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Abstract: Medical technological advancements have led to the creation of various large datasets
with numerous attributes. The presence of redundant and irrelevant features in datasets negatively
influences algorithms and leads to decreases in the performance of the algorithms. Using effective
features in data mining and analyzing tasks such as classification can increase the accuracy of the
results and relevant decisions made by decision-makers using them. This increase can become more
acute when dealing with challenging, large-scale problems in medical applications. Nature-inspired
metaheuristics show superior performance in finding optimal feature subsets in the literature. As a
seminal attempt, a wrapper feature selection approach is presented on the basis of the newly proposed
Aquila optimizer (AO) in this work. In this regard, the wrapper approach uses AO as a search
algorithm in order to discover the most effective feature subset. S-shaped binary Aquila optimizer
(SBAO) and V-shaped binary Aquila optimizer (VBAO) are two binary algorithms suggested for
feature selection in medical datasets. Binary position vectors are generated utilizing S- and V-shaped
transfer functions while the search space stays continuous. The suggested algorithms are compared
to six recent binary optimization algorithms on seven benchmark medical datasets. In comparison to
the comparative algorithms, the gained results demonstrate that using both proposed BAO variants
can improve the classification accuracy on these medical datasets. The proposed algorithm is also
tested on the real-dataset COVID-19. The findings testified that SBAO outperforms comparative
algorithms regarding the least number of selected features with the highest accuracy.

Keywords: transfer function; medical data; nature-inspired algorithm; binary metaheuristic
algorithm; feature selection

MSC: 68T20

1. Introduction

It is difficult and frequently imprecise to analyze big amounts of data in real-world
problems such as engineering, health, biology, or tourism, due to the presence of massive
volumes of data. This massive data, often called big data, contains a combination of fea-
tures with relevant/irrelevant, redundant, or noisy characteristics [1]. Therefore, selecting
effective features is an essential pre-processing technique and prominent data analysis task.
Feature selection is regarded as a searching or optimization task since its objective is to
find effective features that utilize to enhance classification performance [2]. Furthermore,
reducing the complexity and ditching irrelevant and redundant features while enhancing
the algorithms’ performance are the main aims of feature selection approaches. Feature
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selection is also often called dimensionality reduction, which has a variety of applications
in various areas, including but not limited to image analysis, biomedical problems, text
mining, and industrial applications.

The literature classifies feature selection strategies into two categories, filter and wrap-
per approaches, depending on their interaction with the classifier [3]. The former method
finds the optimum subset of features based on measures such as distance, dependency,
or consistency of the features. The latter method employs a learning algorithm, such as
a classifier, to continuously assess the feature subset during the search process to locate
optimal solutions from an exponential collection of features [3]. Although filter techniques
are faster than wrapper methods since they do not consume additional processing time to
invoke the learning algorithm [4], their major drawback is that features do not affect the
classifier’s performance [5]. Meanwhile, the wrapper approaches are more accurate but
computationally more costly [6]. Thus, it is required to employ an optimization algorithm
in order to achieve an optimal set of features.

As mentioned above, the process of selecting features can be considered an optimiza-
tion issue since it aims to identify a subset of features with near-optimal fitness. Considering
the proof that the number of the proper subsets in a dataset with Q features is 2Q-1, feature
selection can be regarded as an NP-hard problem. Thus, finding the best subset of features
is impractical by using exact search strategies [7], and approximate approaches such as
metaheuristic algorithms can be used to select effective features within a reasonable time [8].
Optimization algorithms have numerous advantages over conventional search algorithms,
including the capability of identifying the optimal subset of features within a reasonable
time. Furthermore, the conventional search algorithms require generating all possible
feature subsets to find the optimum solution, which is unsuitable and time-consuming for
large datasets [9].

Metaheuristics are designed to solve challenging optimization problems and provide
acceptable solutions in a reasonable time [8]. Such general-purpose algorithms have the
potential to locate the search space promising regions and the ability to estimate an appro-
priate solution for a particular optimization issue. In addition, metaheuristic algorithms
utilize stochastic strategies to foster population diversity in the early stages of iterations by
searching in the target domain. Meanwhile, the algorithm searches for potential solutions
locally in the exploitation phase to improve upon the quality of solutions found in the
exploration phase. After a limited number of iterations, a reasonable convergence occurs,
meaning that the algorithm does not provide more improvement to the solution. Black-box
nature, simplicity, ease of use, and high global search capability are the main reasons for
the popularity of such algorithms in diverse areas [10]. Some of the trending application
areas are: classification [11,12], power and energy management [13–16], structural engi-
neering [17–19], community detection [20], clustering [21–24], image segmentation [25–28],
global optimization [29–35], industrial engineering [36,37], life-cycle cost analysis in struc-
tural optimization [38], engineering design problem [39–41], task scheduling [42–44] and
virtual machine placement [45,46] in cloud computing, navigation planning [47–49], and
wind speed prediction [50,51].

Metaheuristic algorithms are mostly nature-inspired and are designed to emulate
the biological, physical, and social behaviors of species found in nature. We can group
them into three categories: evolution-based, swarm intelligence-based, and physics-based
algorithms [52]. Evolution-based algorithms tend to mimic creatures’ evolutionary be-
havior concepts in nature. Some of the most well-regarded evolutionary algorithms are
genetic programming (GP) [53], evolution strategy (ES) [54], differential evolution (DE) [55],
evolutionary programming (EP) [56], genetic algorithm (GA) [57], and biogeography-based
optimization (BBO) [58]. The social and collective behavior of swarms in nature, such as
those in colonies of bees, ants, animal herds, and birds’ flocks, are the source of inspiration
for swarm intelligence algorithms. Among this category, the most popular algorithms are
particle swarm optimization (PSO) [59], ant colony optimization (ACO) [60], artificial bee
colony (ABC) [61], and bat algorithm (BA) [62].
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Algorithms based on the fundamental physical rules existing in nature comprise the
last category. Simulated annealing (SA) [63], thermal exchange optimization (TEO) [64],
big bang-big crunch (BB-BC) [65], and atom search optimization (ASO) [66] are some
notable examples of this category. Although the proposed algorithms are designed and
evaluated on different kinds of problems, the No-free-lunch (NFL) theorem [67] states
that there is no general-purpose algorithm that is suitable for tackling all problems with
various characteristics. Thus, the algorithms such as multi-trial vector-based differential
evolution (MTDE) [68], multi-strategy enhanced HHO algorithm (RLHHO) [69], and gaze
cues learning-based grey wolf optimizer (GGWO) [70] were proposed to overcome the
shortcoming of the existing algorithms.

