Next Article in Journal
Accurate Goertzel Algorithm: Error Analysis, Validations and Applications
Previous Article in Journal
Robust Nonsmooth Interval-Valued Optimization Problems Involving Uncertainty Constraints
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Bounds for Arithmetic Mean by the Seiffert-like Means

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Submission received: 23 April 2022 / Revised: 19 May 2022 / Accepted: 21 May 2022 / Published: 24 May 2022
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
By using the power series of the functions 1 / sin n t and cos t / sin n t ( n = 1 , 2 , 3 , 4 , 5 ), and the estimation of the ratio of two adjacent Bernoulli numbers, we obtained new bounds for arithmetic mean A by the weighted arithmetic means of M tan 1 / 3 M sin 2 / 3 and 1 3 M tan + 2 3 M sin , M tanh 1 / 3 M sinh 2 / 3 and 1 3 M tanh + 2 3 M sinh , where M tan ( x , y ) and M sin ( x , y ) , M tanh ( x , y ) and M sinh ( x , y ) are the tangent mean, sine mean, hyperbolic tangent mean and hyperbolic sine mean, respectively. The upper and lower bounds obtained in this paper are compared in detail with the conclusions of the previous literature.

1. Introduction

Mean value inequality is an established topic in the field of inequality research. It is rooted in mathematics, and is applied to the fields of mathematics, statistics and engineering technology. Throughout the full text, we assume x and y to be two different positive numbers, and H ( x , y ) , G ( x , y ) , L ( x , y ) , M 1 / 2 ( x , y ) , H e ( x , y ) , A ( x , y ) and M 2 ( x , y ) are the harmonic, geometric, logarithmic, 1 2 power mean, Heron, arithmetic and quadratic means, respectively, where
H ( x , y ) = 2 1 / x + 1 / y , G ( x , y ) = x y , L ( x , y ) = y x log y log x , M 1 / 2 ( x , y ) = x 1 / 2 + y 1 / 2 2 2 , H e ( x , y ) = x + x y + y 3 , A ( x , y ) = x + y 2 , M 2 ( x , y ) = x 2 + y 2 2 1 / 2 .
For convenience, we note that M < N means M ( x , y ) < N ( x , y ) holds for two means M and N with two different positive numbers x and y. In order to explore the various relationships between the above means, we can take the geometric mean G ( x , y ) as a reference and make two transformations y / x = τ = e w to obtain the following results:
H ( x , y ) G ( x , y ) = 1 cosh w , L ( x , y ) G ( x , y ) = sinh w w , M 1 / 2 ( x , y ) G ( x , y ) = 1 2 cosh w + 1 2 , H e ( x , y ) G ( x , y ) = 2 3 cosh w + 1 3 , A ( x , y ) G ( x , y ) = cosh w , M 2 ( x , y ) G ( x , y ) = cosh 2 w , w > 0 .
Then, via the relationships regarding the hyperbolic sine function and hyperbolic cosine function,
1 cosh w < 1 < sinh w w < 1 2 cosh w + 1 2 < 1 3 + 2 3 cosh w < cosh w < cosh 2 w
we can obtain the inequality chain
H < G < L < M 1 / 2 < H e < A < M 2 .
For a study of classical mean inequality, see [1,2,3,4,5,6,7,8].
The above is to determine the relationships of classical means through the relationships of hyperbolic functions. In recent years, scholars have been exploring other novel methods to study the relationships between classical means and newly introduced means. Among them, the so-called Seiffert function method is worth introducing.
In 1998, Kahlig and Matkowski [9] introduced a new concept in the field of means; the ratio of a homogeneous bivariable mean M in ( 0 , ) to a classical mean N can be expressed as a function of ( x y ) / ( x + y ) , which is called the index function of M with respect to N or an N -index of M :
M ( x , y ) N ( x , y ) = f M , N x y x + y ,
where f M , N : 1 , 1 0 , 2 is a unique single variable function (with the graph lying in a set of a butterfly shape).
Assuming f : ( 0 , 1 ) R + , Witkowski [10] constructed a new binary function:
M f ( x , y ) = x y 2 f x y x + y x y x x = y .
When the function f ( t ) satisfies
t 1 + t f ( t ) t 1 t ,
Witkowski [10] proved that M f ( x , y ) is a symmetric and homogeneous mean. In this case, the function f ( t ) with the property above produces a corresponding mean, and there is the following relationship between the two functions f ( t ) and M f ( x , y ) :
f ( t ) = t M f ( 1 t , 1 + t ) ,
where
t = x y x + y .
Therefore, f ( t ) and M f ( x , y ) form a one-to-one correspondence via (3) and (4). For this reason, we can rewrite f ( t ) = : f M ( t ) . In general, f ( t ) is called the Seiffert function.
In order to make the above new method of dealing with mean value inequality more useful, we make the following appropriate modifications to it. We change the parameters sign of a mean M f about two parameters with u and v, and assume that 0 < u < v . Thus, there must be three positive numbers x , y , and λ , so that
u = λ 2 x x + y v = λ 2 y x + y , 0 < x < y .
