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Abstract: Deep learning is widely applied in bioinformatics and biomedical imaging, due to its ability
to perform various clinical tasks automatically and accurately. In particular, the application of deep
learning techniques for the automatic identification of glomeruli in histopathological kidney images
can play a fundamental role, offering a valid decision support system tool for the automatic evaluation
of the Karpinski metric. This will help clinicians in detecting the presence of sclerotic glomeruli in
order to decide whether the kidney is transplantable or not. In this work, we implemented a deep
learning framework to identify and segment sclerotic and non-sclerotic glomeruli from scanned
Whole Slide Images (WSIs) of human kidney biopsies. The experiments were conducted on a new
dataset collected by both the Siena and Trieste hospitals. The images were segmented using the
DeepLab V2 model, with a pre-trained ResNet101 encoder, applied to 512 × 512 patches extracted
from the original WSIs. The results obtained are promising and show a good performance in the
segmentation task and a good generalization capacity, despite the different coloring and typology of
the histopathological images. Moreover, we present a novel use of the CD10 staining procedure, which
gives promising results when applied to the segmentation of sclerotic glomeruli in kidney tissues.

Keywords: deep learning; image segmentation; kidney transplantation

MSC: 68T07

1. Introduction and Background

In the big data era, the transformation of biomedical data into valuable knowledge has
become one of the most important challenges in bioinformatics [1–3]. Deep learning has in
fact advanced rapidly since the beginning of the new millennium and now demonstrates
cutting-edge performance in various fields. As a result, the application of deep learning in
biomedical sciences has been emphasized in both academia and industry [4–6]. In particular,
deep learning architectures can automatically extract features from images, which makes
them very efficient and attractive for real-world image parsing applications [7–16].

Kidney transplantation and kidney nephritis detections are among the major clini-
cal priorities and, indeed, kidney transplantation is one of the most common transplant
surgeries performed worldwide. Currently, it is estimated that more than 100,000 peo-
ple in the United States are awaiting a kidney transplant [10], with an average wait-
ing time of 3.6 years, depending on the patient’s health status, compatibility, and organ
availability [10,11]. In fact, organ compatibility is hard to assess because it is based on
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multiple aspects that consider both the clinical and morphological features of the candi-
date organ analyzed. In this context, the Karpinsky index [12] is typically used to assess
transplantability. The Karpinsky index, first introduced in 1999, is based on the assessment
of four parameters, namely the rate of glomerular sclerosis, tubular atrophy, interstitial
fibrosis, and reduction in the arteriolar caliber, and assigns a score between 0 and 3, where
0 indicates the absence of the pathological condition and 3 stands for the worst state for the
evaluated feature.

The renal glomeruli are vascular formations consisting of a group of capillaries with
the function of filtering urine from the blood, while the Bowman’s capsule is a part of the
nephron (the structural and functional unit of the vertebrate kidneys) that forms a cup-
shaped sac surrounding the glomerulus. The Bowman’s capsule encloses a space called the
Bowman’s space, which represents the beginning of the urinary space. Bowman’s capsule,
Bowman’s space, and the glomerular capillary network and its supporting architecture
can be collectively considered as components of the glomerulus. There are approximately
900,000 glomeruli within the cortex of a mature human kidney [13]. From a morphological
point of view, lesions present in glomeruli can be quantified by evaluating the Bowman’s
space. Examples of healthy and sclerotic glomeruli are shown in Figure 1.
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Figure 1. (a) Healthy glomerulus; (b) Sclerotic glomerulus. The image shown is one of the Masson-
stained images collected in our novel dataset from the Siena Hospital.

