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Burcu Nişancı Türkmen 1 , Hashem Bordbar 2 and Irina Cristea 2,*

1 Department of Mathematics, Faculty of Art and Science, Amasya University, Ipekköy, Amasya 05100, Turkey;
burcu.turkmen@amasya.edu.tr

2 Centre for Information Technologies and Applied Mathematics, University of Nova Gorica,
5000 Nova Gorica, Slovenia; hashem.bordbar@ung.si

* Correspondence: irina.cristea@ung.si or irinacri@yahoo.co.uk; Tel.: +386-0533-15-395

Abstract: In this study, the role of supplements in Krasner hypermodules is examined and related
to normal π-projectivity. We prove that the class of supplemented Krasner hypermodules is closed
under finite sums and under quotients. Moreover, we give characterizations of finitely generated
supplemented and amply supplemented Krasner hypermodules. In the second part of the paper we
relate the normal projectivity to direct summands and supplements in Krasner hypermodules.

Keywords: direct summand; normal π-projective hypermodule; supplement subhypermodule; small
subhypermodule

MSC: 20N20; 16D80

1. Introduction

Hypercompositional algebra, a new branch of abstract algebra, started its development
in 1934, when F. Marty introduced the concept of hypergroup as a natural generalization of
the concept of group. The law of synthesis of two elements was extended, in the sense that
the operation (defined on a group) was substituted with a multivalued operation (called
hyperoperation), i.e., the result of the hyperoperation being a subset of the underlying
set. As a consequence, new algebraic hypercompositional structures are defined and the
properties of the classical structures are conserved, or not, for similar hyperstructures. This
is also the case of the modules, extended to hypermodules, introduced firstly by Krasner [1],
and known today as Krasner hypermodules. Their additive part is a canonical hypergroup.
The fundamental aspects of the theory of hypermodules are very well covered, for example,
by the studies of Massouros [2], Nakassis [3], Anvariyeh [4,5], Ameri and Shojaei [6], and
Bordbar and Cristea [7–9].

Recently, the concept of smallness in module theory has been transported and in-
vestigated by Moniri et al. [10] in the class of hypermodules. Similarities and differences
of this concept in both theories have been clearly highlighted and supported by several
examples. As it was defined in [11] and then recalled in [12] already in the 1960s, a left
R-submodule N of an R-module M, where R is an arbitrary unitary associative ring, is
small if N + K = M, for any R-submodule K of M, implies K = M, and it is denoted by
N � M [13]. An R-module M is called a hollow if every proper R-submodule of M is small
in M. In a similar way, we may define these two concepts in hypermodule theory, but we
must pay attention, as it is explained in [10], to their meaning in a Krasner hypermodule
(where the additive part is a canonical hypergroup) and in a general hypermodule having
the additive part an arbitrary hypergroup (that can be also non-commutative). In addition,
an R-hypermodule M, with the property that the intersection of its two R-subhypermodules
is again an R-subhypermodule, is called supplemented if for each proper R-subhypermodule
N of M there exists a proper R-subhypermodule K of M such that K + N = M = N + K
and N ∩ K � K. In a Krasner hypermodule, the intersection of two subhypermodules is
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always a subhypermodule, while in a general hypermodule this property may not hold for
arbitrary subhypermodules, only for closed subhypermodules [10].

In this paper, we aim to obtain more properties of supplements in Krasner R-hypermo-
dules and understand their role related to projective hypermodules, in particular with
normal π-projective hypermodules. After a brief introduction on hypermodules, homo-
morphisms, and supplements in hypermodules, in Section 3, we provide new properties
of supplemented Krasner R-hypermodules. We prove that any quotient hypermodule
of a supplemented hypermodule is again supplemented (see Theorem 1), and, similarly,
the sum of two supplemented hypermodules is supplemented, too (see Theorem 2). In ad-
dition, we will provide also a new characterization of the finitely generated supplemented
hypermodules (see Theorem 4) and finitely generated amply supplemented hypermodules
(Theorems 5 and 6). In Section 4 we define the normal π-projective R-hypermodule and
present several properties related to direct summands and supplements. The main results
are represented by Proposition 2 and Corollary 2. The concept of normal projectivity has
been recently introduced by Ameri and Shojaei [6], using different kinds of epimorphisms
defined in the Krasner hypermodule category. Then, Bordbar and Cristea [14] provided
their characterization by mean of chains of hypermodules. This study is a step forward in
the theory of projective Krasner hypermodules.

2. Preliminaries and Notation

In this section, we briefly recall the main concepts and results related to Krasner
hypermodules that we will use throughout this paper. For a better understanding of the
topic, we start with some fundamental definitions in hypercompositional algebra presented
in several books [15,16] and overview articles [3,17,18]. We refer the reader also to the
first chapters of the book [13], containing an up-to-date account on lifting modules that
generalize the projective supplemented modules, and to the book [19] for an introduction
to module theory.

Hypermodules. Let H be a nonempty set and P∗(H) be the set of all nonempty subsets
of H. The couple (H, ◦) is a hypergroupoid, where the hyperoperation on H is a function
◦ : H × H −→ P∗(H). For any nonempty subsets X and Y of H, one defines X ◦ Y =
∪x∈X, y∈Yx ◦ y. We simply write a ◦X and X ◦ a instead of {a} ◦X and X ◦ {a}, respectively,
for any a ∈ H and any nonempty subset X of H. A hypergroupoid (H, ◦) is called a
semihypergroup if the hyperoperation ◦ is associative, i.e., for every a, b, c ∈ H, we have a ◦
(b ◦ c) = (a ◦ b) ◦ c. A hypergroupoid (H, ◦) is called a quasihypergroup if the reproduction
law holds, i.e., for every x ∈ H, x ◦ H = H = H ◦ x. If the hypergroupoid (H, ◦) is a
semihypergroup and quasihypergroup, then it is called a hypergroup. A nonempty subset S
of a hypergroup (H, ◦) is called a subhypergroup of H if, for every a ∈ S, a ◦ S = S = S ◦ a.
A canonical hypergroup is a hypergroup (H, ◦) satisfying the following conditions: (i) it
is commutative, i.e., for every a, b ∈ H, a ◦ b = b ◦ a; (ii) there exists e ∈ H such that
{a} = (a ◦ e) ∩ (e ◦ a) for every a ∈ H (such an element e is called an identity of the
hypergroup); (iii) for every a ∈ H there exists a unique a−1 ∈ H such that e ∈ a ◦ a−1 (the
element a′ is called the inverse of a); (iv) for every a, b, c ∈ H, if c ∈ a ◦ b, then a ∈ c ◦ b−1

and b ∈ a−1 ◦ c.

