⊗ b̂n+2 for n = N − 1, N − 2 . . . , 0. Then, Equation (26)
can be simplified as

|ω(z)−ω(z)| ≤ u|ω(z)|+ (1 + u)(|e− ẽ|+ |ẽ− ê|). (32)

First, we consider the bound of |e− ẽ|. From Equations (11), (28) and (30), we have

εb1 =
N

∑
n=1

`n|z|n−1Un−1(t),

εb0 =
N

∑
n=0

`n|z|nTn(t),

ε̃b1 =
N

∑
n=1

̂̀n|z|n−1Un−1(t),

ε̃b0 =
N

∑
n=0

̂̀n|z|nTn(t).

(33)

Then, by Equations (13), (27) and (29), we deduce

|e− ẽ| = |(εb0 − ε̃b0) + i(εb1 − ε̃b1)y| = |
N−1

∑
n=0

(`n − ̂̀n)zn| ≤
N−1

∑
n=0
|`n − ̂̀n||z|n. (34)

In Algorithm 4, according to Lemmas 1 and 2, we obtain

|πn| ≤ u|pb̂n+1| ≤ 2u|z||b̂n+1|,
|σn| ≤ u|q̂b̂n+2| ≤ u(1 + γ2)|z|2|b̂n+2|,
|ηn| ≤ u|pb̂n+1 − q̂b̂n+2| ≤ u(1 + γ2)(2|z||b̂n+1|+ |z|2|b̂n+2|),
|ξn| ≤ u|an + pb̂n+1 − q̂b̂n+2| ≤ u(1 + γ2)(|an|+ 2|z||b̂n+1|+ |z|2|b̂n+2|),
|ε̂q| ≤ γ2|q̂| ≤ γ2(1 + γ2)|z|2,

(35)
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for n = 0, 1, . . . , N, and then

|πn|+ |σn|+ |ηn|+ |ξn|+ |ε̂q||b̂n+2|
≤(3u + γ2)(1 + γ2)(|an|+ 2|z||b̂n+1|+ |z|2|b̂n+2|).

(36)

In Algorithm 4, from Equations (15)–(17), we have

b̂N−1 = paN<2>+ aN−1<1>,

b̂N−2 = pb̂N−1<3>− qaN<5>+ aN−2<1>

= aN(p2 − q)<5>+ paN−1<3>+ aN−2<1>,
...

b̂1 = pb̂2<3>− qb̂3<5>+ a1<1>

= aN(pN−1 + · · · )<3N − 4>+ aN−1(pN−2 + · · · )<3N − 5>+ · · · ,

b̂0 = xb̂1<3>− q̂b̂2<5>+ a0<1>

= aN(pN + · · · )<3N − 1>+ aN−1(pN−1 + · · · )<3N − 2>+ · · · ,

(37)

Then, by induction, we get

|bn − b̂n| ≤ γ3(N−n)−1|bn|, (38)

and
|b̂n| ≤ (1 + γ3(N−n)−1)|bn|. (39)

Assume that

gk =
N

∑
n=k
|an||z|n−k, k = 0, 1, . . . , N, (40)

Given this, then
N

∑
n=0

gn|z|n ≤ (N + 1)g0. (41)

By combining Equations (11), (12) and (40), we have

|bn| ≤ (N − n + 1)gn, n = 1, . . . , N.

|b0| ≤ g0.
(42)

It is easy to obtain that

̂̀n = πn<4>+ σn<4>+ ηn<3>+ ξn<2>− ε̂qb̂n+2<2>,

Through Lemma 2 and Equations (36)–(42), we deduce

|`n − ̂̀n| ≤ γ4(|πn|+ |σn|+ |ηn|+ |ξn|+ |ε̂q||b̂n+2|) + |εqbn+2 − ε̂qb̂n+2|
≤γ4(3u + γ2)(1 + γ2)(|an|+ 2|z||b̂n+1|+ |z|2|b̂n+2|) + |εq||bn+2 − b̂n+2|
+ |εq− ε̂q||b̂n+2|
≤γ4γ5(|an|+ 2|z||b̂n+1|+ |z|2|b̂n+2|) + γ2γ3(N−n)−7|z|2|bn+2|+ uγ3|z|2|b̂n+2|

≤[γ2
5(1 + γ3(N−n)−4) + γ2γ3(N−n)−7](|an|+ 2|z||bn+1|+ |z|2|bn+2|)

≤γ5γ3(N−n)+1(|an|+ 2|z||bn+1|+ |z|2|bn+2|)

≤γ5γ3(N−n)+1(|an|+ 2(N − n)|z|gn+1 + (N − n− 1)|z|2gn+2)

≤3γ5γ3(N−n)+1(N − n)gn.