This paper attempts to find effective features by utilizing the Aquila optimizer (AO) [71]
algorithm, which is one of the most recent optimization algorithms to be published. The
AO mimics Aquila’s hunting strategies in nature. Fast-moving prey hunting techniques
reveal the algorithm’s global exploration capability, whereas slow-moving prey hunting
strategies show the algorithm’s local exploitation capability. The canonical AO operates on
the continuous solution search space and cannot be performed on problems with discrete,
binary, or mixed-integer variables. Thus, we propose a wrapper-based binary metaheuristic
algorithm named BAO to select effective features from seven medical datasets. The BAO
algorithm calculates the position of solutions in the binary space using S and V-shaped
transfer functions while the AO’s search space remains continuous.

The following is how the rest of this article is structured: Section 2 provides a literature
review of binary metaheuristic algorithms applicable to feature selection. The continuous
Aquila optimizer algorithm is discussed in Section 3. Section 4 describes the suggested
binary versions of the Aquila optimizer algorithm. Section 5 discusses the suggested
algorithms for the feature selection problem, whereas Section 6 shows the experimental
findings and statistical analysis on medical datasets. In Section 7, the applicability of the
proposed algorithm on the COVID-19 dataset is assessed and compared with comparative
algorithms. Finally, Section 8 concludes the work, and future research is suggested.

2. Related Work

In applications that rely on machine learning classifiers such as data mining, clas-
sification is considered to be an essential process. However, the type of features used,
some of which are usually irrelevant and noisy, has a significant effect on the performance
of these classifiers. Feature selection can minimize the dimensionality of data, reduce
classifier learning time, and enhance classification result by choosing the most effective
features and eliminating the redundant and irrelevant features [72]. Many practical ap-
plications have used feature selection including intrusion detection [73,74], software fault
prediction [75,76], speech emotion recognition [77,78], bankruptcy prediction [79,80], credit
scoring [81], stock trend prediction [82], emotion analysis [83], spam detection [84,85],
digital soil mapping [86], diseases prediction and detection [87–90], breath analysis [91],
biodiesel property selection [92], gene selection [93,94], and wind forecasting [95,96].

As stated, feature selection has an essential role in dimensionality reduction since it
removes irrelevant and redundant features from the original dataset to find an optimal
subset of features. In the following paragraphs, our focus is on reviewing the feature
selection methods that use metaheuristics as search algorithms and rely on using transfer
functions. The challenge of selecting effective features from an entire set of features is
a discrete optimization problem that can be handled by metaheuristics. Metaheuristic
algorithms, in which the search is directed by information gained during the optimiza-
tion process, are practical approaches for solving feature selection problems. Most of the
well-regarded nature-inspired algorithms were designed to address continuous optimiza-
tion issues, whereas some problems are binary in nature. Furthermore, other strategies
for adapting continuous metaheuristic algorithms into discrete domains have also been
proposed, such as normalizing, rounding, and utilizing binary operators [97]. The transfer
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function can also be used as another method of converting continuous components into
binary values.

Due to the binary nature of feature selection, transfer functions are efficient yet easy
ways to limit the result such that 0 means the feature is redundant and not chosen, and 1 rep-
resents the feature is useful and chosen. Transfer functions based on their shape have been
divided into three groups S-shaped, V-shaped, and U-shaped transfer functions [98–101].
In prominent algorithms such as BPSO [98], binary differential evolution (binDE) [102], and
altruistic whale optimization algorithm (AltWOA) [103], the S-shaped transfer function
was employed to estimate the probabilities of shifting positions. In [104], a V-shaped
transfer function is applied to the velocity parameter of the continuous gravitational search
algorithm to handle the feature selection.

In [105], two binary variants were suggested for feature selection with the GWO algo-
rithm as a state-of-the-art algorithm. In the first version, the position changing estimation
for each wolf is accomplished by utilizing an S-shaped transfer function to their respective
positions. The second variant converted the continuous GWO to a binary version via
stochastic crossover. In [106], the binary butterfly optimization algorithm (bBOA) was
proposed to address feature selection issues by using both S-shaped and V-shaped transfer
functions. Each feature subset is represented as a butterfly, and global and local strategies
are used during the search process. However, there are certain flaws with bBOA, such
that it cannot balance the exploration and exploitation, and in the local search strategy,
butterflies merely change their position at random, which is regarded as insufficient [107].
In another similar work [108], a wrapper-based binary SCA (WBSCA) was proposed that
transformed continuous SCA to binary search space by utilizing the V-shaped transfer
function. An improved binary PSO algorithm (ISBPSO) [109] is proposed for selecting
features and used in classification in recent work. The performance of the canonical PSO
algorithm is improved by adapting three strategies to obtain a better initial population,
global search, and convergence property. The proposed ISBPSO is used as a wrapper to
select features and validated on 12 UCI datasets. The comparison of obtained results by
other feature selection algorithms shows that it can obtain higher or similar accuracy with
fewer selected features. Another study [110] proposed a wrapper method for selecting
features, which used MFO as a search strategy. This method used twelve different transfer
functions of S, V, and U-shaped to transform MFO from the continuous version to a binary
one. The proposed variants and wrapper-based comparative algorithms were tested and
compared on medical datasets to confirm competitive performance.

In [111], a binary horse herd optimization algorithm (BHOA) is proposed to tackle
feature selection problems. In BHOA, four configurations of the S, V, and U-shaped
functions are utilized for mapping the HOA to its binary equivalent. Another proposed
binary algorithm for feature selection is binary biogeography-based optimization based
SVM-RFE (BBO-SVM-RFE) [112]. The support vector machine recursive feature elimination
is incorporated into the BBO to enhance the quality of the acquired solutions in the mutation
operator, thereby improving the balance between the exploitative and exploratory aspects
of the original BBO. On the basis of the accuracy and the number of considered features, the
BBO-SVM-REF algorithm surpasses the BBO method and other wrapper and filter methods.
The usage of optimization algorithms is advantageous in selecting features because they
can produce a solution near to the optimum or ideal in a reasonable amount of time.
Contrary to this, conventional exhaustive search methods search through every possible
combination of features from the entire feature set, which is time-consuming and regarded
as an NP-hard task. Despite the fact that various metaheuristic algorithms for dealing
with feature selection have been developed over time, the increasing dimensionality of
data presents significant challenges; therefore, it is worthwhile to continue searching for
effective strategies to improve the performance of metaheuristic algorithms to deal with
high-dimensional feature selection issues.
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3. Aquila Optimizer (AO)

In accordance with the natural Aquila hunting process, the Aquila optimizer (AO) [71]
is a newly proposed algorithm. The hunting process has four steps: expanded exploration
by soaring high with a vertical stoop, narrowed exploration by gliding with a contour
flight, expanded exploitation by low-flying descent attack, and narrowed exploitation by
walking and catching prey. In order to transit from the exploration stage to the exploitation
stage, the AO algorithm uses a variety of behaviors. The exploration stage is simulated in
the first two-thirds of iterations, while the exploitation stage is imitated in the last one-third
of iterations. The following is a mathematical representation of the AO algorithm.