Then, we have that 0 < t < 1 ,
t = y x x + y ,
and
M f ( u , v ) = M f λ 2 x x + y , λ 2 y x + y = λ M f 2 x x + y , 2 y x + y = λ M f 1 t , 1 + t = λ t f M ( t ) .
Via (4), we can obtain that
f H ( t ) = t 2 1 1 t + 1 1 + t = t 1 t 2 f G ( t ) = t 1 t 1 + t = t 1 t 2 , f L ( t ) = t 1 + t 1 t ln 1 + t ln 1 t = 1 2 ln t + 1 1 2 ln 1 t = 1 2 ln 1 + t 1 t = tanh 1 t , f M 1 / 2 ( t ) = t 1 t + 1 + t 2 + 1 t 1 + t / 2 = 2 t 1 + 1 t 2 , f H e ( t ) = t 2 + 1 t 2 3 = 3 t 2 + 1 t 2 , f A ( t ) = t 1 t + 1 + t 2 = t , f M 2 ( t ) = t 1 t 2 + 1 + t 2 2 = t 1 + t 2 .
Then, by (5), we come to (2) when the following inequality chain holds:
t 1 + t 2 < t < 3 t 2 + 1 t 2 < 2 t 1 + 1 t 2 < 1 2 ln 1 + t 1 t < t 1 t 2 < t 1 t 2 ,
which is not difficult to prove. This is a surprising result of using the Seiffert function method.
In [10], Witkowski introduced the following two new means, one called the sine mean
M sin ( x , y ) = x y 2 sin x y x + y x y x x = y ,
and the other called the hyperbolic tangent mean
M tanh ( x , y ) = x y 2 tanh x y x + y x y x x = y .
In [11,12], Nowicka and Witkowski introduced the dual forms of the above two Seiffert-like means, which are called the tangent mean
M tan ( x , y ) = x y 2 tan x y x + y x y x x = y ,
and hyperbolic sine mean
M sinh ( x , y ) = x y 2 sinh x y x + y x y x x = y .
By (4), we have that
f M tan ( t ) = tan t , f M sin ( t ) = sin t , f M tanh ( t ) = tanh t , f M sinh ( t ) = sinh t .
For t > 0 ,
tanh t < sin t < t < sinh t < tan t ,
via (5), we can immediately obtain the following inequalities about these five means:
M tan < M sinh < A < M sin < M tanh .
Since the above new four Seiffert-like means have the Seiffert functions sin, tan, sinh and tanh, by (3), the inverse counterparts of which can produce the first Seiffert mean [13], second Seiffert mean [14], Neuman–Sandor mean [15] and logarithmic mean [16]. Inspired by this form of new mean, many scholars have presented achievements in the field of inequality in a short period of time. See the literature [17,18,19,20,21,22,23,24,25,26,27,28] for details.
Nowicka and Witkowski [17] determined various optimal bounds for A ( x , y ) by M tan ( x , y ) and M sinh ( x , y ) , M tanh ( x , y ) and M sin ( x , y ) , and obtained the following inequalities:
M tan 1 / 3 M sin 2 / 3 < A < 1 3 M tan + 2 3 M sin ,
M tanh 1 / 3 M sinh 2 / 3 < A < 1 3 M tanh + 2 3 M sinh .
Recently, W.-M. Qian, T.-H. Zhao and Y.-P. Lv [25] considered the weighted geometric means of M tan 1 / 3 M sin 2 / 3 and 1 3 M tan + 2 3 M sin , and the ones of M tanh 1 / 3 M sinh 2 / 3 and 1 3 M tanh + 2 3 M sinh as the bounds for A , and obtained the following two inequality conclusions:
(i) the double inequality
M tan 1 / 3 M sin 2 / 3 1 λ 1 1 3 M tan + 2 3 M sin λ 1 < A < M tan 1 / 3 M sin 2 / 3 1 μ 1 1 3 M tan + 2 3 M sin μ 1
holds if and only if λ 1 λ 1 * = 4 / 5 and
μ 1 μ 1 * = 3 ln sin 1 ln cos 1 3 ln 2 + cos 1 / 3 ln cos 1 0.8386 ;
(ii) the double inequality
M tanh 1 / 3 M sinh 2 / 3 1 λ 2 1 3 M tanh + 2 3 M sinh λ 2 < A < M tanh 1 / 3 M sinh 2 / 3 1 μ 2 1 3 M tanh + 2 3 M sinh μ 2
holds if and only if
λ 2 λ 2 * = 3 ln ( sinh 1 ) ln ( cosh 1 ) 3 ln 2 + cosh 1 / 3 ln cosh 1 0.7730
and μ 2 μ 2 * = 4 / 5 .
Since the arithmetic mean of two different positive numbers is greater than their geometric mean, in this paper, we consider the weighted arithmetic mean of M tan 1 / 3 M sin 2 / 3 and 1 3 M tan + 2 3 M sin , and the ones of M tanh 1 / 3 M sinh 2 / 3 and 1 3 M tanh + 2 3 M sinh as the bounds for A , and obtain the following two conclusions.
Theorem 1.
Let
α 1 * = 4 5 , β 1 * = 1 1 tan 1 1 / 3 1 sin 1 2 / 3 1 3 1 tan 1 + 2 3 1 sin 1 1 tan 1 1 / 3 1 sin 1 2 / 3 0.835 97 .
Then, the double inequality
1 α 1 M tan 1 / 3 M sin 2 / 3 + α 1 1 3 M tan + 2 3 M sin < A < 1 β 1 M tan 1 / 3 M sin 2 / 3 + β 1 1 3 M tan + 2 3 M sin
holds if and only if α 1 α 1 * and β 1 β 1 * .
Theorem 2.
Let
α 2 * = 1 1 tanh 1 1 / 3 1 sinh 1 2 / 3 1 3 1 tanh 1 + 2 3 1 sinh 1 1 tanh 1 1 / 3 1 sinh 1 2 / 3 0.771 16 , β 2 * = 4 5 .
Then, the double inequality
1 α 2 M tanh 1 / 3 M sinh 2 / 3 + α 2 1 3 M tanh + 2 3 M sinh < A < 1 β 2 M tanh 1 / 3 M sinh 2 / 3 + β 2 1 3 M tanh + 2 3 M sinh
holds if and only if α 2 α 2 * and β 2 β 2 * .
In this paper, Theorem 2 is proven by using the power series of the functions 1 / sin n t and cos t / sin n t ( n = 1 , 2 , 3 , 4 , 5 ), and the estimation of the ratio of two adjacent Bernoulli numbers. At the same time, another main conclusion is proven by using the power series of some hyperbolic functions in parallel. Finally, the upper and lower bounds obtained in this paper are compared in detail with the conclusions of the previous literature.