(43)
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Thus, from Equations (34), (41) and (43), we obtain

|e− ẽ| ≤
N−1

∑
n=0
|`n − ̂̀n||z|n ≤ 3N2γ5γ3N+1g0. (44)

Second, we consider the bound of |ẽ− ê|. In Algorithm 4, according to Equations (15)–(17),
we have

ε̂bN−1 = ̂̀N−1,

ε̂bN−2 = p̂̀N−1<2>+ ̂̀N−2<1>,

ε̂bN−3 = pε̂bN−2<3>− q̂̂̀N−1<3>+ ̂̀N−3<1>

= ̂̀N−1(p2 − q̂)<5>+ p̂̀N−2<3>+ ̂̀N−3<1>,
...

ε̂b1 = pε̂b2<3>− q̂ε̂b3<3>+ ̂̀1<1>

= ̂̀N−1(pN−2 + · · · )<3N − 7>+ ̂̀N−2(pN−3 + · · · )<3N − 8>+ · · · ,

ε̂b0 = xε̂b1<3>− q̂ε̂b2<3>+ ̂̀0<1>

= ̂̀N−1(pN−1 + · · · )<3N − 4>+ ̂̀N−2(pN−2 + · · · )<3N − 5>+ · · · .

(45)

Then, by induction, from Equations (13) and (33) as well as Lemma 1, we deduce

|(ε̃b0 − ε̂b0) + i(ε̃b1 − ε̂b1)y| ≤ γ3N−4|
N−1

∑
n=0

̂̀nzn| ≤ γ3N−4

N−1

∑
n=0
|̂̀n||z|n, (46)

and

|ε̂b0 + i(ε̂b1y + ψ)| ≤|ε̂b0 + iε̂b1y|+ |ψ|

≤(1 + γ3N−4)|
N−1

∑
n=0

̂̀nzn|+ u|yb̂1|

≤(1 + γ3N−4)
N−1

∑
n=0
|̂̀n||z|n + u|z||b̂1|.

(47)

Thus, through Equations (29), (30), (46) and (47), we obtain

|ẽ− ê| =|ε̃b0 + i(ε̃b1y + ψ)− ε̂b0<2>− i(ε̂b1y + ψ)<3>|
≤|(ε̃b0 − ε̂b0) + i(ε̃b1 − ε̂b1)y|+ γ3|ε̂b0 + i(ε̂b1y + ψ)|

≤γ3N−1

N−1

∑
n=0
|̂̀n||z|n + uγ3|z||b̂1|.

(48)

According to Equations (36), (39) and (42), we get

|̂̀n| ≤(1 + γ5)(|πn|+ |σn|+ |ηn|+ |ξn|+ |ε̂q||b̂n+2|)
≤γ9(|an|+ 2|z||b̂n+1|+ |z|2|b̂n+2|)
≤γ9(1 + γ3(N−n)−4)(|an|+ 2|z||bn+1|+ |z|2|bn+2|)

≤γ9(1 + γ3(N−n)−4)(|an|+ 2(N − n)|z|gn+1 + (N − n− 1)|z|2gn+2)

≤3γ9(1 + γ3(N−n)−4)(N − n)gn.

(49)
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Then, by Equations (39), (41), (48) and (49), we obtain

|ẽ− ê| ≤3γ9γ3N−1

N−1

∑
n=0

(1 + γ3(N−n)−4)(N − n)gn + uγ3(1 + γ3N−4)N|z|g1

≤(1 + γ3N−4)N(3Nγ9γ3N−1 + uγ3)g0

≤3N2γ10γ3N−1g0.

(50)

Hence, when combining Equations (32), (44) and (50), we have

|ω(z)−ω(z)| ≤u|ω(z)|+ (1 + u)3N2(γ5γ3N+1 + γ10γ3N−1)g0

≤u|ω(z)|+ 3N2γ15γ3N+1g0.
(51)

Thus, with cond(ω, z) = g0/|ω(z)|, we deduce Equation (25).