Initializing: The AO algorithm begins by spreading N solutions in a D-dimensional
search space across a preset range [L, U] by applying Equation (1).

Xi,j = Lj + r× (Uj − Lj) (1)

where Xi,j is the j-th dimension of the i-th solution, Lj and Uj refer to the lower and upper
bound value of the j-th dimension in the search space, and r is chosen at random from the
range of 0 to 1. The position of solutions is kept in matrix XN×D. Then, by f (Xi), the fitness
value of each solution is calculated.

Expanded exploration: An Aquila first determines the prey region and picks the
optimal hunting location by high-soaring while stooping vertically. This behavior leads
to the search space being explored from high altitudes to estimate where the prey can be
located. In AO, this behavior is simulated to expand the exploration by Equation (2) and is
executed when iter < (2/3 ×MaxIter) and randomly generated value < 0.5,

X1(iter + 1) = Xbest(iter)× (1− iter
MaxIter

) + (XM(iter)− Xbest(iter)× r) (2)

where X1(iter + 1) is the solution given by the prime method to use in the subsequent
iteration and Xbest(iter) is the best solution found until the current iteration and approxi-
mates the position of prey. The (1− iter

MaxIter ) term is utilized to regulate the extent of the
exploration based on the number of iterations, where iter denotes the current iteration and
MaxIter is the number of iterations that can be performed. In the iter-th iteration, XM(iter)
indicates the mean of currently available solutions, as determined by Equation (3),

XM(iter) =
1
N

N

∑
i=1

Xi(iter), ∀ j = 1, 2, . . . , D (3)

where D denotes the dimension size of the search space and N represents the number
of solutions.

Narrowed exploration: In the second step, the hunting behavior named contour flight
of a short glide attack is performed. Aquila flies over the targeted prey, prepares to descend,
and attacks when spotted from a high height. This behavior allows the Aquila to explore a
specific region narrowly. In AO, this behavior is simulated to narrow the exploration by
Equation (4) and is done when iter < (2/3 ×MaxIter) and randomly generated value > 0.5,

X2(iter + 1) = Xbest(iter)× Levy(D) + XR(iter) + (y− x)× r (4)

where X2(iter + 1), XR(iter), and Levy(D) represent the solutions produced by the narrowed
exploration strategy, a randomly selected solution from entire solutions in the iter-th
iteration, and the Levy flight distribution function calculated by Equation (5), respectively.

Levy(D) = s× u× σ

|v|
1
β

, σ = (
Γ(1 + β)× sin(πβ

2 )

Γ( 1+β
2 )× β× 2(

β−1
2 )

) (5)
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where s = 0.01, β = 1.5, and u and v are random integer numbers ranging in [0, 1]. In
Equation (4), the spiral form is represented by y and x calculated using Equation (6),

y = p× cos(θ), x = p× sin(θ) (6)

where r and θ are calculated by Equations (7) and (8),

p = r1 + U × D1 (7)

θ = −ω× D1 + θ1, θ1 =
3× π

2
(8)

where the number of search cycles is fixed by the random number r1 which is between
1 and 20, D1 is an integer value in the range of 1 to D, U = 0.00565, and ω = 0.005.

Expanded exploitation: Aquila employs the third strategy to pursue prey during
the expanded exploitation step. The Aquila has carefully identified the prey zone and is
prepared to alight and attack. In order to determine how the prey would respond to the
attack, the Aquila descends vertically and performs the first strike. This behavior is named
low-flying descent attack and is performed when iter > (2/3 × MaxIter) and randomly
generated value < 0.5 by Equation (9).

X3(iter + 1) = (Xbest(iter)− XM(iter))× α− r + ((U − L)× r + L)× δ (9)

where X3(iter + 1) denotes the solutions obtained by the expanded exploitation method and
the exploitation adjustment parameters α and δ are set to 0.1.

Narrowed exploitation: The fourth hunting strategy is used during the narrower
exploitation step when the Aquila approaches the prey and attacks randomly. This behavior
is called walking and grabbing the prey and is done when iter > (2/3 × MaxIter) and
randomly generated value > 0.5 by Equation (10).

X4(iter + 1) = QF(iter)× Xbest(iter)− (G1 × X(iter)× r)− G2 × Levy(D) + r× G1 (10)

where X4(iter + 1) denotes the generated fourth search solutions, X(iter) is the iter-th
iteration’s current solution, and to balance the search strategy, a quality function called QF
is calculated by Equation (11).

QF(iter) = t
2×r−1

(1−MaxIter)2 (11)

G1 and G2 are values to represent the Aquila’s prey tracking movements such that
the G2’s value is decreasing from 2 to 0. The calculation of G1 and G2 are done by
Equations (12) and (13).

G1 = 2× r− 1 (12)

G2 = 2× (1− iter
MaxIter

) (13)

The AO algorithm is inspired by Aquila’s natural behavior and shown a competitive
performance when adapted to solve optimization problems [113]. The algorithm’s global
exploration ability is shown by the hunting strategies for fast-moving prey, while the
algorithm’s local exploitation capability is demonstrated by the hunting approaches for
slow-moving prey. The AO algorithm has a high search efficiency, fast convergence speed,
and good global exploration but lacks local exploitation, making it susceptible to get
trapped in the local optimum [114]. The BAO’s major goal is to tackle the restriction of the
continuous AO to solve feature selection problems by utilizing its binary form.

4. Binary Aquila Optimizer (BAO) Algorithm

A binary optimization problem’s search space can be considered a hypercube, which
allows an individual to move from one point to another by altering one or more bits of its
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position. Since binary space contains only two values, “0” and “1”, the position updating
for binary optimization issues such as feature selection cannot be achieved by continuous
strategies. Transfer functions are one of the key components of metaheuristic-based feature
selection algorithms, in which the continuous search space is mapped to the discrete space.
Transfer functions are used to assess the probability of altering the elements of a position
vector to 0 or 1 based on the value of the i-th solution’s vector in the d-th dimension.
S-shaped and V-shaped transfer functions are the two most prevalent forms of transfer
functions [98,99] such that continuous metaheuristic algorithms can be discretized and
utilized to solve binary optimization problems by converting a real vector into a binary
vector. In Table 1 and Figure 1, formulation and visual representation of these two families
of transfer functions are provided.