2. Lemmas

In order to prove the main results of this paper, we need the following lemmas.
Lemma 1.
Let B 2 n be the even-indexed Bernoulli numbers. Then, we have the following power series expansions
1 sin t = 1 t + n = 1 2 ( 2 2 n 1 1 ) | B 2 n | ( 2 n ) ! t 2 n 1 , 1 sin 2 t = 1 t 2 + n = 1 2 2 n 2 n 1 2 n ! | B 2 n | t 2 n 2 , 1 sin 3 t = 1 t 3 + 1 2 1 t + n = 1 ( 2 2 n 1 1 ) | B 2 n | ( 2 n ) ! t 2 n 1 + n = 2 ( 2 2 n 1 1 ) 2 n 1 2 n 2 ( 2 n ) ! | B 2 n | t 2 n 3 ,
1 sin 4 t = 1 t 4 + 2 3 1 t 2 + 2 3 n = 1 2 2 n 2 n 1 2 n ! | B 2 n | t 2 n 2 + 1 6 n = 2 2 2 n 2 n 1 2 n 2 2 n 3 2 n ! | B 2 n | t 2 n 4 , 1 sin 5 t = 1 t 5 + 5 6 t 3 + 3 8 t + 3 4 n = 1 ( 2 2 n 1 1 ) | B 2 n | ( 2 n ) ! t 2 n 1 + 5 6 n = 2 ( 2 2 n 1 1 ) 2 n 1 2 n 2 ( 2 n ) ! | B 2 n | t 2 n 3 + 1 12 n = 3 ( 2 2 n 1 1 ) 2 n 1 2 n 2 2 n 3 2 n 4 ( 2 n ) ! | B 2 n | t 2 n 5
and
cos t sin t = cot t = 1 t n = 1 2 2 n 2 n ! | B 2 n | t 2 n 1 , cos t sin 2 t = 1 t 2 n = 1 2 ( 2 2 n 1 1 ) 2 n 1 ( 2 n ) ! | B 2 n | t 2 n 2 , cos t sin 3 t = 1 t 3 1 2 n = 2 2 2 n 2 n 1 2 n 2 2 n ! | B 2 n | t 2 n 3 , cos t sin 4 t = 1 t 4 + 1 6 1 t 2 1 3 n = 1 ( 2 2 n 1 1 ) 2 n 1 ( 2 n ) ! | B 2 n | t 2 n 2 1 3 n = 2 ( 2 2 n 1 1 ) 2 n 1 2 n 2 2 n 3 ( 2 n ) ! | B 2 n | t 2 n 4 ,
cos t sin 5 t = 1 t 5 + 1 3 t 3 1 6 n = 2 2 2 n 2 n 1 2 n 2 2 n ! | B 2 n | t 2 n 3 1 24 n = 3 2 2 n 2 n 1 2 n 2 2 n 3 2 n 4 2 n ! | B 2 n | t 2 n 5
hold for all t π , 0 ) ( 0 , π .
Proof. 
The power series expansions of 1 / sin t and cot t can be found in [29,30]. Via the relations
cos t sin k + 1 t = 1 k 1 sin k t , 1 sin k t = k 2 k 1 1 sin k 2 t 1 k 1 cos t sin k 1 t
we can obtain the desired results. □
Lemma 2
([31,32,33,34]). Let B 2 n be the even-indexed Bernoulli numbers. Then
2 2 n 1 1 2 2 n + 1 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2 < | B 2 n + 2 | | B 2 n | < 2 2 n 1 2 2 n + 2 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2
holds.
Lemma 3.
Let 0 < t < π / 2 and
q ( t ) = 2 t 2 sin t 6 t cos 2 t 3 t + 9 cos t sin t 2 t 2 cos t sin t 3 2 sin t t 2 t cos t + cos t sin t = : q 1 ( t ) 3 q 2 ( t ) .
Then
q ( t ) 3 > cos 2 t
holds.
Proof. 
Let
G ( t ) = 3 2 ln q ( t ) ln cos t = 3 2 ln q 1 ( t ) 3 q 2 ( t ) ln cos t , 0 < t < π 2 .
Then
G ( t ) = sin 5 t g ( t ) 2 q 1 ( t ) q 2 ( t ) ,
where
g ( t ) = 6 t 1 sin 3 t 18 t 1 sin t 36 cos t sin 2 t + 34 t 2 1 sin 2 t + 4 t 3 1 sin t 24 t 2 1 sin 4 t 14 t 3 1 sin 3 t + 6 t 3 1 sin 5 t + 4 t 2 + 36 1 sin 2 t + 24 t cos t sin t 6 t cos t sin 3 t + 14 t 2 cos t sin 2 t + 24 t 2 cos t sin 4 t 16 t 3 cos t sin 3 t 6 t 3 cos t sin 5 t 36 .
All formulas in Lemma 1 are substituted into (17) and sorted out to draw the following conclusion