An algebraic system (R,+, ·) is called a Krasner hyperring if

1. (R,+) is a canonical hypergroup;
2. (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., a · 0 = 0 = 0 · a

for any a ∈ R;
3. The multiplication distributes over the addition on both sides, i.e., for any a, b, c ∈ R,

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a;

while (R,+, ·) is called a general hyperring (or simply, a hyperring) if

1. (R,+) is a canonical hypergroup with the scalar identity 0R;
2. (R, ·) is a semihypergroup;
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3. The multiplication distributes over the addition on both sides.

A hyperring R is called commutative if it is commutative with respect to the multipli-
cation. If a ∈ a · 1R ∩ 1R · a for every a ∈ R, then the element 1R is called a unit element of
the hyperring R.

Now, let R be a hyperring with the identity element 1R. A left R-hypermodule is
defined as an algebraic system (M,+, ◦), where the hypergroup (M,+) is endowed with
an external multivalued operation ◦, i.e., ◦ : R×M −→ P∗(M) such that, for every x, y ∈ R
and a, b ∈ M, the following statements hold:

1. x ◦ (a + b) = x ◦ a + x ◦ b;
2. (x + y) ◦ a = x ◦ a + y ◦ a;
3. (x · y) ◦ a = x ◦ (y ◦ a);
4. a ∈ 1R ◦ a.

Similarly, the concept of right R-hypermodule is defined and we say that (M,+, ◦) is
an R-hypermodule if it is a left and right one. Some authors call this hypercompositional
structure a general hypermodule. A nonempty subset N of an R-hypermodule M is called
a subhypermodule of M if N is an R-hypermodule under the same hyperoperations of M,
and we denote this as N ≤ M. In other words, N is a subhypermodule of M if and only
if x ◦ a ⊆ N and a− b ∈ N for every x ∈ R and a, b ∈ N [20]. A hypermodule M having
the additive part of a canonical hypergroup is called a canonical R-hypermodule if it is a
hypermodule over a Krasner hyperring (R,+, ·).

If we consider a Krasner hyperring R, then we may endow a canonical hypergroup
(M,+) with an external operation · : R×M −→ M defined as (r, m) 7−→ r ·m ∈ M. If,
for every x, y ∈ R and a, b ∈ M, the following statements hold:

1. x · (a + b) = x · a + x · b;
2. (x + y) · a = x · a + y · a;
3. (x · y) · a = x · (y · a);
4. a = 1R · a;
5. x · 0M = 0R;

then M is called a Krasner left R-hypermodule. Similarly, a right Krasner R-hypermodule is
defined and it is called a Krasner R-hypermodule (or simply a Krasner hypermodule) if it
is both left and right.

Let {Ni}i∈I be a family of subhypermodules of an R-hypermodule M. The set
∑i∈I Ni = ∪{∑i∈I ai | ai ∈ Ni for every i ∈ I such that ∃n ∈ N : ai = 0, for all but finitely
many i ≥ n} is a subhypermodule of M. A nonempty subset J of a commutative hyperring
R is called a hyperideal, if x− y ⊆ J and a · x ⊆ J for every a ∈ R and x, y ∈ J. Recall that
every hyperideal J of a hyperring R is a subhypermodule of the R-hypermodule R.

Let M be a left Krasner hypermodule over a Krasner hyperring R and K be a sub-
hypermodule of M. Consider the set M

K = { a + K | a ∈ M }. Then, M
K is a left Krasner

hypermodule over R under the hyperoperation defined as + : M
K ×

M
K −→ P∗(

M
K ) and the

external operation � : R× M
K −→

M
K defined as (a + K) + (a

′
+ K) = {b + K | b ∈ a + a

′}
and x� (a + K) = {b + K | b ∈ x · a} for every a, a

′
, b ∈ M and x ∈ R. The Krasner hyper-

module M
K is called the quotient hypermodule of the hypermodule M. Note that a + K = K if

and only if a ∈ K.
A nonzero Krasner R-hypermodule M is called simple [20] if the only subhypermodules

of M are {0M} and M itself. We denote by S(M) the set of all simple subhypermodules of
the Krasner R-hypermodule M.

The following technical result will be often used in the next sections.

Lemma 1 ((Modularity law) [21]). Suppose that M is a Krasner R-hypermodule and A, B, and C
are subhypermodules of M such that B ≤ A. Then, A ∩ (B + C) = B + (A ∩ C).

Small subhypermodules. A subhypermodule N of a left Krasner R-hypermodule M is
called a small subhypermodule of M and denoted by N � M, if N + L 6= M for every proper
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subhypermodule L of M. We refer the reader to [21] for basic properties related to small
subhypermodules. We recall here some basic properties of small subhypermodules that
will be used throughout the paper.

Lemma 2 ([21]). Let M be a hypermodule and X ≤ Y be subhypermodules of M. Then

(1) Y � M if and only if X � M and Y
X �

M
X .

(2) Any finite sum of small subhypermodules of M is again small in M.
(3) If Y is a direct summand of M and X � M, then X � Y.

A left Krasner R-hypermodule M is called a hollow [10] if every proper subhypermod-
ule of M is small in M. Similarly to module theory, a left Krasner R-hypermodule is a
hollow if and only if the sum of any of its proper subhypermodules is a proper subhyper-
module. Moreover, M is called local if it has a proper subhypermodule that contains all
proper subhypermodules of M.

Let M be a left Krasner R-hypermodule. We will denote by Rad(M) the sum of all small
subhypermodules of M, that is, Rad(M) = ∑L�M L. If M has no small subhypermodules
of M, then we set Rad(M) = M. Notice that Rad(M) is always a subhypermodule of the left
Krasner R-hypermodule M and M is local if and only if M is hollow and Rad(M) 6= M [10].