3.2. Running Round-Off Error Analysis

Theorem 3 gives a running error bound of Algorithm 4 to evaluate the polynomial in
Equation (1) in complex floating-point arithmetic:

Theorem 3. Assume z, an ∈ F+ iF for n = 0, . . . , N. Then, the running round-off error bound in
the compensated Goertzel algorithm for evaluting ω(z) = ∑N

n=0 anzn in floating-point arithmetic
satisfies

|ω(z)−ω(z)| ≤ (|c| ⊕ α̂)� (1	 2u), (52)

where 

c = ω̂(z)⊕ ê	ω(z),

α̂ = γ̂3N+1 ⊗ Ê� (1	 6(N − 1)⊗ u),

Ê = Êb0 ⊕ iÊb1 ⊗ |y|,

Êbn = | ̂̀n| ⊕ |p| ⊗ Êbn+1 ⊕ |q̂| ⊗ Êbn+2,

Êb0 = | ̂̀0| ⊕ |x| ⊗ Êb1 ⊕ |q̂| ⊗ Êb2,

n = N − 1, N − 2, . . . , 1.

(53)

Proof. Assume e is the error of ω̂(z), i.e., ω̂(z) + e = ω(z). Let ω(z) + c = ω̂(z) + ê. Then,
we have

|ω(z)−ω(z)| = |ω(z)− (ω̂(z) + e)|
= |ω(z)− (ω̂(z) + ê− ê + e)|
≤ |c|+ |e− ê|.

(54)

Considering the round-off error εq in Algorithm 4, from Lemma 2, we have εq = ε̂q<2>,
and thus 

̂̀N−1 = πN−1<3>+ σN−1<3>+ ηN−1<2>+ ξN−1<1>,̂̀N−2 = πN−2<4>+ σN−2<4>+ ηN−2<3>+ ξN−2<2>− εqb̂N<4>,
...̂̀0 = π0<4>+ σ0<4>+ η0<3>+ ξ0<2>− εqb̂2<4>.

(55)

Combined with Equation (45), we can deduce that

|εb0 − ε̂b0| = |εb0 − <3N − 1>εb0| ≤ γ3N−1Eb0,

|εb1 − ε̂b1| = |εb1 − <3N − 4>εb1| ≤ γ3N−4Eb1,
(56)
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and

|ε̂b0| = |<3N − 1>εb0| ≤ (1 + γ3N−1)Eb0,

|ε̂b1| = |<3N − 4>εb1| ≤ (1 + γ3N−4)Eb1,
(57)

where Ebn can be derived from

Ebn = |`n|+ |p|Ebn+1 + |q̂|Ebn+2,

Eb0 = |`0|+ |x|Eb1 + |q̂|Eb2,

`n = πn + σn + ηn + ξn − εqb̂n+2,

`0 = π0 + σ0 + η0 + ξ0 − εqb̂2,

n = N − 1, N − 2, . . . , 1.

(58)

Furthermore, through Equation (15), we have

|̂̀n| =
{
{[(πn + σn)

1
1 + ε1

+ ηn]
1

1 + ε2
+ ξn}

1
1 + ε3

− εq
1

1 + ε4

1
1 + ε5

b̂n+2
1

1 + ε6

} 1
1 + ε7

,

Êbn =[(|̂̀n|+ |p|Êbn+1
1

1 + ε8
)

1
1 + ε9

+ |q̂|Êbn+2
1

1 + ε10
]

1
1 + ε11

,

(59)

where |εk| ≤ u for k = 1, 2, . . . , 11. Then, we obtain

|`n|+ |p|Êbn+1 + |q̂|Êbn+2 ≤ (1 + u)6Êbn. (60)

By induction, we get
Eb0 ≤ (1 + u)6(N−1)Êb0. (61)

Assuming that E = Eb0 + iEb1|y|, we have

E ≤ (1 + u)6(N−1)(Êb0 + iÊb1|y|) ≤ (1 + u)6N−8Ê. (62)