g ( t ) = n = 5 3 4 2 2 n 2 2 2 n 2 ! | B 2 n 2 | t 2 n + n = 5 3 6 × 2 2 n n 2 9 × 2 2 n n 10 × 2 2 n + 12 n 2 + 6 n + 4 2 n ! | B 2 n | t 2 n + n = 5 2 n + 1 2 n + 1 1 25 n + 1 + 2 n + 1 2 + 59 2 2 n + 2 1 2 n + 2 ! | B 2 n + 2 | t 2 n = : n = 5 a n t 2 n ,
where
a n = 3 4 2 2 n 2 2 2 n 2 ! | B 2 n 2 | + 3 6 n 2 9 n 10 × 2 2 n + 12 n 2 + 6 n + 4 2 n ! | B 2 n | + 2 n + 1 2 n + 1 2 n 2 21 n + 36 2 2 n + 2 1 2 n + 2 ! | B 2 n + 2 | .
Especially,
a 5 = 1 1890 , a 6 = 503 1984 500 , a 7 = 3251 43 659 000 , a 8 = 41 857 2432 430 000 , a 9 = 117 756 253 34 326 452 160 000 , a 10 = 39 666 139 957 64 190 465 539 200 000 , a 11 = 21 005 560 853 203 269 807 540 800 000 , a 12 = 197 638 373 689 12 107 488 900 066 560 000 .
Below, we will prove that a n > 0 for all n 13 . By Lemma 2, we have
a n | B 2 n | = 3 4 2 2 n 2 2 2 n 2 ! | B 2 n 2 | | B 2 n | + 3 6 n 2 9 n 10 × 2 2 n + 12 n 2 + 6 n + 4 2 n ! + 2 n + 1 2 n + 1 1 25 n + 1 + 2 n + 1 2 + 59 2 2 n + 2 1 2 n + 2 ! | B 2 n + 2 | B 2 n |
> 3 4 2 2 n 2 2 2 n 2 ! 2 2 n 1 1 2 2 n 3 1 π 2 ( 2 n ) ( 2 n 1 ) + 3 6 n 2 9 n 10 × 2 2 n + 12 n 2 + 6 n + 4 2 n ! + 2 n + 1 2 n + 1 1 25 n + 1 + 2 n + 1 2 + 59 2 2 n + 2 1 2 n + 2 ! × 2 2 n 1 1 2 2 n + 1 1 ( 2 n + 2 ) ( 2 n + 1 ) π 2
= 3 4 2 2 n 2 2 2 n ! 2 2 n 1 1 2 2 n 3 1 π 2 1 + 3 6 n + 6 × 2 2 n n 2 10 × 2 2 n 9 × 2 2 n n + 12 n 2 + 4 2 n ! + 2 n + 1 2 n + 1 1 25 n + 1 + 2 n + 1 2 + 59 2 2 n + 2 1 2 n ! × 2 2 n 1 1 2 2 n + 1 1 1 π 2 = : 1 4 H ( n ) π 2 2 n ! 2 × 2 2 n 1 ,
where
H ( n ) = 2 × 2 4 n 32 n 4 288 n 3 + 88 + 72 π 2 n 2 108 π 2 696 n 120 π 2 3 π 4 + 288 3 × 2 2 n 48 n 4 432 n 3 72 π 2 132 n 2 + 1044 84 π 2 n 72 π 2 5 π 4 + 432 + 32 n 4 288 n 3 144 π 2 88 n 2 72 π 2 696 n 48 π 2 6 π 4 + 288 = : 2 × 2 4 n u ( n ) 3 × 2 2 n v ( n ) + w ( n ) .
Since w ( 13 ) = 305 424 6 π 4 25 320 π 2 54941 > 0 and
2 2 n > 3 v ( n ) 2 u ( n )
for all n 13 . The latter is not difficult to prove by mathematical induction. It is not difficult to verify that (18) is true for n = 13 due to
2 2 × 13 3 v ( 13 ) 2 u ( 13 ) = 1 2 476 204 512 276 π 2 + 134 217 723 π 4 13 664 437 994 088 3548 π 2 + π 4 101 808 6 . 710 9 × 10 7 > 0 .
Assuming that (18) holds for n 14 , let us prove (18) holds for n + 1 . Since
2 2 n + 2 = 4 × 2 2 n > 4 × 3 v ( n ) 2 u ( n ) ,
we complete when proving
4 × 3 v ( n ) 2 u ( n ) > 3 v ( n + 1 ) 2 u ( n + 1 ) 4 v ( n ) u ( n ) > v ( n + 1 ) u ( n + 1 ) .
In fact, the last inequality holds for n 0 due to
4 u ( n + 1 ) v ( n ) u ( n ) v ( n + 1 ) = 1176 π 4 292 032 π 2 + 2700 π 6 + 45 π 8 + 1057 536 n 521 568 π 2 + 21 092 π 4 + 936 π 6 2731 968 n 2 432 π 6 3156 π 4 108 144 π 2 + 7776 n 3 19 696 π 4 658 800 π 2 + 3040 128 n 4 16 464 π 4 149 472 π 2 + 749 664 n 5 73 152 π 2 813 312 + n 6 3456 π 2 + 135 936 64 512 n 7 + 4608 n 8