In recent years, few studies witnessed the use of deep learning for applications in
the field of nephropathology and histopathology [7]. For example, in [17], a Computer-
Aided-Diagnosis (CAD; Table 1 includes a description of abbreviations and acronyms used)
system was proposed to classify sclerotic and non-sclerotic glomeruli. A Convolutional
Neural Network (CNN) was employed and trained on a small in-house collected dataset,
composed of only 26 kidney biopsies. In [18], instead, a two-step deep learning approach
was realized, segmenting and then classifying the segmented structures, using an AlexNet-
like architecture, tested on 47 Whole Slide Images (WSIs). Similarly, in [19], some different
staining modalities were compared in the framework of a classification model to predict
diseased and non-diseased kidney tissues. The study was conducted using tissues collected
from six patients and demonstrates the superiority of deep learning approaches over
human performance in this task. In [20], the AlexNet-based sliding window approach
was applied to the WSIs to classify glomerular/non-glomerular regions, achieving good
accuracy in glomerulus detection. Moreover, in [21], an ensemble classifier was employed
for the semantic segmentation of glomerulus areas. Similar approaches can also be found
in the case of the segmentation/detections of mice-glomeruli [22,23], based on a slightly
higher number of images. Indeed, one of the major difficulties in the case of human kidneys
is precisely the absence of consolidated benchmarks to be used for the segmentation
of glomeruli.
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Table 1. List of abbreviations and acronyms used in this paper.

Abbreviation Explanation

CAD Computer-Aided-Diagnosis

CNN Convolutional Neural Network

CRF Conditional Random Field

FCN Fully Convolutional Network

IOU Intersection Over Union

PAS Periodic Acid-Schiff stain

WSI Whole Slide Image

Therefore, for the purpose of our study, we collected a novel dataset in cooperation
with the Siena Hospital and the Trieste Hospital. The WSIs were acquired with different
instruments and underwent different staining procedures. Clinical experts from both hos-
pitals accurately segmented the entire WSI set and tagged all glomeruli by assigning them
to the sclerotic or non-sclerotic classes. Specifically, to facilitate this task, we implemented
a novel pipeline for clinicians that allowed them to easily tag WSIs through a scripting
interface platform we developed. The dataset we collected was subsequently used for
the training and validation of the deep learning architecture presented in this manuscript.
Moreover, we studied the CD10 staining procedure as a way to improve the detectability of
sclerotic glomeruli in kidney tissues. The proposed staining approach shows promising
performance, especially for the segmentation of sclerotic glomeruli.

The paper is organized as follows. In Section 2, we present an outline of the collected
dataset, as well as the methodology and the performance indicators used for the assessment
of the network results. In Section 3, the experimental settings are described and results are
shown and discussed for the sclerotic and non-sclerotic glomerulus, both for the CD10 and
the Masson-stained images, in Sections 3 and 4, respectively. Finally, in Section 5, we draw
conclusions and future perspectives.

2. Materials and Methods
2.1. Patient Data Collection

The new image dataset was collected in a joint project between the Hospital of Siena
(Azienda Ospedaliera Senese, “Le Scotte”) and the Hospital of Trieste (Azienda Ospedaliero-
Universitaria “Giuliano Isontina”). Two types of immuno-histological images were gath-
ered: using the Masson and the CD10 staining procedures. Masson trichrome staining
is a standard coloring protocol used in histology. It was originally developed by Claude
Pierre Masson and is widely employed for its ability to correctly distinguish cells nearby
connective tissue. The CD10 staining (CD10 [SP67] Rabbit Monoclonal Primary Antibody),
instead, is an immune histological coloring that is commonly used for cancer detection
in WSIs.

A total of 52 images from the Trieste Center and 25 images from the AOU Siena
Hospital Center were collected in our dataset; the images were stained with the Masson
procedure. Moreover, 12 images stained with the CD10 primary antibody coming from the
Siena Hospital Center were also gathered. All the WSIs were captured at 400×magnifica-
tion and saved in tiff format using a high-resolution whole-slide scanner Ventana DP 200
(ROCHE) in the Siena Hospital. The images from Trieste were digitalized through the use
of the D-sight scanner (Menarini) at 20×magnification.

