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Abstract: The Laguerre derivative and its iterations have been used to define new sets of special
functions, showing the possibility of generating a kind of parallel universe for mathematical entities
of this kind. In this paper, we introduce the Laguerre-type Appell polynomials, in particular, the
Bernoulli and Euler case, and we examine a set of hypergeometric Laguerre–Bernoulli polynomials.
We show their main properties and indicate their possible extensions.
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1. Introduction

Special functions and special number sequences are not only interesting from a theo-
retical point of view, but are also widely used in physical applications (electrodynamics,
classical mechanics and quantum mechanics), engineering and applied mathematics, life
sciences and many other fields of science. The vast majority of special functions, including
elliptic integrals, beta functions, the incomplete gamma function, Bessel functions, Leg-
endre functions, classic orthogonal polynomials, Kummer confluent functions, etc., are
represented in terms of hypergeometric functions, through the introduction of suitable
parameters. Many multivariate generalizations of hypergeometric functions have been
studied in the literature, including via an extension of the Pochhammer symbol [1–9].

In the field of polynomial functions, the literature on Bernoulli polynomials and num-
bers is vast [10], since they frequently appear in mathematics. Along with the Stiring
numbers, they play a central role in number theory. The Bernoulli numbers arose from the
process of summing powers of integers; however, this sequence of numbers occurs surpris-
ingly often in many areas of mathematics, such as the Taylor expansion in a neighborhood
of the origin of circular and hyperbolic tangent and cotangent functions, and the residual
term of the Euler–MacLaurin quadrature rule. Furthermore, there are intimate connections
with the Riemann zeta function and even with Fermat’s last theorem.

As D.E. Smith noted [11], among all the sequences of numbers “there is hardly a species
so important and so generally applicable as Bernoulli numbers.”

Generalizations of the classical Bernoulli polynomials were previously considered
in [12–15]. The hypergeometric Bernoulli polynomials have been introduced and recently
studied in several articles [16–20], in connection with generalizations of the Riemann Zeta
function [21–24].

In this paper, recalling the Laguerre-type derivative and the possibility of constructing
special functions generated by the corresponding differential isomorphism (see [25] and
the references therein), we examine the case of the Laguerre-type Appell polynomials and
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consider, in particular, their extensions to the case of hypergeometric Bernoulli polynomials,
restricting ourselves to the case of the first-order Laguerre derivative.

It is worth noting that several applications have been implemented using the Laguerre
derivative, in connection with population dynamics [25].

In Section 2 we recall the Laguerre-type exponentials and the differential isomorphism
producing the relevant special functions. Then we consider, in particular, the case of
Laguerre-type Appell polynomials (Section 3), including the Bernoulli and Euler cases.

Lastly, in Section 4, we introduce the Laguerre-type hypergeometric polynomials,
considering only the simplest cases, that is, for k = 1 and k = 2.

Of course, several further extensions could be made, considering higher values of k,
or iterating the isomorphism described in [26] to higher-order Laguerre derivatives, as is
recalled in the Conclusions, but this provides no further information, since the methodology
remains essentially the same.

2. Laguerre-Type Exponentials and Special Functions

The Laguerre derivative, is defined by

DL := DxD = D + xD2, (1)

where D = Dx = d/dx. In [25] it is shown that, for all complex numbers a, it results in:

DL e1(ax) = ae1(ax) , (2)

where e1(x) = ∑∞
k=0 xk/(k!)2 is the first-order Laguerre-type exponential [27,28].

The above property can be iterated when, defining Laguerre-type exponentials of
higher order, called L-exponentials. In general, (see [28], Theorem 2.2).

Theorem 1. The function

en(x) :=
∞

∑
k=0

xk

(k!)n+1 (3)

is an eigenfunction of the operator

DnL := Dx · · ·DxDxD = D
(
xD + x2D2 + · · ·+ xnDn)

= S(n + 1, 1)D + S(n + 1, 2)xD2 + · · ·+ S(n + 1, n + 1)xnDn+1 ,
(4)

where S(n + 1, k), k = 1, 2, . . . , n + 1 denotes the Stirling number of the second kind. That is, for
every complex number a, it results in

DnL en(ax) = aen(ax) . (5)

Remark 1. Note that the function en(x) gives back the classical exponential when n = 0. Therefore,
we put e0(x) := ex, D0L := D , and for n = 1 we find D1L := DL.