From Equations (15)–(17) and (29), we get ê = ε̂b0<2>+ iψ<2>+ iε̂b1y<2> = <2>ẽ. Then,
by Equations (56), (57) and (62), due to γk ≤ (1+ u)γ̂k and (1+ u)nÊ ≤ Ê� (1	 (n+ 1)⊗ u),
we deduce

|e− ê| ≤ |e− ẽ|+ γ2|ẽ| = ||εb0 − ε̂b0|+ i|εb1 − ε̂b1||y||+ γ2|ε̂b0 + iε̂b1y|
≤ γ3N−1(Eb0 + iEb1|y|) + γ2(1 + γ3N−1)(Eb0 + iEb1|y|)
≤ γ3N+1E ≤ γ3N+1(1 + u)6N−8Ê ≤ γ̂3N+1 ⊗ Ê� (1	 6(N − 1)⊗ u) := α̂.

(63)

Thus, by combining Equations (54) and (63), we obtain

|ω(z)−ω(z)| ≤ |c|+ |e− ê| ≤ (|c| ⊕ α̂)� (1	 2u). (64)

Considering a dynamic error estimate to evaluate the polynomial based on Theorem 3,
we can improve Algorithm 4 into Algorithm 5, whose flowchart is shown in Figure 2.
We can see from Algorithm 5 that a new approximate perturbation term is obtained by
combining all the dynamic error estimates in each calculation, and participating in the
following computation makes the final result more accurate.

3.3. Computational Complexity

The Horner and its compensated algorithm CompHorner [12] are recalled in
Algorithms 6 and 7. We shall use TwoSum and TwoProd instead of TwoSumCplx and
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TwoProdCplx, while the inputs of Algorithm 7 are real floating-point numbers. A compar-
ison of the computational costs of Algorithms 1 and 4–7 is shown in Table 2. As we can
see, each of the compensated algorithms (i.e., CompHorner or CompGoertzel) can be less
expensive than the others in different cases. For example, CompGoertzel is half as expensive
as CompHorner when z ∈ C, z 6= ±1 and an ∈ R. For z ∈ C, |z| 6= 1 and z 6= ±1, the cost of
CompGoertzel is also less than that of CompHorner. Even in these cases, CompGoertzelwErr
costs less than CompHorner. However, for z ∈ R, CompGoertzel is twice as expensive as
CompHorner regardless of an.

Algorithm 5 Polynomial evaluation by compensated Goertzel algorithm with a dynamic
error estimate
Function: [ω(z), µ] = CompGoertzelwErr((an)N

n=0, z)
Require: z = x + iy ∈ F+ iF, (an)N

n=0 ∈ F+ iF
Ensure : ω(z) ≈ ∑N

n=0 anzn, |ω(z)−ω(z)| ≤ µ
p = 2x
[q̂, ε̂q] = SumOfSquares(x, y)
b̂N = aN , b̂N+1 = ε̂bN = ε̂bN+1 = ÊbN = ÊbN+1 = 0
for n = N − 1, N − 2, ..., 1
[rn, πn] = TwoProdRC(p, b̂n+1)

[sn, σn] = TwoProdRC(−q̂, b̂n+2)
[tn, ηn] = TwoSumCplx(rn, sn)

[b̂n, ξn] = TwoSumCplx(tn, an)̂̀n = πn ⊕ σn ⊕ ηn ⊕ ξn 	 ε̂q⊗ b̂n+2

ε̂bn = ̂̀n ⊕ p⊗ ε̂bn+1 	 q̂⊗ ε̂bn+2

Êbn = |̂̀n| ⊕ |p| ⊗ Êbn+1 ⊕ |q̂| ⊗ Êbn+2
end
[r0, π0] = TwoProdRC(x, b̂1)

[s0, σ0] = TwoProdRC(−q̂, b̂2)
[t0, η0] = TwoSumCplx(r0, s0)

[b̂0, ξ0] = TwoSumCplx(t0, a0)̂̀0 = π0 ⊕ σ0 ⊕ η0 ⊕ ξ0 	 ε̂q⊗ b̂2

ε̂b0 = ̂̀0 ⊕ x⊗ ε̂b1 	 q̂⊗ ε̂b2

Êb0 = |̂̀0| ⊕ |x| ⊗ Êb1 ⊕ |q̂| ⊗ Êb2

[φ, ψ] = TwoProdRC(y, b̂1)

ê = ε̂b0 ⊕ i(ε̂b1 ⊗ y⊕ ψ)