= 3 1583 905 440 π 2 171 080 024 π 4 27 492 π 6 + 15 π 8 + 213 637 979 520 + 4 136 075 571 136 38 652 635 π 4 3042 π 6 274 369 500 π 2 n 13 + 12 4234 896 π 2 1454 957 π 4 36 π 6 + 16 249 252 008 n 13 2 + 16 2291 319 π 2 54 739 π 4 + 2414 279 088 n 13 3 + 48 86 574 π 2 343 π 4 + 96 847 902 n 13 4 + 196 416 π 2 + 349 394 688 n 13 5 + 3456 π 2 + 16 070 400 n 13 6 + 414 720 n 13 7 + 4608 n 13 8 > 0 .
Thus, G ( t ) > 0 holds for all t 0 , π . This fact together with G ( 0 + ) = 0 directly gives (16).
This completes the proof of Lemma 3.
Lemma 4.
Let t > 0 and
p ( t ) = 9 cosh t sinh t 3 t 6 t cosh 2 t 2 t 2 sinh t + 2 t 2 cosh t sinh t 3 2 sinh t t 2 t cosh t + cosh t sinh t = : p 1 ( t ) 3 p 2 ( t ) .
Then
p ( t ) 3 < cosh 2 t
holds.
Proof. 
Let
H ( t ) = 3 ln p ( t ) 2 ln cosh t = 3 ln p 1 ( t ) 3 p 2 ( t ) 2 ln cosh t , t > 0 .
Then
H ( t ) = 3 4 h ( t ) cosh t p 1 ( t ) p 2 ( t ) ,
where
h ( t ) = 2 t 3 + 15 t + 36 sinh 2 t 9 sinh 3 t 18 sinh 4 t + 9 sinh 5 t 18 sinh t + 20 t 3 cosh 2 t + 16 t 3 cosh 3 t + 2 t 3 cosh 4 t + 62 t 2 sinh 2 t 39 t 2 sinh 3 t 7 t 2 sinh 4 t + t 2 sinh 5 t 6 t cosh t 24 t cosh 2 t + 12 t cosh 3 t + 9 t cosh 4 t 6 t cosh 5 t 40 t 3 cosh t + 16 t 2 sinh t .
The two formulas
sinh k t = n = 0 k 2 n + 1 2 n + 1 ! t 2 n + 1 , cosh k t = n = 0 k 2 n 2 n ! t 2 n
are substituted into (20) and sorted out to draw the following conclusion
h ( t ) = n = 6 2 2 n + 1 10 × 2 2 n + 8 × 3 2 n + 4 2 n 20 + 124 × 2 2 n 117 × 3 2 n 28 × 4 2 n + 5 × 5 2 n + 16 2 n + 1 ! t 2 n + 3 n = 7 3 2 n + 1 8 × 2 2 n 4 × 3 2 n 3 × 4 2 n + 2 × 5 2 n + 2 9 8 × 2 2 n 3 × 3 2 n 8 × 4 2 n + 5 × 5 2 n 2 2 n + 1 ! t 2 n + 1 = n = 6 2 2 n + 1 10 × 2 2 n + 8 × 3 2 n + 4 2 n 20 + 124 × 2 2 n 117 × 3 2 n 28 × 4 2 n + 5 × 5 2 n + 16 2 n + 1 ! t 2 n + 3 n = 6 3 2 n + 3 8 × 2 2 n + 2 4 × 3 2 n + 2 3 × 4 2 n + 2 + 2 × 5 2 n + 2 + 2 9 8 × 2 2 n + 2 3 × 3 2 n + 2 8 × 4 2 n + 2 + 5 × 5 2 n + 2 2 2 n + 3 ! t 2 n + 3 = n = 6 2 2 n + 1 10 × 2 2 n + 8 × 3 2 n + 4 2 n 20 + 124 × 2 2 n 117 × 3 2 n 28 × 4 2 n + 5 × 5 2 n + 16 2 n + 1 ! t 2 n + 3 n = 6 3 2 n + 3 8 × 2 2 n + 2 4 × 3 2 n + 2 3 × 4 2 n + 2 + 2 × 5 2 n + 2 + 2 9 8 × 2 2 n + 2 3 × 3 2 n + 2 8 × 4 2 n + 2 + 5 × 5 2 n + 2 2 2 n + 3 ! t 2 n + 3 = : n = 6 b n 2 n + 3 ! t 2 n + 3 ,
where
b n = 5 × 5 2 n 4 n 2 50 n + 141 + 4 × 4 2 n 4 n 3 16 n 2 + 13 n 219 + 3 2 n 128 n 3 84 n 2 602 n 525 + 16 × 2 2 n 10 n 3 + 61 n 2 + 93 n + 54 4 4 n + 3 41 n + 20 n 2 + 15 > 0
for all n 6 . So H ( t ) < 0 holds for t > 0 . This fact together with H ( 0 + ) = 0 directly gives (19). □