Table 1. List of transfer functions.

S-Shaped Transfer Functions V-Shaped Transfer Functions

Name Function Name Function

S1 T(x) = 1
1+e−2(x) V1 T(x) =

∣∣∣√2
π

∫ (
√

π/2)x
0 e−t2

dt
∣∣∣

S2 T(x) = 1
1+e−x V2 T(x) = |tanh(x)|

S3 T(x) = 1
1+e(−x/2) V3 T(x) =

∣∣∣(x)
√

1 + x2
∣∣∣

S4 T(x) = 1
1+e(−x/3) V4 T(x) =

∣∣∣ 2
π arctan(π

2 )x
∣∣∣
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Although the AO algorithm was initially suggested to solve continuous optimization
issues, it has to be adapted to accommodate the binary challenge of feature selection.
Therefore, in order to solve binary problems through the use of AO, a transfer function
needs to be used to convert a solution vector with continuous values into a probability
vector. The transfer functions of both families are utilized to adapt continuous AO to binary
variants called SBAO and VBAO in this study. Specifically, eight different transfer functions
are considered, which result in eight distinct BAO variations.

4.1. S-Shaped Binary Aquila Optimizer (SBAO) Algorithm

The suggested variants of the BAO algorithm treat the search space as a continuous
space where every solution has a real-valued position vector. The continuous values in the
search space must be mapped to binary values using our proposed algorithms to derive
a binary position vector for the solution. Each dimension of the position is taken into
account by applying a particular S-shaped transfer function to compel the solution to move
around in binary space. Using the floating-point position values, the transfer function
calculates a limited probability in the interval [0, 1] for each solution. A floating-point
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vector is then converted to a bit-string position vector based on the obtained probabilities.
In Equation (14), the S-shaped function is given for generating probability value.

S(Xi
d(iter + 1)) =

1
1 + e(−Xi

d(iter)/3)
(14)

The value of S(Xi
d(iter + 1)) denotes the possibility of altering the i-th solution’s binary

position value in the d-th dimension. After comparing the probability to a threshold value,
the binary value is calculated, as shown in Equation (15), where rand is a random value
between 0 and 1.

Xd
i (iter + 1) =

{
1 , i f rand ≤ S(Xd

i (iter + 1))
0 , otherwise

(15)

4.2. V-Shaped Binary Aquila Optimizer (VBAO) Algorithm

The V-shaped transfer function is another function used to calculate the possibility
of changing positions. Similar to the S-shaped transfer function, the V-shaped transfer
function is also used to calculate the probability of changing the search agent’s location by
Equation (16).

V(Xd
i (iter + 1)) =

∣∣∣∣ 2
π

arctan(
π

2
)(Xd

i (iter))
∣∣∣∣ (16)

Following the changing probability values calculation, each search agent’s binary
position vector is updated using an updating position equation, as shown in Equation (17),
where rand is a random value between 0 and 1.

Xd
i (iter + 1) =

{
complement(Xd

i (iter)) , i f rand ≤ V(Xd
i (iter + 1))

Xd
i (iter) , otherwise

(17)

The continuous Aquila Optimizer (AO) is converted into its binary variant (BAO)
by transforming each search agent’s dimension to a probability value ranging from 0 to
1 as given in Equation (2). This is done utilizing all variations of S-shaped and V-shaped
transfer functions. Therefore, the probability of changing each search agent’s position
is calculated through the use of either S-shaped or V-shaped transfer functions shown
by Equations (14) and (16). Then, the binary position of the search agent is obtained by
considering the calculated changing probability value using Equation (15) or (17). To
identify the appropriate transfer function, eight different variants of the suggested BAO
are examined since transforming a continuous search space to a binary domain greatly
affects the performance and results of classifiers. The pseudo-code of the proposed BAO
algorithm is shown in Algorithm 1. BAO has an O(NDT) computational complexity, where
N, D, and T are the population size, the number of features, and the maximum number of
iterations, respectively.
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Algorithm 1. The binary Aquila optimizer (BAO)
Input: N (population size), D (the dimension’s number), MaxIter (maximum number of
iterations)
Output: The best solution (Xbest)

1 : Begin
2 : Initializing iter = 1, α = 0.1, δ = 0.1.
3 : Generating a random initial population X.
4 : While it ≤MaxIter
5 : Evaluating the fitness function values and set the Xbest(it).
6 : If iter < (2/3) ×MaxIter
7 : If rand < 0.5
8 : Calculating X1(iter + 1) using Equation (2).
9 : Updating X(iter + 1) and Xbest(iter).
10 : else
11 : Calculating X2(iter + 1) using Equation (4).
12 : Updating X(iter + 1) and Xbest(iter).
13 : End if
14 : else
15 : If rand < 0.5 then
16 : Calculating X3(iter + 1) using Equation (9).
17 : Updating X(iter + 1) and Xbest(iter).
18 : Else
19 : Calculating X4(iter + 1) using Equation (10).
20 : Updating X(iter + 1) and Xbest(iter).
21 : End if
22 : End if
23 : Calculating the probability values using Equation (14) or (16).
24 : Updating binary position.
25 : iter = iter + 1.
26 : End while
27 : Return the best solution (Xbest).
28 : End

5. Binary Aquila Optimizer Algorithm for Feature Selection Problem

Feature selection entails identifying relevant features in a dataset to enhance learning
capabilities, reduce computation complexity, and improve classification performance. The
optimum feature subset is obtained using a binary algorithm depending on the nature of
the feature selection problem. Using the binary approach, each solution is represented by
binary vectors with D entries, reflecting the number of features in a dataset. Each entry of
the solution vector has a value of 0 or 1, where 0 signifies no selection and 1 indicates the
selection of that particular feature. The feature selection problem is addressed by utilizing
two binary variants of the AO algorithm. As a multi-objective problem, the problem of
feature selection requires the fulfillment of two conflicting objectives. This is a conflict
between objectively maximizing accuracy and minimizing the selection of features. The
weighted sum multi-objective fitness function for evaluating each solution is shown in
Equation (18).

Fitness = αER(D) + β
|R|
|C| (18)

where α and β are two factors that represent the weight of accuracy and the number of
selected features and their values are set in the range of α ∈ [0, 1] and β = 1 − α [105]. The
classification error, the number of chosen features, and the total number of features are
represented by ER(D), |R|, and |C|, respectively.