Ê = Êb0 ⊕ iÊb1 ⊗ y
ω̂(z) = b̂0 ⊕ iφ
ω(z) = ω̂(z)⊕ ê
c = ω̂(z)⊕ ê	ω(z)
α̂ = (γ̂3N+1 ⊗ Ê)� (1	 6(N − 1)⊗ u)
µ = (|c| ⊕ α̂)� (1	 2u)

Algorithm 6 Polynomial evaluation by the Horner algorithm

Function : ω̂(z) = Horner((an)N
n=0, z)

Require : z = x + iy ∈ F+ iF, (an)N
n=0 ∈ F+ iF

Ensure : ω̂(z) ≈ ∑N
n=0 anzn

b̂N+1 = 0
for n = N, N − 1, ..., 0

b̂n = b̂n+1 ⊗ z⊕ an
end
ω̂(z) = b̂0
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Figure 2. The flowchart of the compensated Goertzel algorithm with dynamic error estimates.

Algorithm 7 Polynomial evaluation by the compensated Horner algorithm

Function : ω(z) = CompHorner((an)N
n=0, z)

Require : z = x + iy ∈ F+ iF, (an)N
n=0 ∈ F+ iF

Ensure : ω(z) ≈ ∑N
n=0 anzn

b̂N+1 = ε̂bN+1 = 0
for n = N − 1, N − 2..., 0
[rn, πn] = TwoProdCplx(b̂n+1, z)
[b̂n, σn] = TwoSumCplx(rn, an)

ε̂bn = ε̂bn+1 ⊗ z⊕ πn ⊕ σn
end
ω(z) = b̂0 + ε̂b0

Table 2. Comparison of computational costs of Horner, Goertzel, CompHorner, CompGoertzel and
CompGoertzelwErr algorithms.

Variates Coefficients Horner Goertzel CompHorner CompGoertzel CompGoertzelwErr

z ∈ R an ∈ R 2N 4N + 4 26N + 3 55N + 45 59N + 60
an ∈ C 4N 8N + 6 52N + 6 110N + 66 114N + 81

z ∈ C and |z| 6= 1 an ∈ R 7N − 4 4N + 7 90N + 6 55N + 91 59N + 106
an ∈ C 8N 8N + 12 97N + 6 110N + 150 114N + 165

z ∈ C, |z| = 1 and z 6= ±1 an ∈ R 7N − 4 3N + 4 90N + 6 34N + 26 39N + 41
an ∈ C 8N 6N + 9 97N + 6 68N + 90 72N + 105
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4. Numerical Experiments

In this section, we test the accuracy, performance and application of our algorithm. All
numerical experiments are performed in IEEE-754 double precision as working precision.

4.1. Accuracy

The accuracy measurements in this part were found in MATLAB R2019b, and the
exact results were obtained by the Symbolic Toolbox in order to compute the relative errors.
As in [12], we considered the expanded form of the polynomial

ω(z) = (z− 1− i)n (65)

at z = 1.333 + 1.333i for n = 3:42, while the condition number varied from 103 to 1033.
The relative accuracy of the Horner, Goertzel, CompHorner and CompGoertzel algorithms
as well as the theoretical bounds of CompGoertzel in Theorems 2 and 3 are exhibited in
Figure 3. We can observe that the CompGoertzel algorithm, which had almost the same
accuracy as the CompHorner algorithm, was absolutely stable when the condition number
was smaller than 1016. Moreover, the numerical results and the error bounds had a good
agreement, especially the running error bound, which was almost the same as the real
relative errors, along with the results while the condition number was smaller than 1013.

Figure 3. Accuracy of evaluation of ω(z) = (z− 1− i)n at z = 1.333 + 1.333i for n = 3:42.

4.2. Running Time

In this part, we show the practical performance of the Goertzel, CompGoertzel, CompHorner
and CompGoertzelwErr algorithms in terms of measured computing time. The tests were
performed in the following environments:

• Env1: Laptop with Intel Core i7-7700 CPU, 4 cores each at 3.6 GHz and with Microsoft
Visual C++ 2012 with the default compiler option /od on Windows 7;

• Env2: Node of workstation with Intel Xeon E5-2697A CPU, 16 cores each at 2.6 GHz
and with gcc 7.4.0 with the default compiler option-O0 on x86_64-Ubuntu-linux 18.04.

We generated the test polynomials with random coefficients in the interval [−1, 1], whose
degree varied from 50 to 10,000 by a step of 50. The average time ratios for CompGoertzel
/Goertzel, CompGoertzel/CompHorner, CompGoertzelwErr/CompGoertzel and CompGo

ertzelwErr/CompHorner are reported in Tables 3 and 4, while the coefficients of the test
polynomials were an ∈ R and an ∈ C, respectively. As we can see, CompGoertzel was faster
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than Goertzel in practice, especially when testing in Linux. We note the good agreement of
the numerical and theoretical results except for CompGoertzelwErr/CompHorner while z ∈ C,
|z| 6= 1, z 6= ±1 and an ∈ C in Env2. This is because CompHorner takes more benefit than
CompGoertzelwErr from the Fused-Multiply-and-Add instruction [34,35] and the instruction-
level parallelism [7,8]. However, CompGoertzelwErr was still faster than CompHorner in this
case in Env1.

Table 3. Theoretical computational complexity and measured running time ratios in an ∈ R.
.

Variates CompGoertzel
Goertzel

CompGoertzel
CompHorner

CompGoertzelwErr
CompGoertzel

CompGoertzelwErr
CompHorner

Theoretical 13.75 2.12 1.07 2.27
z ∈ R Evn1 9.15 1.42 1.13 1.59

Evn2 2.76 1.35 1.11 1.49

Theoretical 13.75 61.14% 1.07 65.59%
z ∈ C and |z| 6= 1 Evn1 9.29 64.19% 1.13 72.22%

Evn2 2.81 67.71% 1.1 74.14%

Theoretical 11.33 37.79% 1.15 43.35%
z ∈ C, |z| = 1 and z 6= ±1 Evn1 6.53 44.09% 1.1 48.43%

Evn2 2.22 53.66% 1.09 58.38%

Table 4. Theoretical computational complexity and measured running time ratios in an ∈ C.
.

Variates CompGoertzel
Goertzel

CompGoertzel
CompHorner

CompGoertzelwErr
CompGoertzel

CompGoertzelwErr
CompHorner

Theoretical 13.75 2.12 1.04 2.19
z ∈ R Evn1 10.32 1.24 1.17 1.46

Evn2 4.8 1.16 1.35 1.57

Theoretical 13.75 1.13 1.04 1.18
z ∈ C and |z| 6= 1 Evn1 10.37 1.25 1.19 1.48

Evn2 4.8 1.17 1.35 1.58

Theoretical 11.33 70.13% 1.06 74.26%
z ∈ C, |z| = 1 and z 6= ±1 Evn1 7.21 84.61% 1.17 98.54%

Evn2 3.67 89.22% 1.33 1.18

4.3. Application

The test environment in this part was the same as the accuracy measurements. We con-
sidered the polynomial in Equation (1) with a0, a1, . . . , aN ∈ R and zk = e−2πki/(N+1). Then,
the DFT, which could be computed by the function “fft” with the polynomial’s coefficients
in MATLAB returned ω(zk) for k = 0, 1, . . . , N. The Goertzel algorithm can also compute
the DFT with the polynomial’s coefficients of specific indices zk in a vector. Figure 4 shows
the relative errors of Goertzel, CompGoertzel, and fft applied to polynomials whose de-
grees varied from 50 to 1000 by a step of 10 with random coefficients in the interval [−1, 1],
where the relative error was defined as ‖rescomput − resexact‖2/‖resexact‖2. In Figure 4, al-
though fft was more accurate than Goertzel, the relative errors of Goertzel and fft were
all increasing, while the degree of the polynomial grew. However, CompGoertzel always
obtained full-precision accurate results in this test, and the relative error of our algorithm
was 1015 to 1017, while the fft was from 1012 to 1015.
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Figure 4. The relative errors of DFT for polynomials with random coefficients.

5. Conclusions

In this paper, we presented a compensated Goertzel algorithm with dynamic error
estimation to evaluate polynomials in complex floating-point arithmetic. The forward
error analysis and numerical experiments show that the algorithm can yield full working
precision accuracy. Furthermore, although the algorithm is as precise as the compensated
Horner algorithm, it is quicker in certain situations. The algorithm also performed well in
the application of computing the DFT of specific indices.
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