3. Proofs of Main Results

Then, we can prove the main results of this paper as follows.

3.1. Proof of Theorem 1

By (5) and (6), we have
α 1 < A M tan 1 / 3 M sin 2 / 3 1 3 M tan + 2 3 M sin M tan 1 / 3 M sin 2 / 3 < β 1 α 1 < 1 t tan t 1 / 3 t sin t 2 / 3 1 3 t tan t + 2 3 t sin t t tan t 1 / 3 t sin t 2 / 3 < β 1 .
Let
F ( t ) = 1 t tan t 1 / 3 t sin t 2 / 3 1 3 t tan t + 2 3 t sin t t tan t 1 / 3 t sin t 2 / 3 , 0 < t < 1 .
Then
F ( t ) = : 2 sin t t 2 t cos t + cos t sin t q ( t ) cos t 2 / 3 3 sin 2 t cos t 2 / 3 1 3 t tan t + 2 3 t sin t t tan t 1 / 3 t sin t 2 / 3 2 .
From Lemma 3, we obtain that F ( t ) > 0 for 0 < t < 1 , which means that the function F ( t ) is increasing on 0 , 1 . Since
α 1 * = : F ( 0 + ) = 4 5 , β 1 * = : F ( 1 ) = 1 1 tan 1 1 / 3 1 sin 1 2 / 3 1 3 1 tan 1 + 2 3 1 sin 1 1 tan 1 1 / 3 1 sin 1 2 / 3 0.835 97 ,
the proof of Theorem 1 is complete.

3.2. Proof of Theorem 2

By (5) and (6), we have
α 2 < A M tanh 1 / 3 M sinh 2 / 3 1 3 M tanh + 2 3 M sinh M tanh 1 / 3 M sinh 2 / 3 < β 2 α 2 < 1 t tanh t 1 / 3 t sinh t 2 / 3 1 3 t tanh t + 2 3 t sinh t t tanh t 1 / 3 t sinh t 2 / 3 < β 2 .
Let
G ( t ) = 1 t tanh t 1 3 t sinh t 2 3 1 3 t tanh t + 2 3 t sinh t t tanh t 1 3 t sinh t 2 3 , 0 < t < 1 .
Then
G ( t ) = 2 sinh t t 2 t cosh t + cosh t sinh t p ( t ) cosh t 2 / 3 3 sinh 2 t cosh t 2 / 3 1 3 t tanh t + 2 3 t sinh t t tanh t 1 / 3 t sinh t 2 / 3 2 .
By Lemma 4, we have G ( t ) < 0 for 0 < t < 1 , which means that the function G ( t ) is decreasing on 0 , 1 . Since
β 2 * = : G ( 0 + ) = 4 5 , α 2 * = : G ( 1 ) = 1 1 tanh 1 1 / 3 1 sinh 1 2 / 3 1 3 1 tanh 1 + 2 3 1 sinh 1 1 tanh 1 1 / 3 1 sinh 1 2 / 3 0.771 16 ,
the proof of Theorem 2 is complete.