6. Experimental Evaluation and Results

An evaluation of the performance of variants of SBAO and VBAO algorithms is pre-
sented in this section by presenting detailed experimental results and statistical analysis.
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To assess the efficiency of the BAO algorithms, these experiments include performance
evaluation and convergence evaluation. In the comparative experiment, the gained results
are assessed along with the state-of-the-art and recently developed nature-inspired algo-
rithms consisting of binary bat algorithm (BBA) [115], binary gravitational search algorithm
(BGSA) [104], binary grey wolf optimization (BGWO) [105], binary dragonfly algorithm
(BDA) [116], S-shaped binary sine cosine algorithm (SBSCA) [117], and V-shaped binary
sine cosine algorithm (VBSCA) [117]. Moreover, a non-parametric statistical test, known as
the Friedman test [118], is used to demonstrate the significance of the difference between
the gained results and comparative algorithms. Additionally, we performed an experiment
on the COVID-19 dataset and compared the gained results by comparative algorithms.

6.1. Datasets Description and Experimental Environment

The proposed BAO algorithms were validated on seven medical datasets selected
from [119,120] with varying numbers of features and instances. A detailed description of
each dataset is provided in Table 2, including the number of instances, features, and classes.
As part of the evaluation process, each dataset was split into two sets: a training set and a
testing set, with 80% of the instances used for training and the remainder for testing. In
this wrapper approach, the k-nearest neighbors (k-NN) method is employed to estimate
the classification error rate of the selected feature subset. The proposed algorithms were
developed by Matlab programming environment R2014b, and all experiments were run on
a CPU, Intel Core(TM) i7-3770 at 3.4 GHz and 8.00 GB RAM.

Table 2. Statistical information of datasets.

Dataset No. of Instances No. of Features No. of Classes

Heart 270 14 2

Breast Cancer 683 10 2

Pima 768 9 2

Breast-WDBC 569 31 2

Lymphography 148 19 4

Colon 62 2000 2

Leukemia 72 7129 2

6.2. Experimental Setup

Throughout this work, all of the comparative algorithms’ parameters were set as in
their original works, as indicated in Table 3. The appropriate values for the parameters α
and δ are found by some pretests reported in Appendix A. To gain meaningful results, all
experiments were done and evaluated by 30 separate runs. All algorithms’ initial settings
were set to the same maximum iterations (MaxIter) and population size (N) to 300 and
20 to ensure fair comparisons. The value of α and β parameters in the fitness function in
Equation (18) are set by 0.99 and 0.01, and the value of parameter k is set with 5 in the k-NN
classifier, respectively. As an evaluation criterion, all algorithms use classification accuracy
and the number of selected features. The algorithms’ performance was measured using
mean and standard deviation (SD) of accuracy, the number of selected features, and the
gained fitness.

6.3. Performance Evaluation of SBAO and VBAO

In this subsection, seven medical datasets are used to benchmark various variants of
the proposed BAO to determine the impact of different transfer functions on the proposed
algorithm’s performance. The BAO variants utilize eight transfer functions listed in Table 1.
The efficacy of the variants is evaluated by the mean and standard deviation of accuracy,
the number of selected features, and the gained fitness. Tables 4–6 provide a summarization
of the gained results achieved by the algorithms. In Table 4, the mean and SD for the



Mathematics 2022, 10, 1929 11 of 24

accuracy of eight variants of BAO with S-shaped and V-shaped transfer functions in 30 runs
are tabulated. As per results in Table 4, the variants SBAO-2, SBAO-3, SBAO-4, and
VBAO-1, VBAO-3, and VBAO-4 provided the highest accuracy in the Pima dataset. All the
variants gained the same and superior accuracy in the Breast cancer dataset. In Heart and
Lymphography datasets, the BAO versions that utilize transfer functions S4 and V4 can
achieve better accuracy than the other variants. SBAO-3 and VBAO-3 outperform other
variants in terms of accuracy in the Breast-WDBC dataset. In the Colon dataset, SBAO-1,
SBAO-2, and VBAO-1 and in the Leukemia dataset, SBAO-2 and VBAO-1 obtain the best
results that show the binary AO’s performance in selecting features from large datasets.

Table 3. Algorithms parameter settings.

Algorithm Parameter Value

BSCA a 2

BBA

A 0.5

r 0.5

Qmin 0

Qmax 2

BGSA G0 100

BGWO a [2 0]

BAO α and δ 0.1

Table 4. The accuracy comparison of SBAO and VBAO.

Dataset Metric SBAO-1 SBAO-2 SBAO-3 SBAO-4 VBAO-1 VBAO-2 VBAO-3 VBAO-4

Pima
Mean acc. 0.772 0.773 0.773 0.773 0.773 0.772 0.773 0.773

SD acc. 0.001 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Breast Cancer
Mean acc. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SD acc. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Heart
Mean acc. 0.894 0.896 0.894 0.898 0.887 0.885 0.892 0.896

SD acc. 0.009 0.009 0.009 0.009 0.010 0.014 0.011 0.012

Lymphography
Mean acc. 0.862 0.864 0.867 0.871 0.862 0.860 0.867 0.869

SD acc. 0.024 0.026 0.028 0.024 0.024 0.025 0.030 0.015

Breast-WDBC
Mean acc. 0.967 0.967 0.967 0.967 0.964 0.964 0.965 0.965

SD acc. 0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.000

Colon
Mean acc. 0.950 0.950 0.925 0.925 0.875 0.858 0.850 0.858

SD acc. 0.056 0.041 0.025 0.045 0.042 0.038 0.033 0.038

Leukemia
Mean acc. 0.9714 0.9929 0.9786 0.9571 0.9429 0.9357 0.9286 0.9357

SD acc. 0.0356 0.0218 0.0333 0.0356 0.0436 0.0391 0.0325 0.0218

As tabulated in Table 5, the mean and standard deviation of selected features are
calculated for 30 independent runs using BAO variants. It can be observed that SBAO-1
and VBAO-2 can be achieved better results in the Pima dataset. The BAO with S-shaped
and V-shaped transfer functions except the fourth S-shaped function have achieved the
same best number of selected features in the Breast cancer dataset. In the Heart dataset,
both transfer functions S1 and V1 in BAO achieved the minimum selection of features.
For the Lymphography dataset, SBAO-1, SBAO-3, and SBAO-4 have shown equal perfor-
mance, whereas VBAO-1 has better performance in comparison to other V-shaped variants.
SBAO-2 and VBAO-4 achieved better performance for the Breast-WDBC dataset. In the
Colon dataset, SBAO-4 and VBAO-2 and in Leukemia, SBAO-2 and VBAO-1 had better
performance than other variants. Table 6 demonstrates the proposed algorithms’ results



Mathematics 2022, 10, 1929 12 of 24

regarding the mean and SD of the gained fitness values. The results demonstrate the impact
of utilizing various transfer functions on the BAO’s performance.