2.2. Method: DeepLab V2

To detect the structure of glomeruli, a well-established CNN-based architecture for
semantic segmentation, the DeepLab V2 network [24], was used. In fact, DeepLab has
reached the state-of-the-art performance in multiple semantic segmentation tasks [24]. The
design of the model is based on a typical segmentation architecture that uses an encoding
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and a decoding part. The DeepLab architecture employs atrous convolutions that allow
enlarging the receptive field without using pooling operations, which can produce a loss of
spatial information [24]. More formally, an atrous convolution y(i) for a one-dimensional
signal x(i), with a filter w(k) of length K and a stride rate r, can be described as:

y[i] =
K

∑
k=1

x[i + r, k]w[k]

One of the first CNNs used for semantic segmentation is the Fully Convolutional
Network (FCN). A fundamental issue with FCN is that the alternance of convolutional
and pooling layers produces a down-sampled output so that the predicted segmentation is
characterized by fuzzy boundaries. DeepLab V1, instead, uses a standard CNN followed
by one or two atrous layers, to give a coarse rank map. This map is then up-sampled using
interpolation so that a higher resolution is obtained; subsequently, a fully convolutional
Conditional Random Field (CRF) is applied to improve the final segmentation map. Further
improvements were introduced with version 2 of the DeepLab, where an Atrous Spatial
Pyramid Pooling (ASPP) was added to the model. The ASPP allows handling the presence
of objects with different sizes by applying multiple atrous convolutions with different
sampling rates [24]. Various kinds of encoders can be used in the DeepLab architecture. In
our experiments, we used a ResNet101 encoder pre-trained on the MS_COCO dataset [25].

2.3. Performance Evaluation

Performance was evaluated through a 5-fold cross-validation procedure, employing
two commonly used metrics for semantic segmentation, namely the Jaccard and Dice
indices. The Jaccard index defines the similarity between two sets of objects. It is, in
fact, commonly used in computer vision, and particularly for semantic segmentation
applications to evaluate performance, because it can effectively compare predicted and
ground truth masks. More formally, given two sets A and B, the Jaccard or Intersection
Over Union (IOU) index is defined as:

Jaccard (IOU) =
|A ∩ B|
|A ∪ B|

This represents the ratio between the intersection and the union of the two sets.
Another commonly used performance indicator in semantic segmentation is the Dice

similarity index. In this case, given two sets A and B, the Dice index can be defined as:

Dice =
2|(A ∩ B)|
|A|+ |B|

where |A| and |B| are the cardinality of the sets A and B, respectively.

3. Results
3.1. Data Preparation

The dataset used in this work was not originally provided with pixel-level supervision
suitable for carrying out the image semantic segmentation task. Therefore, as a first
step, we set up a pipeline so that clinicians could easily label each pixel of the images
belonging to glomeruli or not. To this end, we used an open-source histopathological image
processing software, called QuPath [26]. In particular, we designed and developed a set of
pre-processing scripts written in the Groovy language that is supported as an extension
scripting language for the QuPath platform. The scripts assist and guide clinicians through
the various phases of the labeling procedures, and eventually save the results into a
standard mask, linked to the corresponding original image.

Using this interface, clinicians were able to provide 52 renal agobiopsy images from the
Trieste Hospital (stained with the Masson procedure), 25 procurement renal wedge biopsy
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images from the AOU Siena Hospital (stained with the Masson trichrome technique), and
12 discarded kidney images also from the Siena Hospital (stained with a double staining
CD10/PAS). In Table 2, we present a summary of the total number of sclerotic and non-
sclerotic glomeruli for the two types of staining.

The original images were subsequently cropped in patches of dimensions 512 × 512
pixel size, downsampled by a factor of 2, to be used as input to the deep learning architec-
ture. The patches were obtained by dividing the original WSI images into tiles of dimension
512 × 512 pixels, without pre-selection, in order to obtain examples of kidney tissue only,
and of sclerotic and non-sclerotic glomeruli.

Table 2. Number of sclerotic and healthy glomeruli for each hospital and image staining type.

Center and Image Type Healthy Glomeruli Sclerotic Glomeruli

Trieste, Masson 1811 168
Siena, Masson 2189 355
Siena, CD10 7436 2317

3.2. Experimental Setting

In this section, we will provide a description of the results obtained by the proposed
automatic segmentation method. In our experimental setup, we trained the DeepLab
V2 architecture with a Resnet101 encoder, pre-trained on the MS_COCO dataset [25], to
perform sclerotic and non-sclerotic glomerulus segmentation. The training was performed
for 2000 epochs using a weight decay of 0.0005, a learning rate of 2.5 × 10−4, and a batch
size of 2.