4. Remarks

In order to compare the conclusions of this paper with the similar ones in the previous literature, we briefly remember
M 1 : = M tan 1 / 3 M sin 2 / 3 , M 2 = : 1 3 M tan + 2 3 M sin , M 3 : = M tanh 1 / 3 M sinh 2 / 3 , M 4 = : 1 3 M tanh + 2 3 M sinh .
Remark 1.
Letting α i = 0 and β i = 1 for i = 1 and 2 in (14) and (15), respectively, gives (10) and (11).
Since M 1 < M 2 with x y , when letting M 2 / M 1 = a > 1 , through numerical experiments, we obtain that
a μ 1 * 1 β 1 * + β 1 * a for 1 < a 1 . 039 6 a μ 1 * < 1 β 1 * + β 1 * a for a > 1 . 039 6 .
Then, we have
M 1 1 / 5 M 2 4 / 5 < 1 5 M 1 + 4 5 M 2 < A < 1 β 1 * M 1 + β 1 * M 2 M 1 1 μ 1 * M 2 μ 1 * , 1 < M 2 / M 1 1 . 039 6 M 1 1 μ 1 * M 2 μ 1 * < 1 β 1 * M 1 + β 1 * M 2 , M 2 / M 1 > 1 . 039 6 .
Similarly, because of M 3 < M 4 with x y , when letting M 4 / M 3 = b > 1 , through numerical experiments, we obtain that
1 α 2 * + α 2 * b < b λ 2 * for 1 < b < 1 . 022 1 α 2 * + α 2 * b b λ 2 * for a 1 . 022 .
Thus, we have
1 5 M 3 + 4 5 M 4 > M 3 1 / 5 M 4 4 / 5 > A > M 3 1 λ 2 * M 4 λ 2 * > 1 α 2 * M 3 + α 2 * M 4 , 1 < M 4 / M 3 < 1 . 022 1 α 2 * M 3 + α 2 * M 4 > M 3 1 λ 2 * M 4 λ 2 * , M 2 / M 1 1 . 022 .
Remark 2.
Let λ 1 λ 1 * = 4 / 5 and μ 1 = μ 1 * ,   λ 2 λ 2 * and μ 2 μ 2 * = 4 / 5 ,   α 1 α 1 * = 4 / 5 and β 1 β 1 * ,   α 2 = α 2 * and β 2 = β 2 * = 4 / 5 in (12)–(15), respectively. Then, we obtain that the left-hand side inequality of (14) is better than the one of (12), while the right-hand side inequality of (14) does not match the one of (12), and the right-hand side inequality of (13) is better than the one of (15) while the left-hand side inequality of (15) does not match the one of (13),

5. Conclusions

After reviewing the traditional study of mean inequality through hyperbolic functions, this paper introduced and modified a new method through the Seiffert function, and obtained two bilateral inequalities about the upper and lower bounds for arithmetic mean
1 α 1 M tan 1 / 3 M sin 2 / 3 + α 1 1 3 M tan + 2 3 M sin < A < 1 β 1 M tan 1 / 3 M sin 2 / 3 + β 1 1 3 M tan + 2 3 M sin , 1 α 2 M tanh 1 / 3 M sinh 2 / 3 + α 2 1 3 M tanh + 2 3 M sinh < A < 1 β 2 M tanh 1 / 3 M sinh 2 / 3 + β 2 1 3 M tanh + 2 3 M sinh
hold if and only if α 1 α 1 * = 4 / 5 and β 1 β 1 * 0.83597 , α 2 α 2 * 0.77116 and β 2 β 2 * = 4 / 5 , respectively. We have seen that the new method is particularly effective for the new means. In fact, merely studying the various relationships of the means involved in this paper is a good exploration theme, not to mention the classical means not involved in this paper. In addition, I hope that scholars can create better new methods for the study of mean value inequality.

Funding

This research received no external funding.

Acknowledgments

The author is grateful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The author declares that he has no conflict of interest.