Table 5. The number of selected features comparison of SBAO and VBAO.

Dataset Metric SBAO-1 SBAO-2 SBAO-3 SBAO-4 VBAO-1 VBAO-2 VBAO-3 VBAO-4

Pima
Mean 4.97 5.00 5.00 5.00 5.00 4.97 5.00 5.00

SD 0.18 0.00 0.00 0.00 0.00 0.18 0.00 0.00

Breast Cancer
Mean 3.00 3.00 3.00 3.07 3.00 3.00 3.00 3.00

SD 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00

Heart
Mean 4.90 5.60 5.00 5.50 5.00 5.10 5.40 6.30

SD 1.40 1.45 1.36 1.53 1.20 1.32 1.30 1.02

Lymphography
Mean 5.73 6.27 5.73 5.73 7.20 8.07 7.73 7.47

SD 1.95 2.18 1.36 1.20 1.45 2.12 1.84 1.57

Breast-WDBC
Mean 5.00 4.13 4.53 4.87 9.80 10.13 9.80 9.07

SD 2.03 1.22 1.74 1.70 2.41 1.85 1.49 1.08

Colon
Mean 120.10 118.10 133.80 107.60 47.50 35.70 85.60 134.00

SD 202.62 281.94 342.86 165.75 55.20 27.25 83.63 108.07

Leukemia
Mean 1316.70 1151.80 1739.80 2111.30 228.50 1151.90 1457.60 2651.80

SD 520.27 1300.27 1220.66 1177.89 161.25 1321.51 1483.56 1099.86

Table 6. The fitness comparison of SBAO and VBAO.

Dataset Metric SBAO-1 SBAO-2 SBAO-3 SBAO-4 VBAO-1 VBAO-2 VBAO-3 VBAO-4

Pima

Mean
fitness 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231

SD fitness 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Breast Cancer

Mean
fitness 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

SD fitness 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Heart

Mean
fitness 0.108 0.107 0.108 0.105 0.115 0.117 0.110 0.107

SD fitness 0.007 0.008 0.007 0.008 0.009 0.013 0.010 0.011

Lymphography

Mean
fitness 0.139 0.137 0.135 0.130 0.140 0.143 0.136 0.133

SD fitness 0.023 0.025 0.026 0.023 0.023 0.024 0.029 0.014

Breast-WDBC

Mean
fitness 0.034 0.034 0.033 0.034 0.038 0.038 0.037 0.037

SD fitness 0.004 0.003 0.004 0.003 0.002 0.002 0.002 0.000

Colon

Mean
fitness 0.050 0.050 0.074 0.074 0.124 0.140 0.148 0.140

SD fitness 0.055 0.041 0.025 0.045 0.041 0.038 0.033 0.038

Leukemia

Mean
fitness 0.030 0.008 0.023 0.045 0.056 0.065 0.072 0.067

SD fitness 0.034 0.021 0.032 0.034 0.043 0.039 0.032 0.022

6.4. Performance Comparison with State-of-the-Art Algorithms

In this subsection, the obtained results of the proposed binary versions of the AO,
SBAO, and VBAO for each dataset are compared with other binary state-of-the-art al-
gorithms that are widely used to solve the feature selection problem. To compare with
other comparative algorithms, for each dataset, one variant of S-shaped and V-shaped
transfer functions was selected such that the variant provides better performance in terms
of accuracy. This selection of SBAO and VBAO for each dataset is as follows: Pima (SBAO-1,
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VBAO-2), Breast cancer (SBAO-1, VBAO-1), Heart (SBAO-4, VBAO-4), Lymphography
(SBAO-4, VBAO-4), Breast-WDBC (SBAO-3, VBAO-3), Colon (SBAO-2, VBAO-1), and
Leukemia (SBAO-2, VBAO-1). The experimental results are shown in Tables 7–9, in which
the best-obtained results are remarked in boldface. The Friedman test [118] was used to
examine the accuracy gained by SBAO, VBAO, and comparative algorithms. A comparison
of binary AO and comparative algorithms was also performed in order to determine their
convergence behavior.

Table 7. The accuracy comparison of SBAO and VBAO with other binary metaheuristic algorithms.

Dataset Metric BBA BGSA BGWO BDA SBSCA VBSCA SBAO VBAO

Pima
Mean acc. 0.754 0.773 0.766 0.669 0.773 0.773 0.773 0.773

SD acc. 0.012 0.000 0.009 0.112 0.000 0.000 0.000 0.000

Breast cancer
Mean acc. 0.998 1.000 0.999 0.865 1.000 1.000 1.000 1.000

SD acc. 0.003 0.000 0.001 0.103 0.000 0.000 0.000 0.000

Heart
Mean acc. 0.852 0.877 0.871 0.697 0.896 0.892 0.899 0.896

SD acc. 0.017 0.009 0.025 0.237 0.009 0.007 0.009 0.012

Lymphography
Mean acc. 0.797 0.834 0.830 0.797 0.877 0.863 0.871 0.869

SD acc. 0.023 0.020 0.026 0.217 0.025 0.020 0.024 0.015

Breast-WDBC
Mean acc. 0.951 0.959 0.953 0.955 0.967 0.965 0.967 0.965

SD acc. 0.006 0.004 0.006 0.067 0.004 0.002 0.003 0.002

Colon
Mean acc. 0.766 0.788 0.794 0.866 0.877 0.838 0.950 0.875

SD acc. 0.034 0.042 0.042 0.041 0.042 0.021 0.041 0.042

Leukemia
Mean acc. 0.831 0.864 0.888 0.971 0.971 0.914 0.993 0.942

SD acc. 0.078 0.047 0.064 0.035 0.035 0.029 0.021 0.043

Friedman test-Average rank 7.50 5.00 6.14 6.29 2.21 3.93 1.79 3.14

Overall rank 8 5 6 7 2 4 1 3

Table 8. The number of selected features comparison of SBAO and VBAO with comparative algorithms.

Dataset Metric BBA BGSA BGWO BDA SBSCA VBSCA SBAO VBAO

Pima
Mean 3.00 5.00 5.10 5.00 5.00 5.00 5.00 5.00

SD 1.53 0.00 0.31 0.00 0.00 0.00 0.00 0.00

Breast Cancer
Mean 3.27 3.20 4.27 3.00 3.00 3.00 3.00 3.00

SD 1.41 0.41 1.08 0.00 0.00 0.00 0.00 0.00

Heart
Mean 5.07 4.97 7.03 5.33 5.27 5.27 5.50 6.30

SD 2.07 1.16 0.76 1.42 1.46 1.41 1.53 1.02

Lymphography
Mean 6.33 7.63 9.73 6.03 6.13 7.23 5.73 7.47

SD 3.07 1.73 2.21 1.33 1.55 2.06 1.20 1.57

Breast-WDBC
Mean 11.10 12.77 11.93 4.27 4.20 9.33 4.53 9.80

SD 3.39 2.51 2.46 1.14 1.06 2.25 1.74 1.49

Colon
Mean 687.00 973.03 1061.60 738.23 917.37 109.90 118.10 47.50

SD 84.99 28.66 75.54 54.02 21.55 65.74 281.94 55.20

Leukemia
Mean 2520.17 3537.93 4585.00 3032.17 3426.40 1579.40 1151.80 228.50

SD 325.76 41.25 340.83 217.44 44.33 996.49 1300.27 161.25

Friedman test-Average rank 4.00 5.79 7.86 3.79 3.86 3.57 3.21 3.93

Overall rank 6 7 8 3 4 2 1 5



Mathematics 2022, 10, 1929 14 of 24

Table 9. The fitness comparison of SBAO and VBAO with other binary metaheuristic algorithms.

Dataset Metric BBA BGSA BGWO BDA SBSCA VBSCA SBAO VBAO

Pima

Mean
fitness 0.249 0.231 0.237 0.330 0.231 0.231 0.231 0.231

SD fitness 0.011 0.000 0.009 0.108 0.000 0.000 0.000 0.002

Breast Cancer

Mean
fitness 0.005 0.003 0.005 0.135 0.003 0.003 0.003 0.003

SD fitness 0.003 0.000 0.001 0.102 0.000 0.000 0.000 0.000

Heart

Mean
fitness 0.149 0.125 0.132 0.302 0.106 0.110 0.105 0.107

SD fitness 0.017 0.008 0.025 0.233 0.008 0.006 0.008 0.011

Lymphography

Mean
fitness 0.204 0.168 0.173 0.219 0.125 0.139 0.130 0.133

SD fitness 0.022 0.020 0.026 0.256 0.024 0.019 0.023 0.014

Breast-WDBC

Mean
fitness 0.050 0.044 0.050 0.045 0.033 0.037 0.033 0.037

SD fitness 0.005 0.004 0.006 0.067 0.004 0.002 0.004 0.002

Colon

Mean
fitness 0.233 0.213 0.208 0.135 0.125 0.160 0.050 0.124

SD fitness 0.033 0.041 0.041 0.041 0.041 0.020 0.041 0.041

Leukemia

Mean
fitness 0.170 0.139 0.117 0.032 0.033 0.087 0.008 0.056

SD fitness 0.077 0.046 0.063 0.035 0.035 0.027 0.021 0.043

As demonstrated in Table 7, the gained results of SBAO, VBAO, and comparative
algorithms on the basis of mean and standard deviation of the estimated accuracy for
30 separate runs on each of seven datasets are summarized. The BAO algorithm produces
superior and competitive results on the datasets evaluated, as shown in Table 7. In the
Pima and Breast cancer datasets, BAO produces the same results as BGSA, SBSCA, and
VBSCA, while outperforming the rest of the algorithms on the Heart, Colon, and Leukemia
datasets. According to the results, the proposed BAO algorithm was significantly more
accurate than the comparative algorithms.

In Figure 2, the proposed BAO algorithm compares to the comparative algorithms in
terms of the best-obtained classification accuracy in 30 runs. Additionally, the mean and
standard deviation for the number of selected features are shown in Table 8. The plotted
results show how the BAO can explore the search space for the most effective feature
subset with the greatest classification accuracy. The suggested BAO beats the comparative
algorithms when it comes to determining the effective subset with the fewest number of
features, as shown in Table 8. It can be observed that SBAO and VBAO, like BDA, SBSCA,
and VBSCA, performed best on the Breast cancer dataset, but SBAO and VBAO performed
better on the Lymphography, Colon, and Leukemia datasets.

Figures 3 and 4 show a comparison between the proposed BAO and the comparative
algorithms on four small datasets Breast cancer, Heart, Lymphography, and Breast-WDBC,
and large datasets Colon and Leukemia. These figures show the number of selected features
by considering the best-achieved accuracy. Table 9 shows the gained results of the SBAO
and VBAO compared to comparative algorithms in terms of fitness value. BAO’s ability to
intensively explore promising regions of feature space and intensely exploit near solutions
is the reason for this performance.

The average fitness convergence curves obtained by the suggested variations of BAO
and comparative algorithms are shown in Figure 5. For the proposed BAO and comparative
algorithms, the convergence curves are based on the optimal fitness function as well as
mean convergence curves. The minimum fitness functions’ convergence curves illustrate
the highly qualified performance of the proposed BAO algorithm. The plotted curves
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demonstrate that BAO can develop more effective solutions and strike a more favorable
balance between exploration and exploitation.
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Figure 4. The Number of selected features comparison on large datasets.

Figure 5 shows with the exception of the Lymphography dataset, two variations of
BAO discover superior fitness than other algorithms in all datasets. BGSA, unlike BAOs,
shows a substantial decrease in fitness value in the early iterations, but the fitness value
stayed constant for almost remained iterations, and eventually, it exhibits a significant loss
in fitness value in the last iterations. While the BBA and BGWO algorithms demonstrate
a steady convergence, the search process results in stagnation in non-optimal solutions.
Finally, both SBSCA and VBSCA algorithms demonstrate a similar behavior to BAOs with
a delayed convergence characteristic throughout the search phase.
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Colon 
Mean fitness 0.233 0.213 0.208 0.135 0.125 0.160 0.050 0.124 

SD fitness 0.033 0.041 0.041 0.041 0.041 0.020 0.041 0.041 

Leukemia 
Mean fitness 0.170 0.139 0.117 0.032 0.033 0.087 0.008 0.056 

SD fitness 0.077 0.046 0.063 0.035 0.035 0.027 0.021 0.043 

The average fitness convergence curves obtained by the suggested variations of BAO 
and comparative algorithms are shown in Figure 5. For the proposed BAO and compara-
tive algorithms, the convergence curves are based on the optimal fitness function as well 
as mean convergence curves. The minimum fitness functions’ convergence curves illus-
trate the highly qualified performance of the proposed BAO algorithm. The plotted curves 
demonstrate that BAO can develop more effective solutions and strike a more favorable 
balance between exploration and exploitation.  

Figure 5 shows with the exception of the Lymphography dataset, two variations of 
BAO discover superior fitness than other algorithms in all datasets. BGSA, unlike BAOs, 
shows a substantial decrease in fitness value in the early iterations, but the fitness value 
stayed constant for almost remained iterations, and eventually, it exhibits a significant 
loss in fitness value in the last iterations. While the BBA and BGWO algorithms demon-
strate a steady convergence, the search process results in stagnation in non-optimal solu-
tions. Finally, both SBSCA and VBSCA algorithms demonstrate a similar behavior to 
BAOs with a delayed convergence characteristic throughout the search phase. 

  

Figure 5. Cont.
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7. Using BAO for COVID-19 Case Study

The suggested BAO is used to diagnose COVID-19 patient health in this section. The
COVID-19 patient dataset was obtained from [121]. The dataset includes 864 instances and
15 features, as shown in Table 10. This experiment aims to anticipate the patients’ mortality
and recovery status based on the supplied criteria. In the main dataset, patients whose
death or recovery status is missing are removed. The feature id was removed from the
dataset, and all features were transformed to numeric form. In this case, we use k-fold
cross-validation with K = 10 for the validation process. Figures 6 and 7 demonstrate the
accuracy and selected feature size of the proposed BAO and comparative algorithms on
the COVID-19 dataset. SBAO, which took into account seven features, had the greatest
classification accuracy of 96.80%. On the other hand, the gained results reveal that VBAO
only needed three features to diagnose the patient’s health.

The BAO’s major goal is to overcome the restriction of the canonical continuous AO
algorithm in solving the feature selection issue, the use of its binary form resolves this. The
algorithm provides fast convergence speed, strong global exploration capabilities, and high
search efficiency during the search process, resulting in a better performance than other
algorithms. Furthermore, the BAO’s performance demonstrates its capability to search the
feature space for effective features while maintaining balance exploration and exploitation
over several iterations.
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Table 10. Description of COVID-19 dataset.

No. Features Description

1 Id The patient’s id

2 Location The location where patient belongs to

3 Country The country where patient belongs to

4 Gender The patient’s gender

5 Age The patient’s age

6 Sym-on The date patient started noticing the symptoms

7 Hosp_vis The date patient visited the hospital

8 Vis_wuhan Whether the patient visited Wuhan, China

9 From_wuhan Whether the patient from Wuhan, China

10 Symptom1 Symptom of patient (Fever)

11 Symptom2 Symptom of patient (Cough)

12 Symptom3 Symptom of patient (Cold)

13 Symptom4 Symptom of patient (Fatigue)

14 Symptom5 Symptom of patient (Body pain)

15 Symptom6 Symptom of patient (Malaise)

Death Whether the patient passed away due to COVID-19

Recov Whether the patient recovered
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8. Conclusions and Future Works

In this article, two binary variations of the Aquila optimizer (AO) were introduced in
this article and utilized to discover the wrapper approach’s effective features. S-shaped
and V-shaped transfer functions are utilized to alter the continuous version of AO into two
binary algorithms, SBAO and VBAO. Then, the effective features from the medical datasets
were selected for disease detection using the proposed algorithms. The gained results of the
SBAO and VBAO were compared to six binary algorithms on seven medical datasets. The
experimental findings demonstrate that the SBAO method can compete and/or achieve
superior results on most datasets. In addition, the proposed algorithm was tested using
the COVID-19 real-dataset. As a result of the findings, SBAO significantly outperforms
other comparative algorithms and has shown to be more accurate than other comparative
algorithms regarding predicting accuracy and minimizing the number of selected features.
The BAO’s performance over numerous iterations indicates its ability to find effective
features while balancing exploration and exploitation. The algorithm provides speedy
convergence, global exploration capabilities, and good search efficiency during the search
process. In future research, the BAO variants can be applied to a variety of datasets and
real-world situations by using various classifiers. Using the BAO to solve issues with many
objectives might also be interesting.
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Appendix A

The appropriate values for the parameters α and δ used in the BAO are found using
some pretests on the Leukemia dataset. Table A1. shows the comparison of mean accuracy
and selected number of features by the different variants of SBAO and VBAO using values
from set {0.1, 0.5, and 0.9}. The results indicate that the BAO can achieve better performance
when α = 0.1 and δ = 0.1.

Table A1. The pretests’ results for tuning the parameters α and δ.

α = 0.1 α = 0.5 α = 0.9

BAO Variants Metric δ = 0.1 δ = 0.5 δ = 0.9 δ = 0.1 δ = 0.5 δ = 0.9 δ = 0.1 δ = 0.5 δ = 0.9

SBAO-1
Acc. 0.9714 0.9762 1.0000 1.0000 0.9762 1.0000 1.0000 0.9762 0.9762

#SF. 1316.70 486.00 2147.33 1581.67 1318.66 1375.00 2236.33 1513.00 1809.67

SBAO-2
Acc. 0.9929 0.9762 1.0000 1.0000 0.9524 1.0000 1.0000 1.0000 0.9762

#SF. 1151.80 3049.00 2079.00 1955.33 1310.667 1717.00 1738.00 1284.67 1516.00

SBAO-3
Acc. 0.9786 0.9524 0.9762 1.0000 1.0000 0.9762 0.9762 1.0000 0.9762

#SF. 1739.80 1043.00 2858.67 2845.67 2703.667 1948.00 3050.00 2092.67 1791.67

SBAO-4
Acc. 0.9571 0.9762 0.9762 1.0000 1.0000 1.0000 1.0000 0.9762 0.9524

#SF. 2111.30 2804.00 2383.00 2412.67 3626 2306.67 3518.00 2143.67 2123.00

VBAO-1
Acc. 0.9429 0.9286 0.9524 0.9524 0.9524 0.9048 0.9286 0.9286 0.9286

#SF. 228.50 1292.00 265.33 1278.67 464.6667 501.33 163.00 1752.67 1497.67

VBAO-2
Acc. 0.9357 0.9524 0.9048 0.9286 0.9286 0.9286 0.9224 0.9286 0.9124

#SF. 1151.90 745.67 1195.67 308.67 2570.667 741.33 347.33 2073.00 161.67

VBAO-3
Acc. 0.9286 0.9124 0.9286 0.9162 0.9286 0.9086 0.9048 0.9286 0.9286

#SF. 1457.60 1975.33 1603.33 1471.00 1822.667 1854.33 2413.33 1490.00 1624.33

VBAO-4
Acc. 0.9357 0.9286 0.9286 0.9048 0.9286 0.9286 0.9286 0.9286 0.9286

#SF. 2651.80 2045.33 2003.33 1396.67 1563.333 2866.67 2818.33 1940.33 701.00
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