Homomorphisms. Let M and M
′

be two left Krasner R-hypermodules. A function
f : M −→ M

′
is called a homomorphism if for every a, b ∈ M and r ∈ R, it holds f (a + b) ⊆

f (a) + f (b) and f (r ◦ a) = r ◦ f (a), while it is called a strong homomorphism if f (a + b) =
f (a) + f (b) and f (r ◦ a) = r ◦ f (a). For any subhypermodule N of a left Krasner R-
hypermodule M, the image f (N) is a subhypermodule of M

′
and the kernel ker( f ) = { a ∈

M | f (a) = 0M′ } is a subhypermodule of M. If f : M −→ M′ is a strong epimorphism,
i.e., a strong surjective homomorphism, and ker( f ) � M, then f is called a small strong
epimorphism. A subhypermodule U of a Krasner R-hypermodule M is called fully invariant
in M if α(U) is a subhypermodule of U, for every strong endomorphism α : M −→ M.

Supplements. Two subhypermodules N and N
′

of a left Krasner R-hypermodule M are
called independent if N ∩ N

′
= {0M}, and in this case, their sum N + N

′
is denoted by

N ⊕ N
′

and called direct sum. Moreover, a subhypermodule N of M is called a direct
summand of M if M = N ⊕ K for some subhypermodule K of M [21]. A left Krasner
R-hypermodule M is called semisimple, if its subhypermodules are direct summands in
M [20]. As a generalization of semisimple hypermodules, in [10], the class of supplemented
hypermodules was introduced. Let M be a left Krasner R-hypermodule and U, V be
subhypermodules of M. V is called a supplement of U in M if it is a minimal element in
the set { L ≤ M | L + U = M }. Then M is called supplemented if every subhypermodule
of M has a supplement in M [10]. Thus, it is clear that V is a supplement of U in M if
and only if V + U = M and U ∩ V � V, i.e., the canonical map V −→ M

U is a small
strong epimorphism. Moreover, U has amply supplements in M if, whenever U + V = M, V
contains a supplement V′ of U in M. The left Krasner R-hypermodule M is called amply
supplemented if every subhypermodule has amply supplements in M. These definitions
have been initially introduced in [10] for general hypermodules, and several examples have
been illustrated there.

It is clear that semisimple modules and hollow modules are examples of amply sup-
plemented Krasner R- hypermodules. Moreover, a supplemented Krasner R-hypermodule
M with zero Rad(M) is semisimple. Thus, we can write the following implications between
the three classes of Krasner R-hypermodules:

semisimple hypermodules=⇒ amply supplemented hypermodules=⇒ supplemented
hypermodules.
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3. Some Results of (Amply) Supplemented Hypermodules

Throughout this paper, we work with left Krasner R-hypermodules, that we briefly
call hypermodules.

In this section, some basic properties of (amply) supplemented hypermodules are
presented. For a better understanding of the concept, we will start with one example of
amply supplemented hypermodule.

Example 1 ([10]). Take the set R = {0, 1, 2, 3} equipped with the hyperoperation + and operation
· defined as follows:

+ 0 1 2 3
ine 0 0 1 2 3
ine 1 1 0, 1 3 2, 3
ine 2 2 3 0 1
ine 3 3 2, 3 1 0, 1
ine

and r · s =
{

2, if r, s ∈ {2, 3}
0, otherwise.

Then R is a Krasner hyperring and M = R is a left Krasner R-hypermodule with the
proper subhypermodules {0}, K = {0, 1}, and L = {0, 2}. Since L + K = M, it follows that
{0} is the only small subhypermodule of M. In addition, all subhypermodules are direct
summands of M and thus M is amply supplemented.

Recall here a result on the smallness property in quotient hypermodules.

Proposition 1 ([10]). Let M be a hypermodule and U ⊂ L be subhypermodules of M. Then L
U is a

small subhypermodule of M
U if and only if for all subhypermodules K of M the equality L + K = M

implies U + K = M.

In the following auxiliary result, we will present some properties of the supplements
of a hypermodule and of the set Rad(M) = ∑L�M L. Notice that very often we make use
of the second isomorphism theorem [22].

Lemma 3. Let M be a hypermodule and K, L two subhypermodules such that L is a supplement of
K in M.

1. If U is a subhypermodule of L, then L
U is not small in M

U .
2. If U is a subhypermodule of L and U is a small subhypermodule in M, then U is a small

subhypermodule in L.
3. Rad(L) = L ∩ Rad(M),

4. Rad(M
K ) = Rad(M)+K

K .
5. Rad(M) = (L + Rad(M)) ∩ (K + Rad(M)) = (L ∩ Rad(M)) + (K ∩ Rad(M)).

Proof. (1) Let U be a subhypermodule of L. If L
U is small in M

U , i.e., L
U �

M
U , then,

by Proposition 1, it follows that K + U = M, which contradicts with the minimality of L as
a supplement of K. Thus, L

U is not small in M
U .

(2) Suppose that U + T = L, for some subhypermodule T of L. Then (U + T) + K =
L + K = M. Therefore U + (T + K) = M, and since U � M, it follows that T + K = M,
with L a supplement of K in M. Thus, by the minimality of L, we have T = L. Hence,
U � L.

(3) It is clear that Rad(L) ⊆ L ∩ Rad(M). Conversely, let a ∈ L ∩ Rad(M). Since
Rad(M) is the sum of all small subhypermodules of M, it follows that Ra � M. Then,
by (2), we obtain Ra � L, i.e., a ∈ Rad(L). Thus, L ∩ Rad(M) ⊆ Rad(L), and therefore
Rad(L) = L ∩ Rad(M).

(4) Since L is a supplement of K in M, the canonical map L −→ M
K is a small strong

epimorphism. From L
L∩K
∼= M

K , we have that Rad( L
L∩K )

∼= Rad(M
K ). Since K ∩ L ⊆ Rad(L),

it follows that Rad( L
L∩K ) =

Rad(L)
L∩K . Therefore, every maximal subhypermodule of L contains
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K ∩ L. In addition, we have M
K = K+L

K
∼= L

K∩L which implies Rad(M
K ) = Rad(L)+K

K . By using

the canonical strong epimorphism M −→ M
K , on one side we have Rad(M)+K

K ≤ Rad(L)+K
K .