References

  1. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
  2. Bullen, P.S. Handbook of Means and Their Inequalities; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003. [Google Scholar]
  3. Ostle, B.; Terwilliger, H.L. A comparison of two means. Proc. Mont. Acad. Sci. 1957, 17, 69–70. [Google Scholar]
  4. Leach, E.B.; Sholander, M.C. Extended mean values. J. Math. Anal. Appl. 1983, 92, 207–223. [Google Scholar] [CrossRef] [Green Version]
  5. Stolarsky, K.B. The power mean and generalized logarithmic means. Am. Math. Mon. 1980, 87, 545–548. [Google Scholar] [CrossRef]
  6. Carlson, B.C. The logarithmic mean. Am. Math. Mon. 1972, 79, 615–618. [Google Scholar] [CrossRef]
  7. Alzer, H.; Qiu, S.-L. Inequalities for means in two variables. Arch. Math. 2003, 80, 201–215. [Google Scholar] [CrossRef]
  8. Zhu, L. From chains for mean value Inequalities to Mitrinovic’s problem II. Int. J. Educ. Sci. Technol. 2005, 36, 118–125. [Google Scholar] [CrossRef]
  9. Kahlig, P.; Matkowski, J. Decomposition of homogeneous means and construction of some metric spaces. Math. Inequal. Appl. 1998, 1, 463–480. [Google Scholar] [CrossRef]
  10. Witkowski, A. On Seiffert-like means. J. Math. Inequal. 2015, 9, 1071–1092. [Google Scholar] [CrossRef] [Green Version]
  11. Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means II. J. Math. Inequal. 2020, 14, 23–33. [Google Scholar] [CrossRef] [Green Version]
  12. Nowicka, M.; Witkowski, A. Optimal bounds for the tangent and hyperbolic sine means. Aequat. Math. 2020, 94, 817–827. [Google Scholar] [CrossRef] [Green Version]
  13. Hästö, P.A. Optimal inequalities between Seiffert mean and power means. Math. Inequal. Appl. 2004, 7, 47–53. [Google Scholar]
  14. Li, Y.-M.; Wang, M.-K.; Chu, Y.-M. Sharp power mean bounds for Seiffert mean. Appl. Math. J. Chin. Univ. 2014, 29, 101–107. [Google Scholar] [CrossRef]
  15. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
  16. Burk, F. The Geometric, Logarithmic, and Arithmetic Mean Inequality. Am. Math. Mon. 1987, 94, 527–528. [Google Scholar] [CrossRef]
  17. Nowicka, M.; Witkowski, A. Optimal bounds of the arithmetic mean in terms of new Seiffert-like means. Math. Inequal. Appl. 2020, 23, 383–392. [Google Scholar] [CrossRef] [Green Version]
  18. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
  19. Nowicka, M.; Witkowski, A. Optimal bounds of classical and non-classical means in terms of Q means. RACSAM 2022, 116, 11. [Google Scholar] [CrossRef]
  20. Chu, Y.M.; Wang, M.K.; Wang, Z.K. Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math. Inequal. Appl. 2012, 15, 415–422. [Google Scholar] [CrossRef]
  21. He, X.H.; Qian, W.M.; Xu, H.Z.; Chu, Y.M. Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2627–2638. [Google Scholar] [CrossRef]
  22. Nowicka, M.; Witkowski, A. Optimal bounds for the sine and hyperbolic tangent means. Punjab Univ. J. Math. 2020, 52, 77–88. [Google Scholar]
  23. Nowicka, M.; Witkowski, A. Optimal bounds for the sine and hyperbolic tangent means IV. RACSAM 2021, 115, 79. [Google Scholar] [CrossRef]
  24. Nowicka, M.; Witkowski, A. Optimal bounds for the sine and hyperbolic tangent means II. J. Appl. Anal. 2021, 27, 65–72. [Google Scholar] [CrossRef]
  25. Qian, W.M.; Zhao, T.H.; Lv, Y.P. Refinements of bounds for the arithmetic mean by new Seiffert-like means. AIMS Math. 2021, 6, 9036–9047. [Google Scholar] [CrossRef]
  26. Zhu, L. Optimal bounds for two Seiffert–like means in exponential type. J. Math. Anal. Appl. 2022, 505, 125475. [Google Scholar] [CrossRef]
  27. Zhu, L. Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2022, 116, 1. [Google Scholar] [CrossRef]
  28. Zhu, L.; Malesevic, B. Optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type. AIMS Math. 2021, 6, 13024–13040. [Google Scholar] [CrossRef]
  29. Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
  30. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series 55; Ninth Printing; National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
  31. Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
  32. Yang, Z.H.; Tian, J.F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364, 112359. [Google Scholar] [CrossRef]
  33. Zhu, L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 83. [Google Scholar] [CrossRef]
  34. Zhu, L. Monotonicities of some functions involving multiple logarithm function and their applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhu, L. New Bounds for Arithmetic Mean by the Seiffert-like Means. Mathematics 2022, 10, 1789. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111789

AMA Style

Zhu L. New Bounds for Arithmetic Mean by the Seiffert-like Means. Mathematics. 2022; 10(11):1789. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111789

Chicago/Turabian Style

Zhu, Ling. 2022. "New Bounds for Arithmetic Mean by the Seiffert-like Means" Mathematics 10, no. 11: 1789. https://0-doi-org.brum.beds.ac.uk/10.3390/math10111789

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop