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Abstract: Relations in knowledge graphs have rich relational structures and various binary relational
patterns. Various relation modelling strategies are proposed for embedding knowledge graphs, but
they fail to fully capture both features of relations, rich relational structures and various binary
relational patterns. To address the problem of insufficient embedding due to the complexity of the
relations, we propose a novel knowledge graph representation model in complex space, namely
MARS, to exploit complex relations to embed knowledge graphs. MARS takes the mechanisms
of complex numbers and message-passing and then embeds triplets into relation-specific complex
hyperplanes. Thus, MARS can well preserve various relation patterns, as well as structural informa-
tion in knowledge graphs. In addition, we find that the scores generated from the score function
approximate a Gaussian distribution. The scores in the tail cannot effectively represent triplets. To
address this particular issue and improve the precision of embeddings, we use the standard deviation
to limit the dispersion of the score distribution, resulting in more accurate embeddings of triplets.
Comprehensive experiments on multiple benchmarks demonstrate that our model significantly
outperforms existing state-of-the-art models for link prediction and triple classification.

Keywords: message passing; complex space; knowledge representation learning; link prediction;
triple classification

MSC: 68T07; 68T30

1. Introduction

Knowledge graphs are large-scale semantic network knowledge bases that utilise a
graph-structured topology to integrate data [1,2]. They are widely used in multiform real-
world applications. For instance, recommender systems can leverage knowledge graphs
to establish semantic connections between items to improve the accuracy of recommenda-
tion [3,4]. Search engines can utilise knowledge graphs to establish user’s interest collection
through a variety of relations to provide intelligent and personalised search results [2,5,6].
To conveniently and efficiently utilise knowledge graph information, recent advances in
this domain focus on learning effective representations of knowledge graphs, also known
as knowledge representation learning (knowledge graph embedding) [7,8]. Knowledge
graph representation learning can learn distributed representations of the knowledge
graphs, which can significantly improve computing efficiency, effectively alleviate the
data sparseness of knowledge graphs, etc. Thus, knowledge representation learning can
further facilitate knowledge graphs in real applications, such as providing personalised
recommendations and optimising intelligent search services.
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In knowledge graphs, various complex relations establish associations between en-
tities, playing a major part in the expression of semantic information. These complex
relations have rich relational structures [9] and binary relational patterns [10]. For instance,
given triplets (D, FatherOf, B), (D, FatherOf, E), (D, FatherOf, G), (B, GrandfatherOf, C),
the entity “D” has multiple relations to multiple entities. Moreover, a relation can have
various binary relation patterns, for example the relation “GrandfatherOf” is the com-
bination of two “FatherOf” relations. A simple illustration of complexity of relations is
shown in Figure 1. Thus, how to effectively model various complex relations to capture
the rich semantic information in knowledge graphs is a challenging area of knowledge
representation learning, which has attracted much attention from many researchers [11–14].

Figure 1. An illustration of complex relations in knowledge graphs. Different colours of solid arrows
(r) between entities represent different relations. The dashed arrows represent the predictable rela-
tions.

Recently, extensive and various solutions for modelling complex relations of knowl-
edge graphs have been proposed [15–17]. These solutions usually contain three steps:
(1) defining a relation modelling strategy; (2) defining a score function that measures
positive and negative triplets; (3) minimising the loss function based on the defined score
function. For example, TransE [18] is a promising natural-language-based model. It treats a
relation between two entities as a translation process following the translational principle
(source + relation = target) and builds a two-way model to capture relations between
entities. However, both entities and relations are embedded in a single space. Inspired by
TransE, TransH [9] and TransR [19] embed entities and relations based on the translation
process. They map entities and relations into different spaces; thus, they can preserve rich
relational structures (multi-mapping relations), such as many-to-many (M2M), many-to-
one (M2O), and one-to-many (O2M) relations. However, these methods lack the ability
to address various types of binary relations [20–23], such as symmetric (e.g., brothers),
antisymmetry (e.g., father), and inversion (e.g., hypernym). However, some knowledge
representation learning methods are designed to solve this problem. For example, Com-
plEx [24] can capture (anti)symmetry and inversion relations, but it maps relation and
entity vectors into a single complex space. Specifically, RotatE [10] has a similar transla-
tion strategy to TransE [18]. It treats a relation as a rotation from source entities to target
entities in a single complex space. These complex-number-based methods only map var-
ious complex relations into a single feature space. Thus, they cannot hold the various
relational structures.

Due to the complexity of relations, previous solutions are not flexible enough to capture
the various binary relation patterns and structural information simultaneously. Therefore,
we deployed multiple complex spaces and propose a novel knowledge representation
learning model, namely MARS, to explore complex relations to embed knowledge graphs.
MARS takes advantage of RotatE [10], which can fully preserve various binary relation
patterns including (anti)symmetry, inversion, and composition. Furthermore, our proposed



Mathematics 2022, 10, 1930 3 of 16

model maps embeddings of entities and relations into multiple feature spaces, thus leading
to preserving rich relational structures, such as multi-mapping relations. To strengthen
the assumption in the network representation learning, that is the connected nodes have
similar representations, we utilised the message propagation mechanism [25] to restrict
feature vectors of entities following the graph connectivity structure. This simple trick
makes embeddings of entities able to well preserve local and global structural information.
In addition, we found that the scores generated from the original score function approx-
imate a Gaussian distribution. A simple illustration is shown in Figure 2. The scores in
the tail part cannot correctly represent the corresponding positive and negative samples.
Thus, we involved the standard deviation approach in solving this problem to obtain more
accurate embeddings of triplets. The main contributions of our work are summarised
as follows:

• We present a novel knowledge graph representation learning framework, namely
MARS, to exploit complex relations for embedding knowledge graphs. MARS can
effectively capture various binary relation patterns, as well as rich relational structures
in knowledge graphs. Thus, our model can achieve more accurate embeddings.

• We find that the scores of triplets that preserve rich relational structures and various
binary relational patterns approximate a Gaussian distribution. The scores in the
tail have negative influences on tasks. To overcome this weakness and optimise
the accuracy of embedding triplets, we specifically involved the standard deviation
approach to alleviate the deviation caused by the scores of the triplets located in the
tail of the distribution, leading to better performance in triple classification and link
prediction.

• We conducted comprehensive experiments on several benchmark datasets. The ex-
perimental results of MARS consistently outperformed state-of-the-art models on the
tasks of link prediction and triple classification. This demonstrates the effectiveness of
our proposed model.

Figure 2. Score distributions of positive triplets.

This paper is divided into six sections. Section 2 deals with the previous relevant
research related to our study. Section 3 introduces some involved basic concepts and
definitions. Section 4 presents the details of our model. Towards the end of our study,
Section 5 provides a detailed experiment introduction and the related experimental results.
Finally, Section 6 summarises our contributions.

2. Related Work

As we know, knowledge bases store triplets in the form of one-hot vectors. With this
representation, we need to design special graph algorithms to calculate the semantic and
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reasoning relations between entities. These one-hot-vector-based models have a high com-
putational complexity and are hard to transfer to other datasets. Compared with these
traditional models, knowledge representation learning can learn distributed representations
of triplets in a low-dimensional continuous feature space; thus, it can efficiently calculate
semantic similarity, leading to higher computing efficiency. In addition, the representations
can effectively alleviate the problem of data sparsity and can effectively fuse the heteroge-
neous information of knowledge graphs. In recent years, numerous investigations have
been conducted in this domain. We introduce several representative models, including
classical models and the recent deep-learning-based models in the following.

The classical knowledge embedding methods, for instance TransE [18], are derived
from a natural language model [26,27]. TransE projects both entities and relations to feature
vectors into a continual feature space. Let r represent a relation and s and t represent a
source and target entity accordingly; the feature vectors follow the translational distance
constraint s + r = t. Given a triplet (s, r, t), if it describes a plausible or credible fact
(golden triplets), r should be regarded as a translation from s to t. For example, given
a triplet (king, isA, man), this should satisfy the equation king + isA = man by a certain
relation. Many subsequent models are proposed based on TransE with a more complex
process of modelling relations. For instance, TransH [9] involves a plain vector space
and relational projection matrix. TransR [19] involves two separate feature spaces for
entity embedding and relation embedding. TransD [28] involves two mapping matrices for
projecting source entities and target entities. It is a more fine-grained model compared with
TransR. There are bilinear models, such as DISTMULT [29], ComplEx [24], SME [30], and
ANALOGY [31]. Specifically, ComplEx and RotatE embed triplets into a complex feature
space. The embeddings can well preserve binary relation patterns.

At present, one of the most popular knowledge representation learning methods is
based on deep learning, as it can construct high-level semantic features from lower-level
features suitable for tasks [15,32,33]. For instance, ConvE [34] utilises 2D-convolution to
join features of triplets and then feeds the outputs from the fully connected layer to the
logistic classification layer. R-GCN [35] is derived from graph convolutional networks
(GCNs) [36–38]. The embeddings of entities are aggregated utilising the GCN method
based on structural information. SCAN [39] benefits from both GCNs and ConvE [34].
SCAN introduces attributes’ information into the embedding vectors. There are some other
methods for specific knowledge graph embedding. For example, wRAN [40] is based on
an adversarial network. This method can be used for link prediction and relation extraction
under low resource conditions. FSRL [41] is a few-shot knowledge graph completion
framework based on LSTM. Some representative approaches and their abilities to model
relations are summarised in Table 1.

Table 1. The ability to model relations.

Model Score
Function Symmetry Antisymmetry Inversion Composition O2M M2O M2M

TransE [18] ||s + r− t||p 7 X X X 7 7 7

TransH [9]
||(s−
w>r hwr) + dr −
(t− wrtw>r )||22

7 X X 7 X X X

TransR [19] s>Wrt X 7 7 7 X X X

DISTMULT [29] s>diag(r)t X 7 7 7 7 7 7

ComplEx [24] Re(s>diag(r)t̄) X X X 7 7 7 7

RotatE [10] ||s ◦ r− t|| X X X X 7 7 7

MARS ||ŝr ◦ r− t̂r|| X X X X X X X
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Studies have shown the scalability and effectiveness of the above approaches.
However, these approaches are still insufficient for modelling relations. Our proposed
model (MARS) is a generalisation of RotatE in complex space, while we strengthen MARS’s
ability to capture the structural information with the message-passing scheme [25]. Thus,
MARS is capable of preserving both rich relational structures and binary connectivity
patterns in knowledge graphs. In addition, we formally discuss the distribution of scores,
and we involved the standard deviation method to alleviate the inaccurate representation
problem caused by the unbalanced score distributions.

3. Preliminaries

Here, we firstly provide several introductions and explanations of the definitions and
symbols that are used in our work:

Definition 1. Multi-mapping relations. In knowledge graphs, entities connect through relations,
and one entity may have multiple relations with entities. The multi-mapping relations (i.e., M2M,
M2O, and O2M) were previously introduced by TransH [9]. The many-to-many (M2M) relation
represents, for example, the parents-to-children relation; the one-to-many (O2M) relation represents,
for example, the mother-to-children relation; the many-to-one (M2O) relation represents, for example,
the children-to-father relation.

Definition 2. Binary relation patterns. The definition of binary relation patterns in the knowledge
graph domain was previously mentioned for ComplEx [24]. The binary relation has various relation
patterns, such as symmetry/antisymmetry (like BrotherOf/FatherOf), inversion (like hypernym),
and composition. If r is a symmetric relation, the triplet (s, r, t)⇔ (t, r, s) holds with s 6= t; if r is
an antisymmetric relation, the triplet (s, r, t) 6⇔ (t, r, s) holds with s 6= t; if r1 and r2 are inverse,
(s, r2, t)⇒ (t, r1, s); if r1 is composed of r2 and r3, (s, r2, t) ∩ (t, r3, t2)⇒ (s, r1, t2).

Definition 3. Embedding in complex space. The complex number is expressed in the form: Re +
Im ∗ i, where Re and Im are both real numbers. The embedding vectors (s, r, t) of entities and
relations in complex space Ck have the real part Re and the imaginary part Im.

Definition 4. Positive (negative) triplet. A knowledge graph is a collection of triplets, which
are usually golden triplets, also known as true facts. These golden triplets are also called positive
triplets (samples). Negative triplets (samples) are the opposite of positive triplets, which are built by
replacing their source or target entities.

To conveniently present our model, several main notations used in the following are
listed in Table 2.

Table 2. Description of notations.

Notations Implications

Re() The real part of vectors in complex space
Im() The imaginary part of vectors in complex space
cat() Vectors’ concatenating operation
T A triplet set
r Embedding of a relation
s Embedding of a source entity
t Embedding of a target entity
◦ Hadamard product operation
i Index of a node (entity)
Ck A complex embedding space

4. The Design of MARS

In this section, we introduce our proposed knowledge graph representation model,
namely MARS, which is derived from RotatE [10] and focuses on representing triplets in
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a complex feature space. To strengthen the structural information of knowledge graphs,
MARS firstly packs adjacency matrices of relations into entity feature vectors by leveraging
the message-passing method [25]. Different from the strategy of RotatE, which embeds
triplets into a single complex space, MARS maps triplets into different complex spaces
based on the count of relations. In addition, to obtain more accurate embeddings of the
original triplets, we involved the standard deviation method to alleviate the problem of the
unbalanced score distributions. The framework of MARS is shown in Figure 3.

Figure 3. The framework of MARS.

4.1. Message-Passing Scheme

The message-passing scheme [25] can aggregate neighbours’ features into the target
node according to the structural information. The mechanism is expressed as follows:

ml+1
i = ∑

j∈N (i)
Msgl(h

l
i , hl

j, wij), (1)

hl+1
i = Ut(hl

i , ml+1
v ), (2)

where N (i) is the neighbour set of node i. wij is the weight of a relation. Msgl denotes
the message function in the l-th layer, which aggregates features hl

i and hl
j according to

wij. U represents the update function, such as the Sigmoid function and Softmax function.
In the complex space, the feature vector has two parts Re(h) and Im(h); thus the, hidden
representation can be expressed as follows:

hl+1
i = σ( ∑

r∈R
∑

j∈N r
i

1
ci,r

wl
r ∗ cat(Re(hj), Im(hj))

l

+wl
0 ∗ cat(Re(hi), Im(hi))

l),

(3)

where wl
r is the message-passing weight of relation r in the l-th layer and wl

0 is the weight
of the self-loop of entity i. ci,r is the normalisation constant and is often set to |N r

i |.

4.2. Structure-Aware Binary Relation Embedding

To capture the rich relational structures, such as multi-mapping relations, MARS
adopts the ideas of TransH and maps entities into the relation-specific complex hyperplanes.
We obtain the conversions as follows:

ĥr = h− ŵ>r hŵr, (4)

t̂r = t− ŵ>r tŵr, (5)
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where we restrict the conversion matrix ŵr to ||ŵr||2 = 1.
The RotatE algorithm [10] has proven that complex numbers can represent a binary

relation pattern, such as (anti)symmetry, inversion, and composition. Thus, MARS projects
triplets {(s, r, t)|s, r, t ∈ Ck} into complex spaces. The translation between entities and
relations in complex space is defined as follows:

t̂r = ŝr ◦ r, (6)

where ŝi, ri, t̂i ∈ Ck, and |ri| = 1. The notation ◦ represents the elementwise product.
According to Euler’s formula eiθ = cosθ + isinθ, the translation can be treated as a rotation
from the source entity ŝ to the target entity t̂. That is shown in Figure 1. Given a triplet
(ŝr, r, t̂r), the score function of MARS is defined as follows:

fr(ŝr, r, t̂r) = ||ŝr ◦ r− t̂r||, (7)

where ŝr and t̂r are the relation-specific projections of entities. The score of a triplet in
complex space has a real part and an imaginary part. According to the product rule
of complex numbers (a + bi)(c + di) = (ac− bd) + (bc + ad)i, the score function can be
re-formed as

fr(ŝr, r, t̂r) =cat(Re(ŝr) ∗ Re(r)−
Im(ŝr) ∗ Im(r)− Re(t̂r),

Re(ŝr) ∗ Im(r)+

Im(ŝr) ∗ Re(r)− Im(t̂r)),

where cat() is the concatenating operation. Re() and Im() return the real and imaginary
part of a complex number. The source entity embedding ŝr, target entity embedding t̂r, and
relation embedding r are the inputs of the following loss function part.

4.3. Standard-Deviation-Biased Loss Function

A common way to generate a negative sample is to replace the head or tail entities of
a positive triplet with an entity selected from an entity set. However, the negative samples
generated with the same probability p are not completely valid. To produce meaningful
negative sampling, we adopted the self-adversarial negative sampling approach proposed
by RotatE. The negative sampling approach could generate negative samples according to
the following distribution:

p(ŝ′j, r, t̂′j|{(si, r, ti)}) =
exp αfr(ŝ′j, r, t̂′j)

∑n
i=1 exp αfr(ŝ′i, r, t̂′i)

, (8)

where α represents the free parameter of sampling. fr() is the score function Equation (7),
and (ŝ′j, r, t̂′j) is the j-th negative triplet of (s, r, t). The weight p of the negative sample is
replaced with the above probability.

The scores of triplets from the original score function have an unbalanced distribution.
The distribution phenomenon prevents obtaining high-precision embedding results. Thus,
we designed a standard-deviation-biased loss function, which can adjust the score distribu-
tions of triplets. The smaller standard deviation makes the normal curve steeper and the
score distributions more concentrated. We utilise x to represent the score of a triplet. More
specifically, the standard deviation of x is expressed as follows:

S =

√
∑a∈T ||xa − µ||22

|T | , (9)

where T represents a triplet set. The notation µ is the mean of x. We treated the standard
deviation of the scores as part of the loss. Therefore, it can reduce the negative effect of the
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scores of the triplets in the tail. The single loss of a triplet (s, r, t) for MARS is expressed as
follows:

L(s, r, t) = −
N
∑
i=1

p(ŝ′i, r, t̂′i)logσ(fr(ŝ′i, r, t̂′i)− γ)− logσ(γ− fr(ŝ, r, t̂)), (10)

where γ is the margin parameter and N is a collection of negative samples generated from
a positive triplet. Therefore, the final total or batch loss is:

L = ∑
(s,r,t)∈Tpos

L(s, r, t) + λ1Spos + λ2Sneg, (11)

where Spos is the standard deviation of positive triplets, Tpos is a positive triplet set, and
Sneg is the standard deviation of negative triplets generated by the self-adversarial negative
sampling approach. In the total loss, we linearly combine two standard deviations with
two hyperparameters λ1 and λ2 to balance the total loss. The pseudo-code of MARS is
summed up in Algorithm 1.

Algorithm 1 The pseudo-code of MARS

Input: knowledge graph KG;
Output: representations of entities s, o and relations r;
Construct positive and negative samples by Equation (8);
for Epoch < Total_epoch do

for (s, r, t) ∈ {(s, r, t)} do
Pack structural information into an entity embedding (s, t) according to
Equation (3);
Transform the entity to the relation-specific projection hyperplane according to
Equations (4) and (5);
Calculate scores of entities utilising f(ŝ, r, t̂) = ||ŝ ◦ r− t̂||;
Calculate the loss of a triplet according to Equation (10);

end for
Calculate the batch loss of triplets according to Equation (11);
Back propagate the loss, and update the embeddings;

end for

5. Experiments

In this section, we thoroughly conduct experiments to verify the effectiveness of our
model. This section is divided into five main subsections, an introduction to the used
datasets and baselines, hyperparameter settings, evaluation protocols, and experiment re-
sults.

5.1. Datasets

Three common benchmark datasets, FB15K-237 (https://deepai.org/dataset/fb15k-
237, accessed on 4 May 2022), FB15K (https://deepai.org/dataset/fb15k, accessed on 4
May 2022), and WN18 (https://deepai.org/dataset/wn18, accessed on 4 May 2022), were
selected to evaluate the performance of our model in this study. The details are shown
as follows:

• FB15K. The FB15k dataset contains triplets extracted from entity pairs of the freebase
dataset. The entities and relations of the dataset are uniquely encoded and stored
in the form of text in different files. The triplet file has 592,213 triplets; the entity
dictionary file has 14,951 unique entities; the relation dictionary file has 1345 unique
relations.

• FB15K-237. The FB15K-237 dataset is a subset of the Freebase knowledge base. It
is extracted and purified from the FB15K dataset by removing the inverse relations
from the original dataset. Here, “15K” means 15,000 keywords in the knowledge

https://deepai.org/dataset/fb15k-237
https://deepai.org/dataset/fb15k-237
https://deepai.org/dataset/fb15k
https://deepai.org/dataset/wn18
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base and “237” means 237 relations in total. The training set contains 272,115 triplets;
the validation set contains 17,535 triplets; the test set contains 20,466 triplets.

• WN18. The WN18 dataset is a subset of WordNet, having 18 kinds of relations
and roughly 41,000 kinds of entities scraped from the original dataset. The source of
WN18 has training, validation, and test sets, resulting in 151,442 triplets.

The statistical information of the three benchmark datasets is shown in Table 3.

Table 3. Statistical information of the datasets

Dataset WN18 FB15K FB15K-237

Entities 40,943 14,951 14,541
Relations 18 1345 237

Edges 151,442 592,213 310,116
Train triplets 141,442 483,142 272,115
Val. triplets 5000 50,000 17,535
Test triplets 5000 59,071 20,466

O2O relation 42 832 192
O2M relation 1847 5259 1293
M2M relation 1130 44,343 14,796
M2O relation 1981 8637 4185

5.2. Evaluation Protocols

The purpose of the structural preserving experiment is to explore the intuitive influ-
ence of the message-passing schema on entity embeddings. RotatE was selected as the
comparison method. A random walk with a fixed step length was used to obtain subgraphs
from knowledge graphs. We utilised PCA to reduce the dimensions (128) of the original
embedding vector to 2 and 25 dimensions. The 2-dimensional embedding vectors were
used to draw scatter diagrams of entities, and the 25-dimensional embedding vectors were
used to draw heat maps. By following the visualisation of the embedding vectors, we
conducted a qualitative analysis of the embedding vectors of the two methods.

The task of (semi-)supervised triple classification is to verify the capacity of models
to predict positive or negative triplets. To construct negative triplets, we adopted the
self-adversarial negative sampling approach proposed by RotatE. This approach generates
meaningful negative samples with the self-adversarial technique. We simply performed
the task with the FB15K, FB15K-237, and WN18 datasets. The principle of triple classifi-
cation is to compare the score of samples with a manually set threshold. If the score of
a sample is higher than the threshold, the sample is classified as positive or negative.
Thus, the classification experiment can be treated as a binary classification problem.
We utilised four classification metrics, accuracy Acc = TP+TN

TP+TN+FP+FN , precision P = TP
TP+FP ,

recall R = TP
TP+FN , and F1-score = 2×P×R

P+R , to measure the accuracy of triple classification.
The link prediction task deals with predicting the target/source entity given a source/

target entity and a relation (i.e., (s, r, ∗)). In other words, it assigns the most probable
entity based on score function f(s, r, t). The evaluation protocols for the link prediction
experiment adopt the mean reciprocal rank (MRR) and Hit@n measures. For the MRR
evaluation protocol, the scores of triplets are calculated and sorted in ascending order.
The rank of a positive triplet is the score of one sample. This whole procedure is applied to
all the test samples, and the average rank of all test samples is the final performance of link
prediction. Different from MRR, Hit@n just measures the rank of ground-truth triplets in
Top-n. Obviously, a good model should obtain a lower ranking in Top-n. In addition, these
negative samples constructed through replacing the head/tail entity may contain correct
triplets. Hence, these correct triplets that exist in negative samples in knowledge graphs
need to be filtered out before computing the scores. Following the raw and filtered settings
of RotatE [10], both filtered and raw MRR, and filtered Hits with n ∈ {1, 3, 10}, the results
are reported in this link prediction experiment.
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5.3. Baselines

For the comparison in our experiment, we compared our model with the recent state-
of-the-art baselines, which include five different knowledge embedding models. TransE [18]
is a kind of translational model for knowledge representation learning. It treats a relation
as a translation in the feature space and optimises embeddings with the s + r = t strategy.
As the second translational model, TransH [9] can handle one-to-many, many-to-one,
and many-to-many relations without increasing complexity. As the third translational
model, TransR [19] is derived from TranE, but it maps entities and relations into two
different spaces, namely entity space and multiple relation spaces, while preserving various
multi-mapping relations patterns. We further compared our model with ComplEx [24],
DISTMULT [29], and RotatE [10]. ComplEx can embed triplets in complex space as the
previous description in Section 2. The ComplEx algorithm belongs to a semantic matching
model, which is an expansion of DISTMULT in complex space. Different from other models,
RotatE treats a relation as a rotation in complex space according to Euler’s formula. It can
preserve (anti)symmetry, composition, and inversion relation patterns.

5.4. Hyperparameter Settings

A series of hyperparameters of MARS need to be set in advance during training.
These hyperparameters determine the performance of the model. We empirically set the
learning rate sequence: {0.01, 0.01, 0.01} on the above different datasets during training.
We accordingly set the batch size: 20,000 for the three datasets. We set the negative sampling
rate to 1:64, the same as RotatE [10], also known as 1 positive sample with 64 negative
samples. We set the commonly used dimensions to 128 for both triple classification and
link prediction. The message-passing layer for both tasks was empirically set to 2 layers.
There is a dropout layer between the two message-passing layers. For different datasets,
We empirically set the dropout rate sequence to {0.02, 0.01, 0.01}. In addition, we used
8 threads for sampling in each dataset. In our experiment, each dataset was divided
into three subsets, which included the training, validation, and test subsets. The train-
ing and validation subsets were used to train the models. According to Table 3, the ra-
tios for training, validation, and testing for WN18, FB15K, and FB15K-237 were about
{{0.933, 0.033, 0.033}, {0.815, 0.084, 0.099}, {0.877, 0.056, 0.066}}.

We implemented our model leveraging the OpenKE-PyTorch (https://github.com/
thunlp/OpenKE, accessed on 4 May 2022) and DGL (https://github.com/dmlc/dgl/,
accessed on 4 May 2022) libraries. OpenKE-PyTorch is an open-source library for knowledge
representation learning. The DGL library is a universal Python package for graph learning.
Because a GPU can effectively improve the training speed of deep learning models, we
implemented our model leveraging the GPU version of Pytorch. The training of the model
was performed on NVIDIA 2080TI Graphics Processing Units. The training process of the
model adopted the adaptive moment (Adam) algorithm to optimise the parameters. We
performed 6000 training epochs on both triple classification and link prediction tasks on
the benchmark datasets.

5.5. Experimental Results

The following gives the experimental results and analysis, including the models’
efficiency, structural preserving, triple classification, and link prediction tasks.

5.5.1. Structural Preserving Results and Analysis

According to the two scatter diagrams in the second and third quadrant in Figure 4,
we can see that the score distributions of the entities of RotatE are relatively scattered,
while the distributions of the entities of MARS are relatively concentrated. We know that
the connected entities tend to have similar representations. The visualisation can give
an intuitive illustration that MARS has better performance in preserving the structural
information of knowledge graphs. There are some overlapping entities in the scatter
diagram due to the procedure of reducing high-dimensional vectors to low-dimensional

https://github.com/thunlp/OpenKE
https://github.com/thunlp/OpenKE
https://github.com/dmlc/dgl/
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vectors. According to the two heat maps in the first and fourth quadrant in Figure 4, we
can see that the entity vectors of MARS in each row have relatively similar values, and the
transition between vectors from top to bottom is relatively smooth. However, the vector
distributions of RotatE are relatively scattered. Thus, the distributions of vectors shown
in the heat maps are consistent with the distributions of the scatter diagrams. This result
further supports the above conclusion.

Figure 4. Visualisation of entity feature vectors. The two figures in the first and second quadrants
are the visualisations of the vectors obtained by MARS. The two figures in the third and fourth
quadrants are visualisations of the vectors obtained by RotatE. The heat maps are used to visualise
embedding matrices, where the vertical axis represents nodes and the horizontal axis represents the
values corresponding to different dimensions.

5.5.2. Triple Classification Results and Analysis

Table 4 summarises the triple classification results on FB15K, FB15K237, and WN18.
We can see that DISTMULT achieved the best performance of triple classification among the
baselines on the FB15K dataset. The prediction scores (also known as the F1-score, accuracy,
precision, and recall) of DISTMULT were slightly higher than those of ComplEx, as well as
higher than those of the translational models. The performances of TransR, TransH, and
TransE are similar, and TransH slightly outperformed the other two translational models.
On the WN18 dataset, DISTMULT still outperformed ComplEx and was the best among
the baselines. The prediction scores of TransR were higher than those of TranH and TransE.
On the FB15K237 dataset, the performances of complEx and RotatE were better than the
translational models on this dataset. Our model outperformed the baselines on the FB15K
and WN18 datasets. On the FB15K237 dataset, the p = 0.931 of triple classification of our
model was slightly lower than the p = 0.942 of ComplEx. In summary, the embeddings of
our model were effective in triple classification, and our model obtained improvements
compared to the baselines on the benchmark datasets.
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Table 4. Triple classification on the three benchmark datasets.

Model
FB15K WN18 FB15K237

F1-
Score Acc P Recall F1-

Score Acc P R F1-
Score Acc P R

TransE 0.929 0.924 0.871 0.995 0.894 0.885 0.826 0.975 0.922 0.919 0.890 0.957
TransH 0.948 0.946 0.911 0.988 0.924 0.921 0.889 0.963 0.916 0.915 0.909 0.922
TransR 0.940 0.936 0.895 0.989 0.957 0.957 0.952 0.963 0.911 0.912 0.916 0.907

DISTMULT 0.967 0.967 0.957 0.977 0.978 0.978 0.989 0.967 0.927 0.926 0.910 0.945
ComplEx 0.963 0.962 0.941 0.986 0.968 0.968 0.964 0.973 0.949 0.949 0.942 0.957

RotatE 0.961 0.960 0.929 0.996 0.966 0.966 0.955 0.977 0.948 0.948 0.946 0.949
MARS 0.975 0.975 0.973 0.977 0.981 0.981 0.995 0.967 0.951 0.950 0.931 0.972

5.5.3. Link Prediction Results and Analysis

According to the link prediction results on the FB15K dataset in Table 5, we can see
that the scores of the filtered MRR were higher than those of the raw MRR. This was due to
the setting of the raw MRR, for which some conflicting positive samples could influence
the prediction results, and so were removed from the test set. Thus, the filtered MRR has
the capacity to accurately measure the performance of link prediction. The performance
of ComplEx and DISTMULT on FB15K was poorer than the other baselines. TransE and
TransH had similar performances on this dataset. The scores on the MRR of TransE
outperformed TransH. TransH performed better than TransE, when n = 3, 10 on hit@n.
The RotatE and TransR algorithms had similar performance, while RotatE had the best
performance among the baselines, and its scores outperformed all the other baselines.
The scores of MARS are presented in the last line. We can see that the scores were always
higher than RotatE. Thus, our model had the best performance compared all baselines on
the FB15K dataset.

Table 5. The link prediction results on the FB15K dataset.

Model

FB15K

MRR Hits@

Raw Filtered 1 3 10

TransE 0.270 0.502 0.366 0.595 0.730
TransH 0.253 0.492 0.336 0.604 0.744
TransR 0.257 0.568 0.415 0.687 0.797

DISTMULT 0.152 0.216 0.116 0.238 0.433
ComplEx 0.231 0.359 0.232 0.421 0.607

RotatE 0.269 0.604 0.485 0.685 0.805
MARS 0.305 0.631 0.512 0.713 0.831

According to the results on the WN18 dataset in Table 6, the translational algorithms
(also known as TransE, TransH, and TransR) had similar performance. These three algo-
rithms had low scores for Hits@1, 0.089, 0.035, and 0.096, respectively. RotatE still achieved
the best performance among all the baselines in link prediction on the WN18 dataset. Our
model obtained slight improvements compared to RotatE on the WN18 dataset. However,
our model still achieved the best performance among all the baselines.
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Table 6. The link prediction results on the WN18 dataset.

Model

WN18

MRR Hits@

Raw Filtered 1 3 10

TransE 0.340 0.504 0.089 0.925 0.948
TransH 0.317 0.468 0.035 0.911 0.937
TransR 0.341 0.511 0.096 0.934 0.947

DISTMULT 0.399 0.452 0.316 0.518 0.737
ComplEx 0.544 0.727 0.626 0.807 0.896

RotatE 0.596 0.946 0.939 0.950 0.958
MARS 0.607 0.947 0.938 0.953 0.961

According to the results of link prediction on the FB15K-237 dataset in Table 7, we can
see that the three translational algorithms had similar experimental results on the WN18
dataset. The scores of TransR were slightly higher than the other two translational algo-
rithms. RotatE and ComplEx had similar experimental performances. RotatE outperformed
ComplEx for MRR and His@1. Similar to the results on the above two datasets, MARS
outperformed all the baselines and obtained significant improvements compared to the
other two complex-number-based algorithms.

Table 7. The link prediction results on FB15K-237.

Model

FB15K-237

MRR Hits@n

Raw Filtered 1 3 10

TransE 0.169 0.289 0.193 0.328 0.478
TransH 0.155 0.277 0.175 0.321 0.474
TransR 0.156 0.311 0.214 0.351 0.504

DISTMULT 0.126 0.179 0.094 0.203 0.350
ComplEx 0.230 0.351 0.222 0.412 0.602

RotatE 0.327 0.359 0.261 0.398 0.557
MARS 0.241 0.422 0.317 0.470 0.629

In addition, we can see that the scores for triplet classification were significantly higher
than those for link predictions. That is because the models only have two categories of
prediction results (positive and negative) in the former, while in the latter, the models need
to predict the right entity from an entity candidate set, so the hit probability is lower than
the former.

5.5.4. Efficiency Analysis

We tested the running speed and resource consumption of our proposed model on the
FB15K dataset. We recorded the average time (second) of an epoch and the GPU memory
and the CPU memory of models. The experimental results are shown in Table 8.

Table 8. Models’ running efficiency on the FB15K dataset.

Model Epoch Time (s) GPU Memory (MB) CPU Memory (GB)

TransE 3.32 1947 2.3
TransH 5.21 2429 2.2
TransR 45.56 10,207 2.7

DISTMULT 3.22 2139 2.3
ComplEx 5.78 3027 2.3

RotatE 3.84 3317 2.3
MARS 8.55 4037 2.3
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According to the results in the table, we can see that TransE was the fastest and needed
the least memory. The RotatE model was slightly slower than TransE. TransR was the
slowest model, while it also needed the most memory among all the models. In order to
capture the diversity of the relations in knowledge graphs, MARS has more parameters than
most of the compared models, so it needs relatively more memory and is slightly slower
than them. Anyway, from the results in the table, we can see that most GPU platforms could
offer the computing resources necessary for our model. In addition, our model achieved
better embedding accuracy while slightly sacrificing running efficiency.

6. Conclusions

In this paper, we focused on modelling complex relations in knowledge graphs and
proposed a novel representation learning model, namely MARS. Our model takes the
mechanisms of both complex numbers and message-passing and then embeds triplets into
relation-specific complex hyperplanes, having the capacity to handle a large variety of
binary relation patterns and rich relational structures. In addition, we discussed the score
distributions and involved the standard deviation method to adjust the distributions of
positive and negative triples, resulting in more accurate embeddings of knowledge graphs.
Moreover, the empirical experiments proved that our model can effectively model various
relations and outperformed the state-of-the-art baselines on three benchmark knowledge
graph datasets. In the future, we would like to extend our model to address the challenge
of embedding dynamic knowledge graphs in reality applications.
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