On the other side, Rad(L) + K ≤ Rad(M) + K, and therefore Rad(M
K ) = Rad(M)+K

K .
(5) Let N = Rad(M) and ψ : M −→ M

K be the strong canonical epimorphism. Since

ψ(Rad(L)) =
Rad(L) + K

K
∼=

Rad(L)
K ∩ Rad(L)

=
Rad(L)

K ∩ L ∩ Rad(M)
=

Rad(L)
K ∩ L

= Rad(
L

K ∩ L
) ∼=

Rad(
M
K
) and knowing (4), it follows that

Rad(M) + K
K

=
Rad(L) + K

K
. Thus, we can write

N + K = Rad(M) + K = Rad(L) + K = (L ∩ N) + K.

Then, N + (N ∩ K) = N ∩ (N + K) = N ∩ [(L ∩ N) + K], which implies that N =
(L ∩ N) + (K ∩ N), meaning that Rad(M) = (L ∩ Rad(M)) + (K ∩ Rad(M)). It remains
to prove the first part of the formula. Again we use the modularity law and we obtain
L ∩ (N + K) = L ∩ (L ∩ N + K) = (L ∩ N) + (L ∩ K) = L ∩ N. Therefore, (N + K) ∩ (N +
L) = N + ((N + K) ∩ L) = N + (L ∩ N) = N, meaning that

Rad(M) = (L + Rad(M)) ∩ (K + Rad(M)).

Now the proof is completed.

Recall from [6] that an R-hypermodule P is normal A-projective if, for every strong
epimorphism g ∈ HomR(A, B) and every strong homomorphism f ∈ HomR(P, B), there
exists f ∈ HomR(P, A) such that g ◦ f = f . If P is normal A-projective in the category
Hmod for every hypermodule A, then P is called a normal projective hypermodule. In
addition, from [21], we know that, for any hypermodules M and N, a strong epimorphism
g : M −→ N is a small strong epimorphism if and only if for every strong homomorphism
f ; if g ◦ f is a strong epimorphism, then f is a strong epimorphism, too. Moreover, if f :
P −→ M is a small strong epimorphism and P is a projective R-hypermodule, then P is
called a projective cover of M.

Some fundamental results of supplements related to homomorphisms and projective
covers are gathered in the next result.

Lemma 4. 1. In the following commutative diagram, suppose that γ and θ are strong epimor-
phisms, while α is a small strong epimorphism related to the hypermodules U, V, W, S.

U
β //

γ

��

V

θ

��
W

α
// S

If X is a supplement of ker(γ) in U, then β(X) is a supplement of ker(θ) in V.
2. If X is a subhypermodule of the hypermodule M and M

X has a projective cover, then X has a
supplement in the hypermodule M.

3. If L is a supplement of K in a hypermodule M and η : M −→ M is a strong endomorphism
with Im(1− η) a subhypermodule of K, then η(L) is a supplement of K in M.

4. If L is a supplement of K in a hypermodule M and X is a subhypermodule of K, then L+X
X is a

supplement of K
X in M

X .

Proof. (1) By the hypothesis, we have X + ker(γ) = U and X ∩ ker(γ) � X. Let us
consider the following short exact sequence constructed with the hypermodules and their
strong homomorphisms: X −→ U

ker(γ) −→W −→ S ≡ U −→ β(X) −→ V
ker(θ) −→ S. Since
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β(X) + ker(θ) = V and β(X) ∩ ker(θ) � β(X), it follows that β(X) is a supplement of
ker(θ) in V.

(2) Let P be a projective cover of M
X , i.e., the function f : P −→ M

X is a strong
epimorphism and P is a projective hypermodule. Then, for the strong epimorphism
h ∈ HomR(M, M

X ), there exists β ∈ HomR(P, M) such that g ◦ β = f , i.e., the following
diagram commutes.

P
β //

id

��

M

g

��
P

f // M
X

Since ker(id) = {0P}, it follows that P is a supplement of {0P} = ker(id) in P and by
item (1) it results that β(P) is a supplement of X = ker(g).

(3) Let L be a supplement of K in the R-hypermodule M. Since Im(1− η) is a subhy-
permodule of K, it follows by item (1) that the following diagram

M
η //

��

M

��
M
K

// M
K

is commutative and η(L) is a supplement of K in M.
(4) The statement follows by applying item (1) to the following diagram

L ⊂ M
ψ //

��

M
X

α

��
M
K

// M
K

where ψ(L) = L+X
X and Kerα = K

X .

The last item of Lemma 4 can be written as follows.

Theorem 1. Every quotient hypermodule of a supplemented hypermodule is supplemented, too.

In order to characterize the sum of supplemented hypermodules, we first prove the
following auxiliary result.

Lemma 5. Let M be an R-hypermodule.

1. Let N, K, L be three subhypermodules of M such that N + K + L = M. If N is a supplement
of K + L in M and K is a supplement of N + L in M, then N + K is a supplement of L in M.

2. Let N and K be two subhypermodules of M such that N is supplemented. If N + K has a
supplement in M, then K has a supplement in M, too.

Proof. (1) Since N is a supplement of K + L in M, it follows that (K + L) ∩ N � N and,
similarly, (N + L) ∩ K � K. We will prove that L ∩ (N + K)� N + K.

By the modularity law we have L ∩ (N + K) = N + (L ∩ K) and K ∩ (N + L) =
N + (K ∩ L). Therefore, L∩ (N + K) ⊆ [N ∩ (L + K)] + [K ∩ (L + N)] and since the sum of
small subhypermodules is a small subhypermodule, we have that L ∩ (N + K)� N + K.



Mathematics 2022, 10, 1945 8 of 15

(2) Let X be a supplement of N + K in M. Thus, N + K + X = M and (N + K) ∩ X �
X. We know that N is supplemented, therefore N ∩ (K + X) has a supplement Y in N,
i.e., N ∩ (K + X) + Y = N and N ∩ (K + X) ∩Y = (K + X) ∩Y � Y. Then we have

M = N + K + X = N ∩ (K + X) + Y + (K + X) = K + X + Y

and

K ∩ (X + Y) ⊆ [X ∩ (K + Y)] + [Y ∩ (K + X)] ⊆ [X ∩ (K + N)] + [Y ∩ (K + X)].

Since X ∩ (K + N) � X and Y ∩ (K + X) � Y, it follows that K ∩ (X + Y) � X + Y (the
sum of small subhypermodules is a small subhypermodule). Thus, X + Y is a supplement
of K in M.

Theorem 2. The sum of two supplemented hypermodules is supplemented, too.

Proof. Let M1 and M2 be two supplemented hypermodules. We will prove that M = M1 +
M2 is supplemented, too. Let U be a subhypermodule of M. Since M2 is supplemented,
it follows that its subhypermodule (M1 + U) ∩ M2 has a supplement V in M2. Then
M = M1 + M2 = M1 + (M1 + U) ∩ M2 + V = M1 + U + V. In addition, since V is a
supplement of (M1 +U)∩M2 in M2, we have (M1 +U)∩V = ((M1 +U)∩M2)∩V � V.
This means that V is a supplement of M1 +U in M. Since M1 is supplemented, by Lemma 5
(2), it follows that U has a supplement in M. Therefore, M is supplemented.

Corollary 1. If in the exact sequence 0 −→ U −→ M −→ M
U −→ 0 of hypermodules U and M

U
are supplemented and U has a supplement in every subhypermodule X, with U < X < M, then
the hypermodule M is supplemented.

Proof. Let V be a subhypermodule of M, X
U be a supplement of V+U

U in M
U , and Y be a

supplement of U in X. We have U +Y = X, U ∩Y � Y, V+U
U + X

U = M
U and V+U

U ∩ X
U �

X
U .

Hence V + U + X = M, (V + U) ∩Y ≤ (V + U) ∩ X, so (V+U)∩Y
U ≤ (V+U)∩X

U � X
U . Thus,

we suppose that there exists a subhypermodule T of Y such that (V +U)∩Y + T = Y. Then
(V+U)∩Y

U + U+T
U = X

U . By using (V+U)∩Y
U � X

U , it follows that U+T
U = X

U . Thus, U + T = X.
Since Y is a supplement of U in X, we have T = Y. Therefore, Y is a supplement of V + U
in M, i.e., Y ∩ (V + U)� Y. Then, by Lemma 5 (2), we conclude that V has a supplement
in M.

Recall that an R-hypermodule M is local if and only if M is hollow and Rad(M) 6=
M [10]. It can be easily seen here that if a hypermodule M is a hollow and Rad(M) 6= M,
then M is cyclic and Rad(M) is the largest subhypermodule of M.

Theorem 3. If M is a direct sum of hollow hypermodules and Rad(M) is small in M, then M is
supplemented.

Proof. Let M = ⊕γ∈Ω Mγ, with Mγ a hollow hypermodule and Rad(M)� M. Defining

Mγ =
Mγ+Rad(M)

Rad(M)
, we obtain Mγ

∼= Mγ

Mγ∩Rad(M)
=

Mγ

Rad(Mγ)
for every γ ∈ Ω. Since Mγ is a

hollow hypermodule for every γ ∈ Ω, it follows that Mγ

Rad(Mγ)
is hollow, too, accordingly

with [21], Proposition 2.4. Then Rad(M) = ⊕γ∈ΩRad(Mγ) and Rad(M)� M. Moreover,
since Mγ is a hollow hypermodule and Rad(Mγ) ≤ Mγ for every γ ∈ Ω, it follows
that Rad(Mγ) � Mγ. Thus, Rad(Mγ) 6= Mγ for every γ ∈ Ω and Rad(Mγ) is the
largest subhypermodule of Mγ for every γ ∈ Ω. Therefore, Mγ

Rad(Mγ)
is simple for every

γ ∈ Ω. This implies that M = M
Rad(M)

= ⊕γ∈Ω
Mγ

Rad(Mγ)
∼= ⊕γ∈Ω Mγ. Therefore, for an

arbitrary subhypermodule U of M, there exists Φ ⊂ Ω with M = (⊕γ∈Φ
Mγ

Rad(Mγ)
)⊕U. Let
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V = ⊕γ∈Φ Mγ. Then, M = U⊕V and U ∩V ≤ Rad(M). So U ∩V � M. Because Rad(M)
is small in M, we have U ∩V � M and since V is a direct summand of M, we conclude
that U ∩V � V. Therefore, V is a supplement of U in M. Hence M is supplemented.

Theorem 4. For a finitely generated hypermodule M, the following statements are equivalent:

(a) M is supplemented.
(b) Every maximal subhypermodule of M has a supplement in M.
(c) M is a sum of hollow subhypermodules.

Proof. (a)⇒ (b) This implication is clear.
(b) ⇒ (c) Let S = ∑{U ≤ M | U is a hollow subhypermodule of M}. Then S⊆M.

Now suppose S⊂M. Since M is finitely generated, by Zorn’s lemma we know that S is
contained in a maximal subhypermodule N of M. By hypothesis (b), N has a supplement
K in M, i.e., M = N + K and N ∩ K � K. Since M

N = N+K
N
∼= K

N∩K , it follows that N ∩ K
is a maximal subhypermodule of K and N ∩ K � K. Thus, K is local with the largest
subhypermodule N ∩ K. From K < S < N it follows that M = N + K = N, which is a
contradiction. Then S = M.

(c) ⇒ (a) We know that M is finitely generated and M = ∑γ∈Ω Mγ, with Ω a finite
set, where each Mγ is a hollow subhypermodule and Rad(M)� M. Let K be any proper

subhypermodule of M. We can write M
Rad(M)

= ∑γ∈Ω
Mγ+Rad(M)

Rad(M)
. Since Rad(Mγ) ⊆

Mγ ∩ Rad(M) and Mγ+Rad(M)
Rad(M)

∼= Mγ

Mγ∩Rad(M)
, these factors are simple or zero. We gain

the equation M
Rad(M)

= ⊕
θ∈Ω′

Mθ+Rad(M)
Rad(M)

, and since Rad(M) � M, we conclude that

M = ∑θ∈Ω′ Mθ with local subhypermodules Mθ for any θ ∈ Ω
′ ⊂ Ω. Thus, K is contained

in a maximal one, and K has a supplement in M, as we saw in Theorem 3, so M is
supplemented.

Example 2 (See [10], Example 2.4). Let (Z2 × Z4, ∗, �) be a hypermodule over the hyperring
(Z,⊕,�), where (a, b) ∗ (c, d) = {(a, b), (c, d))}, n � (a, b) = {n(a, b)}, n⊕m = {n, m} and
n�m = {nm} for all (a, b), (c, d) ∈ Z2 ×Z4 and n, m ∈ Z. Since every proper subhypermodule
of (Z2 × Z4, ∗, �) is small, it follows that (Z2 × Z4, ∗, �) is a hollow. By using Theorem 4, we
conclude that (Z2 ×Z4, ∗, �) is also supplemented.

We conclude this section with some characterizations of amply supplemented hyper-
modules.

Theorem 5. For a hypermodule M, the following statements are equivalent.

(a) M is amply supplemented.
(b) Every subhypermodule N of M is of the form N = N1 + N2 with N1 supplemented and

N2 � M.
(c) For every proper subhypermodule N of M, there exists a supplemented proper subhypermodule

N1 of N with N
N1
� M

N1
.

Proof. (a) ⇒ (b) Let M be an amply supplemented hypermodule and N be a proper
subhypermodule of M. Then N has an ample supplement K in M, i.e., M = K + N and
there exists a supplement N1 of K in M which lies in N. It follows that N ∩ (K + N1) =
N ∩ M = N, while by the modular law we have N ∩ (K + N1) = N1 + (K ∩ N). Thus,
N1 + (K ∩ N) = N. Denote N2 = K ∩ N, which is small in M. It remains to be shown
that N1 is supplemented. By the hypothesis for a subhypermodule A of N1, let L be a
supplement of A + K in M that is contained in N1. Then L is also a supplement of A in N1
because L ∩ A� L, and from the minimality of N1, it follows that L + A = N1.

(b)⇒ (c) If N = N1 + N2 with N2 � M, it follows immediately that N
N1
� M

N1
.
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(c) ⇒ (a) Let N be a subhypermodule of N. By hypothesis, there exists a supple-
mented subhypermodule N1 of N with N

N1
� M

N1
. It follows that U + N1 = M, and if N

′
is a

supplement of U ∩ N1 in N1, then using the small strong epimorphism N
′ −→ N1

U∩N1
∼= M

U ,

we conclude that N
′

is a supplement of U in M and it is contained in N1. Thus, N has an
ample supplement in M.

Theorem 6. A finitely generated hypermodule M is amply supplemented if and only if every
maximal subhypermodule has ample supplements in M.

Proof. For an arbitrary ample supplemented hypermodule M, first we prove the following
property. If A + B = M and both subhypermodules A and B have ample supplements in
M, then so has A ∩ B. Indeed, from (A ∩ B) + C = M, it follows that A + (B ∩ C) = M =
B + (A ∩ C), and since M is ample supplemented, we have a supplement B

′
< B ∩ C of A

and a supplement A
′
< A ∩ C of B in M. It follows that A

′
+ B

′
< C is a supplement of

A ∩ B in M.
Suppose now that M is finitely generated and every maximal subhypermodule has

ample supplements in M. By Theorem 4, we know that M is supplemented, hence M
Rad(M)

is semisimple. Thereby, for every subhypermodule U of M, the factor hypermodule
M

Rad(M)+U is semisimple and finitely generated. Since M
Rad(M)+U is semisimple, it follows

that Rad( M
Rad(M)+U ) = 0. In addition, Rad( M

Rad(M)+U ) = ∩i∈I
Xi

Rad(M)+U = ∩i∈I Xi
Rad(M)+U for

every maximal subhypermodule Xi
Rad(M)+U of M

Rad(M)+U . Thus, Rad(M) + U = ∩i∈I Xi for

all maximal subhypermodules Xi of M. Since M
Rad(M)+U is finitely generated, there exists a

finite subset I
′

of I such that Rad(M) + U = ∩i∈I′Xi. Thus, by the first part of the proof,
we conclude that Rad(M) + U has ample supplements in M, so also U.

4. Normal π-Projective Hypermodules

The aim of this section is to introduce the notion of normal π-projective hypermod-
ule, to find its properties related to direct summands and supplements, and to provide a
relationship between direct summands and supplements for this particular case of hyper-
modules.

Definition 1. An R-hypermodule M is called normal π-projective if for every pair (U, V) of
subhypermodules of M satisfying U + V = M, there exists a strong homomorphism η : M −→ M
with Im(η) ≤ U and Im(1− η) ≤ V, where 1 denotes the identity strong homomorphism of M.

Subhypermodules U and V are called normal mutually-projective if U is normal V-projective
and V is normal U-projective [6].

Lemma 6. For a normal π-projective hypermodule M, the following statements hold:

1. If U + V = M and U is a direct summand in M, there exists a subhypermodule V
′

of V with
U ⊕V

′
= M.

2. If U + V = M and U and V are direct summands in M, then so is U ∩V.
3. If U ⊕V = M and α : U −→ V is a strong homomorphism with a direct summand Im(α)

in V, then ker(α) is a direct summand in U.
4. If U ⊕V = M and a subhypermodule U

′
of U exists such that U

U′
is isomorphic to a direct

summand in V, then U
′

is a direct summand in U.

Proof. (1) Let M = U + V and M = U ⊕ X for some subhypermodule X of M. Since
M is a normal π-projective hypermodule, there exists a strong homomorphism η : M =
V +U −→ M with Im(1− η) ≤ U and Im(η) ≤ V. Therefore η(X) ≤ η(M) ≤ V, meaning
that η(X) is a subhypermodule of V. Then, it follows that M = U ⊕ η(X). Thus, there
exists a subhypermodule V

′
= η(X) of V with U ⊕V

′
= M.
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(2) Suppose that U + V = M and U and V are direct summands in M. Then, by (1),
there exist a subhypermodule U

′
of U and a subhypermodule V

′
of V such that M =

U ⊕V
′
= U

′ ⊕V. It follows that M = (U ∩V)⊕ (U
′
+ V

′
).

(3) Suppose that U ⊕ V = M and Im(α) is a direct summand in V. Then there
exists a subhypermodule V′ of V such that Im(α)⊕ V

′
= V. Let A = U + V

′
and B =

{ u + α(u) | u ∈ U }. Thus M = A + B = A ⊕ Im(α) = B ⊕ V and A ∩ B = ker(α), so
applying (2), we obtain that ker(α) is a direct summand in M and also in U.

(4) Suppose that U ⊕V = M, and U
U′

is isomorphic to a direct summand in V, where

U
′

is a subhypermodule of U. Therefore there exists a strong injective homomorphism
β : U

U′
−→ V such that Im(β) is a direct summand in V. Now consider the strong canonical

epimorphism π : U −→ U
U′

and let α = β ◦π : U −→ V. By (3), we obtain that ker(α) = U
′

is a direct summand in U.

Example 3. Let I and J be right hyperideals in a hyperring R, with I ⊂ J ⊆ I
′
, where I

′
is the

intersection of all maximal hyperideals containing I. Consider the hypermodule M := R
I ×

R
J and

the subhypermodules A = R · (1, 0), C = R · (1, 1) and C = R · (0, 1). Since I ⊂ J, it follows
immediately that M = A + B = A⊕ C = B⊕ C and A ∩ B = {0R} · J

I . Because J ⊆ I
′
, it

follows that J
I ⊆ Rad( R

I ), thus A∩ B� M and therefore A∩ B 6= {0M} is not a direct summand
in M. Moreover, the subhypermodules A and B are mutual supplements in M, that is M = A + B,
A ∩ B� B and A ∩ B� A.

Lemma 7. If M = U ⊕ V is a normal π-projective hypermodule, then the subhypermodules U
and V are normal π-projective, too. In addition, they are normal mutually-projective.

Proof. To show the normal π-projectivity of U, suppose that X + Y = U, where X and
Y are subhypermodules of U. Since X + (Y + V) = M and M is a normal π-projective
hypermodule, it follows that there exists a strong endomorphism α of M such that Im(α) is
a subhypermodule of X and Im(1− α) is a subhypermodule of Y + V. This induces a map
η : U −→ U defined by η(u) = α(u), for each u ∈ U. Then we have Im(η) = α(U) ≤ X
and Im(1− η) = Im(1− α) ≤ Y, since U ∩V = {0}. Therefore, U is a normal π-projective
subhypermodule, and similarly we can prove the assertion for V.

It remains to be proved that V is U-projective. For this, for an arbitrary hypermod-
ule Q, consider an arbitrary strong epimorphism β : U −→ Q and an arbitrary strong
homomorphism Φ : V −→ Q. Therefore Y = { u− v | u ∈ U, v ∈ V and β(u) = Φ(v) } is
a subhypermodule of M such that U + Y = M. Hence, since M is a π-projective hyper-
module, a strong endomorphism α of M exists such that Im(α) ≤ U and Im(1− α) ≤ Y.
Therefore, the map γ : V −→ U induced by α, i.e., γ(v) = α(v), for any v ∈ V, the equality
βγ = Φ holds.

Lemma 8. For a normal π-projective hypermodule M, the following statements hold:

(1) If U + V = M and U has a supplement in M, then U has a supplement contained in V.
(2) If U + V = M and U and V have supplements in M, then U ∩V also has a supplement in

M.
(3) If U + V = M and V is a fully invariant subhypermodule in M, then every supplement of U

lies in V.
(4) If U and V are mutual supplements in M, then M = U ⊕V.

Proof. (1) By hypothesis, the hypermodule M = U + V is π-projective, so there exists
a strong endomorphism α of M such that Imα ≤ V and Im(1− α) ≤ U. Since U has
a supplement W in M, by Lemma 4 (3) it follows that α(W) is a supplement of U and
α(W) ≤ V.

(2) Accordingly with point (1), the subhypermodule U has a supplement V
′

in M,
with V

′ ≤ V, and the subhypermodule V has a supplement U
′

in M, with U
′ ≤ U.
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Therefore, M = U + V
′
= V + U

′
, with U ∩V

′ � V
′

and V ∩U
′ � U

′
. By the modularity

law, we can write U = U ∩ M = U ∩ (V + U′) = (U ∩ V) + U
′

and similarly, V =

(U ∩V) + V
′
. Therefore,

M = U + V = [(U ∩V) + U
′
] + [(U ∩V) + V

′
] = U ∩V + (U

′
+ V

′
)

and

(U
′
+ V

′
) ∩ (U ∩V) = [(U

′
+ V

′
) ∩U] ∩ V

= (U
′
+ V

′ ∩U) ∩ V
= (U

′ ∩V) + (V
′ ∩U)

� U
′
+ V

′
.

It follows that U
′
+ V

′
is a supplement of U ∩V in M.

(3) Let W be a supplement of U in M. Since M is a normal π-projective hypermodule,
there exists a strong endomorphism α : M = W + U −→ M, with Im(1− α) ≤ W and
Im(α) ≤ U. Therefore, taking η = 1− α, we obtain that η(V) = W ≤ V, since V is a fully
invariant subhypermodule of M.

(4) Let U and V be mutual supplements in M. It is enough to show that U ∩V = 0,
since clearly, M = U + V. Consider the strong epimorphisms α : U × V −→ M

U ×
M
V ,

defined by α(u, v) = (v + U, u + V), for all (u, v) ∈ U × V, β : U × V −→ M, defined as
β(u, v) = u + v, for all (u, v) ∈ U × V and π : M −→ M

U ×
M
V , with the definition law

π(m) = (m + U, m + V), for all m ∈ M. Since

(πβ)(u, v) = π(u + v) = ((u + v) + U, (u + v) + V) = (v + U, u + V)
= α(u, v),

it follows that the following diagram

U ×V α //

β

��

M
U ×

M
V

M = U + V

π

99

is commutative. It can be seen that ker(α) = (U ∩ V) × (U ∩ V). Since U ∩ V � U
and U ∩ V � V, we obtain that ker(α) is small in U × V. It means that α is a small
strong epimorphism. Since M is normal π-projective, there exists a strong homomorphism
η : M −→ M with Im(η) ≤ U and Im(1− η) ≤ V. Let f : M −→ U × V be defined
by f (m) = (η(m), (1− η)(m)), for all m ∈ M. Then (β f )(m) = β( f (m)) = β(η(m), (1−
η)(m)) = η(m) + (1− η)(m) = m = IM(m) and so β splits. It means that ker(β) is a direct
summand of U × V. Therefore ker(β) ≤ ker(α). It follows that ker(β) � U × V and so
ker(β) = 0. Hence U ∩V = 0.

Proposition 2. For a normal π-projective hypermodule M, the following assertions are equivalent.

1. If U + V = M and U ∩V has a supplement in M, then U and V have a supplement in M,
too.

2. If U + V = M and U ∩ V has a supplement in M, there exist U
′ ≤ U and V

′ ≤ V with
U
′ ⊕V

′
= M.

Moreover, if Rad(M)� M, then these two assertions are further equivalent to the next three,
where M = M

Rad(M)
.

3. If U < M and U is a direct summand in M, then U has a supplement in M.
4. Every direct summand of M is the image of a direct summand in M.
5. Every decomposition of M is induced by a decomposition of M.
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Proof. (1)⇒ (2) By hypothesis, U has a supplement in M. Thus, accordingly to Lemma 6
(1), there exists V

′ ≤ V such that U + V
′
= M and U ∩V

′ � V
′
, so U has a supplement V′

in M. Similarly, V
′

has a supplement U
′ ≤ U, and therefore U

′ ⊕V
′
= M by Lemma 8 (4).

(2) ⇒ (1) Let U + V = M and W be a supplement of U ∩ V in M. Therefore,
M = (U ∩V) + W. Based on the modularity law, we can write V = M ∩V = [(U ∩V) +
W] ∩V = (U ∩V) + (V ∩W) and similarly, U = (U ∩V) + (U ∩W). Therefore,

M = U + V = [(U ∩V) + (V ∩W)] + [(U ∩V) + (U ∩W)]
= U ∩V + V ∩W + U ∩ W
= U + (V ∩W).

Since W is a supplement of U ∩V in M, it follows that (U ∩V) ∩W = U ∩ (V ∩W) is
a small subhypermodule of M. By hypothesis, there exist subhypermodules U

′ ≤ U and
V
′ ≤ V ∩W such that U

′ ⊕ V
′
= M. Now it is clear that M = U + V

′
= V + U

′
. Since

U ∩V
′ ≤ U ∩ (V ∩W) is a small subhypermodule of M and V

′
is a direct summand of M,

we obtain that U ∩V
′

is a small subhypermodule of V
′
. Hence V

′
is a supplement of U in

M. In the same way, it can be shown that U
′

is a supplement of V in M.
Suppose now that Rad(M)� M.
(2)⇒ (5) If U ⊕V = M with Rad(M) ≤ U and V ≤ M, then there exist U

′ ≤ U and
V
′ ≤ V with U

′ ⊕V
′
= M by the hypothesis, and hence it follows that U′ = U and V ′ = V.

(5)⇒ (4) Clear.
(4)⇒ (3) For W ⊕U = M, there exists a direct summand V of M with V = W by the

hypothesis. It follows that V is a supplement of U in M.
(3) ⇒ (1) Let U + V = M and W be a supplement of U ∩ V in M. It follows

for V1 := V ∩W that U + V1 = M and U ∩ V1 ⊆ Rad(M). Because M is normal π-
projective and Rad(M) is a fully invariant subhypermodule in M, it can be shown that
(U + Rad(M)) ∩ (V1 + Rad(M)) = Rad(M), that is, U ⊕V1 = M, so U has a supplement
in M by the hypothesis. Similarly, the property holds for V.

As a direct consequence of Proposition 2, we state the following necessary and suf-
ficient condition for a normal π-projective hypermodule with small radical to be supple-
mented.

Corollary 2. A normal π-projective hypermodule M with small radical is supplemented if and
only if the quotient hypermodule M = M

Rad(M)
is semisimple and every direct summand of M is the

image of a direct summand in M.

5. Conclusions

In classical algebra there is a unique concept of module over a ring, while in hypercom-
positional algebra we must distinguish between the general hypermodule and the Krasner
hypermodule, depending on their additive structure: if the additive part is a canonical
hypergroup, then we talk about a Krasner hypermodule. Thus, some properties hold only
in Krasner hypermodules and not in general ones, such as, for example, the following one.
The sum of two arbitrary Krasner subhypermodules is always a Krasner subhypermodule,
whereas, the sum of subhypermodules of a general hypermodule may not be a subhyper-
module. As a consequence, Rad(M), which is the sum of all small subhypermodules of a
hypermodule M (a general one or a Krasner hypermodule), plays a fundamental role in
the characterization of hollow hypermodules. These are hypermodules with the property
that every subhypermodule is small.

In this article, we have focused on Krasner hypermodules and in particular we have
related the notions of supplement and direct summand to normal projectivity. Especially,
we have proved that the class of supplemented Krasner hypermodules is closed under finite
sums and under quotients. In addition, we have showed that a finitely generated Krasner
hypermodule is supplemented if and only if it is a sum of hollow subhypermodules. Some
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characterizations of amply supplemented Krasner subhypermodules have been provided.
One of them says that a finitely generated hypermodule M is amply supplemented if and
only if every maximal subhypermodule has ample supplements in M. After presenting
some fundamental properties of normal π-projective hypermodules related to the behavior
of direct summands and supplements, we have concluded our study with a necessary and
sufficient condition for a normal π-projective hypermodule M with small radical Rad(M)
to be supplemented.

We believe that this study could open new lines of research, one being related with
embeddings. It would be useful to know that any Krasner R-hypermodule is embed-
ding in a normal π-projective hypermodule, because then we can easily work with the
characterizations provided in this article for normal π-projective hypermodules. Another
future research idea could be related with the category of Krasner R-hypermodules. If we
consider a normal π-projective R-hypermodule M with strong endomorphism hyperring
S = End(M), then we may ask about the relationship between the class homS

R(M, N) of
all strong R-homomorphisms from M to an arbitrary subhypermodule N and S as an
S-subhypermodule.
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