We performed segmentation of sclerotic and non-sclerotic glomeruli dividing the
dataset according to the staining procedure type. First, we trained the model with the
Masson-stained images, and performed segmentation of sclerotic and healthy glomeruli,
considering only Masson-colored images. The results are presented in Sections 3.2.1
and 3.2.2. Secondly, we considered the CD10 colored images and performed segmen-
tation of sclerotic and healthy glomeruli. For this last case, the results are presented in
Sections 3.2.3 and 3.2.4.

3.2.1. Segmentation of Masson Non-Sclerotic Glomeruli

We conducted experiments on the Masson-stained images considering jointly the data
from Trieste and Siena as a single dataset. After the pre-processing, a total amount of 1936
tiles containing ground truth masks of healthy glomeruli were obtained for this dataset.
Adopting a 5-fold cross-validation approach, the dataset was divided into 5 folds and,
at each iteration, approximately 1393 elements were used for training, 155 for validation,
and 388 for the test, with a hold-out approach. The results of the 5-fold cross-validation
experiments on test images are reported in Figure 2. As we can see, the segmentation
algorithm performed extremely well, across all the 5 folds. The median IOU was 0.99, while
the mean standard deviation was 0.98 (±0.024 s.d.). The same held true for the Dice Index,
where we obtained a median of 0.99 across the 5 folds, with a mean of 0.98 ± (0.012 s.d.).

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 2. Segmentation performances obtained with 5-fold cross-validation on the non-sclerotic glo-

meruli in Masson-stained images. 

3.2.2. Segmentation of CD10 Non-Sclerotic Glomeruli 

We then performed segmentation on the non-sclerotic glomeruli for the CD10-

stained images. Results of the 5-fold cross-validation procedure are reported in Figure 3. 

In this case, a total of 2502 patches were obtained (with roughly 1803 patches for training, 

500 for tests, and 199 for validation). As we can appreciate from Figure 3, performance, in 

this case, was worse than using Masson-stained images (Section 3.2.1). In fact, we obtained 

a median Dice index of 0.89 across the 5 folds, with a mean of 0.85 (±0.14 s.d.). The same 

trend can be observed using the IOU metric, where a median IOU of 0.80 and a mean 

value of 0.77 (±0.15 s.d.) were obtained. We can also see the presence of several outliers 

across the 5 folds. This behavior could be due to the presence of “difficult” patches, where 

there are only a few glomeruli, which are more difficult to detect. In particular, IOU and 

Dice indices close to zero are often obtained for the tiles comprising only spurious glo-

meruli or when they are absent. 

 

Figure 3. Segmentation performance obtained with 5-fold cross-validation on the non-sclerotic glo-

meruli in CD10-stained images. 

3.2.3. Segmentation of Masson Sclerotic Glomeruli 

For this task, a total of 771 patches were obtained (around 155 were used for testing, 

554 for training, and 62 for validation at each iteration of the 5-fold cross-validation pro-

cedure). 

The segmentation performance of sclerotic glomeruli using the Masson-stained im-

ages dropped significantly. The mean IOU across the 5 folds was 0.37 (±0.29 s.d.), with a 

median value of 0.39. Similar values were obtained for the Dice index, where a mean of 

0.46 (±0.34 s.d.) and a median of 0.57 were obtained. This performance drop can be caused 

by several factors, the most important of which are the limited number of sclerotic samples 

available in Masson-stained images and the increased difficulty of the detection of scle-

rotic glomeruli compared to the non-sclerotic ones. 

As we can observe from the boxplots in Figure 4, the results had a high variability 

from image to image, which could be caused by a poor model generalization that we hope 

to increase as soon as more data become available. 

Figure 2. Segmentation performances obtained with 5-fold cross-validation on the non-sclerotic
glomeruli in Masson-stained images.



Mathematics 2022, 10, 1934 6 of 10

3.2.2. Segmentation of CD10 Non-Sclerotic Glomeruli

We then performed segmentation on the non-sclerotic glomeruli for the CD10-stained
images. Results of the 5-fold cross-validation procedure are reported in Figure 3. In this
case, a total of 2502 patches were obtained (with roughly 1803 patches for training, 500 for
tests, and 199 for validation). As we can appreciate from Figure 3, performance, in this
case, was worse than using Masson-stained images (Section 3.2.1). In fact, we obtained a
median Dice index of 0.89 across the 5 folds, with a mean of 0.85 (±0.14 s.d.). The same
trend can be observed using the IOU metric, where a median IOU of 0.80 and a mean value
of 0.77 (±0.15 s.d.) were obtained. We can also see the presence of several outliers across
the 5 folds. This behavior could be due to the presence of “difficult” patches, where there
are only a few glomeruli, which are more difficult to detect. In particular, IOU and Dice
indices close to zero are often obtained for the tiles comprising only spurious glomeruli or
when they are absent.
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glomeruli in CD10-stained images.

3.2.3. Segmentation of Masson Sclerotic Glomeruli

For this task, a total of 771 patches were obtained (around 155 were used for test-
ing, 554 for training, and 62 for validation at each iteration of the 5-fold cross-validation
procedure).

The segmentation performance of sclerotic glomeruli using the Masson-stained images
dropped significantly. The mean IOU across the 5 folds was 0.37 (±0.29 s.d.), with a median
value of 0.39. Similar values were obtained for the Dice index, where a mean of 0.46
(±0.34 s.d.) and a median of 0.57 were obtained. This performance drop can be caused by
several factors, the most important of which are the limited number of sclerotic samples
available in Masson-stained images and the increased difficulty of the detection of sclerotic
glomeruli compared to the non-sclerotic ones.

As we can observe from the boxplots in Figure 4, the results had a high variability
from image to image, which could be caused by a poor model generalization that we hope
to increase as soon as more data become available.
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Figure 4. Segmentation performance obtained with 5-fold cross-validation on the sclerotic glomeruli
in Masson-stained images.

3.2.4. Segmentation of CD10 Sclerotic Glomeruli

When the CD10-stained images were used to segment sclerotic glomeruli, we obtained
a mean IOU of 0.66 (±0.24 s.d.) and a median of 0.75. Instead, using the Dice index we
obtained a mean of 0.53 (±0.22) and a median of 0.60. In this case, a total of 848 patches
were employed (approximately 610 patches were used for training, 171 for the test, and
67 for validation at each iteration of the 5-fold cross-validation process). Compared to the
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results for the non-sclerotic glomeruli, we could observe a significant drop in performance.
However, the results were better than those obtained in the case of sclerotic glomeruli with
Masson staining (Section 3.2.3), as we can see from Figure 5.
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in CD10-stained images.

4. Discussion

The experiments performed show the capability of the proposed deep learning archi-
tecture to successfully segment both the sclerotic and non-sclerotic glomeruli. In Table 3,
we summarize the results reported in Section 3, with respect to the average Dice and IOU
obtained across the 5-fold cross-validation procedure for the four classifiers.

Table 3. Average IOU and DICE indices across the 5-fold cross-validation tests. In bold we highlight
the best performances obtained for the non-sclerotic and sclerotic cases.

Image Type IOU (Mean ± s.d.) DICE (Mean ± s.d.)

Masson, Non-Sclerotic 0.98 (±0.024) 0.98 (±0.012)
CD10, Non-Sclerotic 0.77 (±0.15) 0.85 (±0.14)

Masson, Sclerotic 0.37 (±0.29) 0.46 (±0.34)
CD10, Sclerotic 0.66 (±0.24) 0.53 (±0.22)

In particular, we obtained the best performance in the segmentation of non-sclerotic
glomeruli with the Masson-stained images, where both IOU and Dice averages over all
folds were above 0.98. For the CD10 non-sclerotic glomerulus segmentation, performance
was also quite good and robust across different folds, even if the results are lower compared
to the Masson-stained images. Such behavior is due to the lower number of examples of
sclerotic glomeruli present in our dataset, which might impact and worsen performance.
Moreover, the task of segmenting sclerotic glomeruli is inherently harder, as such structures
are more difficult to detect. An example of the segmentation for non-sclerotic glomeruli, in
the case of the Masson-stained images, is presented in Figure 6.
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Figure 6. A patch of a Masson-stained image, its corresponding ground truth mask relative to
non-sclerotic glomeruli and the related segmented output (IOU = 0.97 and DICE = 0.98).

For the segmentation of sclerotic glomeruli, instead, the best performance was reached
in the case of CD10-stained images, where an average IOU of 0.65 and a median of 0.74 are
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obtained. This can be due to several reasons. On the one hand, the number of available ex-
amples of sclerotic glomeruli is higher for the CD10 staining—about 2317 images compared
to only 523 for the Masson case. On the other hand, the Masson-stained images are also
heterogeneous, since they were collected in two different centers (Siena and Trieste), which
increases the variability of the samples, making it harder for the network training. This
effect is not evident when a higher number of examples is present (such as for non-sclerotic
glomeruli). Additionally, it must be considered that non-sclerotic glomeruli are easier to
detect than sclerotic glomeruli since they present a non-blurred contour and a definite
shape, which allow an easier (visual) identification of the region in which they are located.
On the CD10 images, sclerotic glomeruli become much more evident, and, therefore, the
deep learning methods are also more effective in their segmentation. An example of the
segmentation of sclerotic glomeruli on CD10-stained images is presented in Figure 7.
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Figure 7. A patch of a CD10-stained image, its corresponding ground truth mask relative to sclerotic
glomeruli and the related segmented output (IOU = 0.77 and DICE = 0.637).

Glomerular damage is common in renal pathologies leading to chronic and end-stage
renal disease. Morphological changes within the glomeruli provide valuable insight into
the mechanisms of kidney failure and facilitate an accurate clinical diagnosis. Moreover, a
fundamental morphological parameter in nephropathology is the quantification of normal
and abnormal glomeruli: the number of glomeruli is required for the assessment of tissue
sufficiency in renal transplant pathology, while the histological analysis of glomerular
diseases involves a careful examination of the entire slide of a renal biopsy, which includes
the identification of all glomeruli, the assessment of their status and the integration of these
data with other parameters to assess the kidney health. This work demonstrates the power
of deep learning for assessing complex histologic structures from digitized human kidney
biopsies. Indeed, the results hereby presented are very promising and can be considered as
the first step toward an automatic pipeline to evaluate the Karpinsky index, and to speed up
and support the decision on the transplantability of a kidney Unfortunately, we were unable
to compare our results against existing methods due to the lack of a standard benchmark,
available only in the case of mice https://datadryad.org/stash/dataset/doi:10.5061/dryad.
fqz612jpc, accessed on 6 May 2022. Currently, the absence of a huge standardized dataset
with labeled images is a great limitation, and more images containing sclerotic glomeruli
need to be collected to improve the performance of our approach, and before making our
new dataset available.

5. Conclusions

In this paper, we proposed a novel histopathological dataset of renal tissues, coupled
with the label maps of sclerotic and non-sclerotic glomeruli, and performed an automatic
segmentation of the manually labeled images. The work was carried out in collaboration
with the Hospitals of Siena and Trieste. In our experiments, we employed the DeepLab
V2 architecture for the segmentation of both sclerotic and non-sclerotic glomeruli, using a
5-fold cross-validation technique for partially contrasting the problem of data scarcity. The
best performance was obtained in the case of non-sclerotic glomeruli present in the Masson-

https://datadryad.org/stash/dataset/doi:10.5061/dryad.fqz612jpc
https://datadryad.org/stash/dataset/doi:10.5061/dryad.fqz612jpc
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stained images and, as regards the segmentation of sclerotic glomeruli, with the CD10-
stained images. Future work entails creating an enlarged dataset to increase performance,
especially for the segmentation of sclerotic glomeruli. Moreover, we are currently working
on improving the segmentation tool to be able to perform a clinical re-assessment and
validation of the results obtained. We also believe that the employment of the CD10
staining procedure for the detection of glomerular structures could significantly improve
the performance of automatic detection tools and could open new research perspectives in
the field of automatic analysis of histopathological images.
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