Remark 2. The operator DnL := Dx · · ·DxDxD = D
(
xD + x2D2 + · · ·+ xnDn) = S(n +

1, 1)D + S(n + 1, 2)xD2 + · · · + S(n + 1, n + 1)xnDn+1, where the S(n, k) coefficients are the
second kind of Stirling numbers, is a particular case of the hyper-Bessel differential operators introduced in
[29] (putting α0 = α1 = · · · = αn = 1). The Bessel-type differential operators of arbitrary order n
were considered by I. Dimovski, in 1966 [30] and later studied in 1994 by V. Kiryakova (see [31] and the
references therein). See also [32].

In [26] it is proven that, in the space Ax of analytic functions having the same radius
of convergence, the correspondence

D → DL, x· → D−1
x , (6)
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where

D−1
x f (x) =

∫ x

0
f (ξ) dξ , D−n

x f (x) =
1

(n− 1)!

∫ x

0
(x− ξ)n−1 f (ξ) dξ , (7)

introduces isomorphismis of topological vector spaces, denoted by Tx, (preserving differen-
tiation), defined as

Tx(xn) = D−n
x (1) =

1
(n− 1)!

∫ x

0
(x− ξ)n−1 dξ =

xn

n!
. (8)

This kind of isomorphism is widely used in operational calculus and differential equa-
tions also under the name of the transmutation or similarity operator, since it transforms
operators and eigenfunctions into each other.

In this isomorphism we have the correspondences

Tx(ex) =
∞

∑
k=0

Tx(xk)

k!
=

∞

∑
k=0

xk

(k!)2 = e1(x)

and in general

T m
x (ex) =

∞

∑
k=0

Tx(xk)

(k!)m =
∞

∑
k=0

xk

(k!)m+1 = em(x) .

Correspondingly, the derivative operator is transformed into

DL = DxD , D2L = DLD−1
x DL = DxDxD ,

D3L = DLD−1
x DLD−1

x DL = DxDxDxD ,
(9)

and so on.
The L-exponentials of higher order are obtained by an iterative application of the

considered differential isomorphism.
Furthermore, the Hermite polynomial H(1)

n (x, y) := (x− y)n becomes, under the Tx
tranformation, the Laguerre polynomial Ln(x, y), since

Tx H(1)
n (x, y) = Ln(x, y) := n!

n

∑
r=0

(−1)ryn−rxr

(n− r)!(r!)2 ,

and many other applications can be derived.
The above method has been exploited to define the Laguerre-type special functions,

and introduced and studied in several articles, including for extensions to the multivariate
case [33]. Applications were shown in [25,26].

Remark 3. Note that the operator DnL is different from (DxD)n. In fact, according to Viskov [34],
it results in

(DxD)n = DnxnDn ,

and using Leibniz’s rule, we find the expression:

(DxD)n = Dn(xnDn) =
n

∑
k=0

(
n
k

)
Dn−kxnDn+k

=
n

∑
k=0

[(
n
k

)]2
(n− k)! xk Dn+k =

n

∑
k=0

n!
k!

(
n
k

)
xk Dn+k .
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3. The Laguerre-Type Appell Polynomials

Definition 1. The Laguerre-type Appell polynomials (shortly L-Appell polynomials) Lan(x) are
defined by means of the exponential generating function [1]:

A(t) e1(xt) =
∞

∑
n=0

Lan(x)
tn

n!
, (10)

where, as in the classic case, A(t) = ∑∞
k=0 aktk is a formal power series with complex coefficients ak,

(k = 0, 1, . . . ) and a0 6= 0.

By applying the Laguerre operator to both sides of Equation (10) and recalling the
eigenvalue property (2) of this operator, one finds

DL[Lan(x)] = n [Lan−1(x)] . (11)

We recall that the Appell polynomials are used in the field of differential operator,
because, considering, in the complex field, the expansion f (z) = ∑∞

n=0 cn
zn

n! and the dif-
ferential operator A(D) := ∑∞

k=0 akDk associated with A(t), the formal solution of the
equation is

A(D)y(z) = f (z) , is given by y(z) =
f (z)

A(D)
,

and it turns out that can be represented as [35]

y(z) =
∞

∑
n=0

cn a∗n(z) ,

where a∗n(z) are the Appell polynomials defined by the generating function

ezt

A(t)
=

∞

∑
n=0

a∗n(z)
tn

n!
.

Now, the same technique can be used dealing with the Laguerre-types Appell poly-
nomials, since by exploiting the differential isomorphism defined in Equation (8), we can
consider the operator A(LD) := ∑∞

k=0 ak LDk and the equation

A(LD)y(z) = f (z) , so that y(z) =
f (z)

A(LD)
,

so that the formal solution is given by

y(z) =
∞

∑
n=0

cn La∗n(z) ,

where a∗n(z) are the Appell polynomials defined by the generating function

e1(zt)
A(t)

=
∞

∑
n=0

a∗n(z)
tn

n!
.

3.1. Basic Definitions

Definition 2. The Laguerre-type Bernoulli polynomials (shortly L-Bernoulli polynomials) are
defined by the exponential generating function

t e1(xt)
et − 1

=
∞

∑
n=0

LBn(x)
tn

n!
,
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and the Laguerre-type Euler polynomials (shortly L-Euler polynomials) by

2 e1(xt)
et + 1

=
∞

∑
n=0

LEn(x)
tn

n!
.

3.2. Laguerre-Type Bernoulli Polynomials

The first few L-Bernoulli polynomials are as follows (Figure 1).

LB0(x) = 1

LB1(x) = x− 1
2

LB2(x) = x2

2 − x + 1
6

LB3(x) = x3

6 −
3
4 x2 + 1

2 x

LB4(x) = x4

24 −
1
3 x3 + 1

2 x2 − 1
30

LB5(x) = x5

120 −
5

48 x4 + 5
18 x3 − 1

6 x

LB6(x) = x6

720 −
1

40 x5 + 5
48 x4 − 1

4 x2 + 1
42

LB7(x) = x7

5040 −
7

1440 x6 + 7
240 x5 − 7

36 x3 + 1
6 x

LB8(x) = x8

40320 −
1

1260 x7 + 7
1080 x6 − 7

72 x4 + 1
3 x2 − 1

30

LB9(x) = x9

362880 −
1

8960 x8 + 1
840 x7 − 7

200 x5 + 1
3 x3 − 3

10 x

Note that, as the operator DxD0 = Id, the identity operator, we have ∀n ∈ N—
LBn(0) = LBn = Bn, that is.

Figure 1. Graphs of polynomials LBn(x) for n = 1, 2, . . . , 6.
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The L-Bernoulli numbers are the same as the ordinary Bernoulli numbers.
Although this article is mainly focused on Bernoulli-type polynomials, it should

be noted that many extensions can be made, for example, by considering the Genocchi
polynomials or the polynomials of Apostol-Bernoulli polynomials of order α, studied
in [36], which are defined by means of the exponential generating function(

t ext

λet − 1

)α

ext =
∞

∑
n=0
Bα

n(x; λ)
tn

n!
, (|t + log λ| < 2π; 1α := 1) ,

where, denoting by Bα
n(x) the Bernoulli-Apostol polynomials [37], it results in

Bα
n(x) = Bα

n(x; 1) , and Bα
n(λ) := Bα

n(0; λ) ,

and Bα
n(λ) are the Apostol-Bernoulli numbers of order α, generalizing the classical ones.

The Laguerre-type Apostol-Bernoulli polynomials of order α are obtained by means of
the exponential generating function(

t e1(xt)
λe1(t)− 1

)α

ext =
∞

∑
n=0

LBα
n(x; λ)

tn

n!
, (|t + log λ| < 2π; 1α := 1) ,

Similar definitions for the Apostol-Euler numbers of order α can be found in the same
article [36].

3.3. Laguerre-Type Euler Polynomials

The first few L-Euler polynomials are as follows (Figure 2).

LE0(x) = 1

LE1(x) = x− 1
2

LE2(x) = x2

2 − x

LE3(x) = x3

6 −
3
4 x2 + 1

4

LE4(x) = x4

24 −
1
3 x3 + x

LE5(x) = x5

120 −
5

48 x4 + 5
4 x2 − 1

2

LE6(x) = x6

720 −
1

40 x5 + 5
6 x3 − 3x

LE7(x) = x7

5040 −
7

1440 x6 + 35
96 x4 − 21

4 x2 + 17
8

LE8(x) = x8

40320 −
1

1260 x7 + 7
60 x5 − 14

3 x3 + 17x

LE9(x) = x9

362880 −
1

8960 x8 + 7
240 x6 − 21

8 x4 + 135
4 x2 − 31

2

In addition, in this case we have ∀n ∈ N—LEn(0) = LEn = En, that is.
The L-Euler numbers are the same as the ordinary Euler numbers.
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Figure 2. Graphs of polynomials LEn(x) for n = 1, 2, . . . , 6.

3.4. Main Properties

Being a particular case of the L-Appell polynomials, the L-Bernoulli and L-Euler
polynomials also satisfy the equations

DL[LBn(x)] = n [LBn−1(x)] ,

DL[LEn(x)] = n [LEn−1(x)] .
(12)

Equations (12) are iterated as

(DL)
m[LBn(x)] = DmxmDm[LBn(x)] = n!

(n−m)! [LBn−m(x)] ,

(DL)
m[LEn(x)] = DmxmDm[LEn(x)] = n!

(n−m)! [LEn−m(x)] ,

Theorem 2. The following properties hold:

• By introducing the 2nd kind L-Stirling numbers LS(n, k) defined as

LS(n, k) = S(n, k) n!, (n ∈ N , k = 0, 1, . . . , n− 1) , (13)

we find

(x)n = x(x− 1) · · · (x− n + 1) =
n

∑
k=0

LS(n, k xn

n! ) . (14)

• This results in

1
n+1

n

∑
k=0

(n+1
k ) LBk(x) = xn

n! , (15)
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• The integral relations hold:∫ y
a

1
x
∫ x

0 LBn(t) dtdy = LBn+1(y)−LBn+1(a)
n+1 ,

∫ y
a

1
x
∫ x

0 LEn(t) dtdy = LEn+1(y)−LEn+1(a)
n+1 .

(16)

Proof. The three preceding results follow from a straightforward application of the iso-
morphism Tx to both sides of the corresponding equations valid for the ordinary Bernoulli
polynomials. Formulas (16) are obtained by inverting the Laguerre derivative operator.

A general result on differential equations satisfied by Appell polynomials is reported
in [38]. This result could be applied even in the Laguerre-type case, substituting the
ordinary with the Laguerre derivative, but we do not go further in this direction because of
the Ismail’s remark states that it is not clear to introduce differential equations of this kind
which do not have a finite order.

4. Hypergeometric L-Bernoulli Polynomials

Putting

LTr(x) =
r

∑
k=0

xk

(k!)2 (17)

and

1F2(1; r + 1, r + 1; x) =
∞

∑
h=0

xh

[(r + 1)h]2
=

∞

∑
h=0

(1)h
[(r + 1)h]2

xh

h!
, (18)

since

e1(x)− LTr(x) =
∞

∑
n=r

xn

(n!)2 = xr
∞

∑
n=0

1
[(n + r)!]2

xn , (19)

and
xr

(r!)2 e1(tx)

e1(x)− LTr(x)
=

e1(tx)

(r!)2
∞

∑
n=0

xn

[(n+r)!]2

, (20)

We have the exponential generating function of the hypergeometric Bernoulli polyno-
mials LB[r−1,1]

n (t), where the classical gamma function is used:

e1(tx)

[Γ(r + 1)]2
∞

∑
n=0

1
[Γ(n+r+1)]2 xn

=
∞

∑
n=0

LB[r−1,1]
n (t)

xn

n!
. (21)

Remark 4. Note that, since the isomorphism Tx does not preserve multiplication, the LB[r−1,1]
n

polynomials, as the more general ones presented in subsequent Sections, are independent of those
presented in [24].

4.1. Computing the Hypergeometric L-Bernoulli Numbers by Recursion

In (21), making t = 0 gives the exponential generating function [1] of the generalized
hypergeometric L-Bernoulli numbers LB[r−1,1]

n := LB[r−1,1]
n (0):

∞

∑
n=0

LB[r−1,1]
n

xn

n!
=

1

[Γ(r + 1)]2
∞

∑
n=0

n!
[Γ(n+r+1)]2

xn

n!

, (22)
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which is valid even for non integer (in particular for fractional) values of the parameter r.
From Equation (22), we find

∞

∑
n=0

n

∑
h=0

(
n
h

)
LB[r−1,1]

n−h
h! [Γ(r + 1)]2

[Γ(h + r + 1)]2
xn

n!
= 1,

and therefore

LB[r−1,1]
0 = 1 ,

and for n = 1, 2, 3, . . . , we find the LB[r−1,1]
n numbers by solving recursively the triangu-

lar system:

n

∑
h=0

(
n
h

)
LB[r−1,1]

n−h
h! [Γ(r + 1)]2

[Γ(h + r + 1)]2
= 0 .

4.2. Hypergeometric L-Bernoulli Polynomials of Order 2

The results of the preceding section can be generalized to the hypergeometric L-Bernoulli
polynomials of order 2, which are defined by the generating function[

xr

(r!)2

]2
e1(tx)

[e1(x)− LTr(x)]2
=

e1(tx)
[1F2(1; r + 1, r + 1; x)]2

=
∞

∑
n=0

LB[r−1, 2]
n (t)

xn

n!
. (23)

We find

[1LF1]
2 =

∞

∑
n=0

n

∑
h=0

(n
h)

(1)h(1)n−h
[(r+1)h ]2[(r+1)n−h ]2

xn

n!

=
∞

∑
n=0

n

∑
h=0

xn

[(r+1)h ]2[(r+1)n−h ]2
,

(24)

so that

e1(tx)
∞

∑
n=0

n

∑
h=0

xn

[(r+1)h ]2[(r+1)n−h ]2

=
∞

∑
n=0

LB[r−1, 2]
n (t)

xn

n!
, (25)

and introducing the hypergeometric L-Bernoulli numbers LB[r−1, 2]
n := LB[r−1, 2]

n (0), we find
the generating function

1
∞

∑
n=0

n

∑
h=0

xn

[(r+1)h ]2[(r+1)n−h ]2

=
∞

∑
n=0

LB[r−1, 2]
n

xn

n!
, (26)

which gives the generating function of the hypergeometric L-Bernoulli numbers LB[r−1, 2]
n

1
∞

∑
n=0

n

∑
h=0

[Γ(r+1)]4

[Γ(r+h+1)]2[Γ(r+n−h+1)]2 xn
=

∞

∑
n=0

LB[r−1, 2]
n

xn

n!
. (27)

5. Conclusions

We have introduced the Laguerre-type versions of some special polynomials as the
Appell, Bernoulli and Euler versions. The results followed from the application of the
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differential isomorphism Tx introduced in [26]. Generalization can be done by exploiting
the iterated isomorhism T s

x = Tx[T s−1]x, recalled in Section 2. The considered isomorphism
can be iterated as many times as we wish, and the corresponding derivative operators are
reported in Equation (9). Then, by using the same technique, it is possible to define higher
order L-Appell type polynomials

L2 an(x), L3 an(x), . . . , Ls an(x), . . .

and in particular, those of Bernoulli or Euler type.
Furthermore, we have considered the hypergeometric-type L-Bernoulli polynomials

of order 1 and 2, starting from the exponential generating functions considered in [24].
The higher-order, hypergeometric-type L-Bernoulli polynomials of order k, with

k = 3, 4, . . . and s ≥ 2, could be defined through the generating function[
xr

(r!)s+1

]k
es(tx)

[es(x)− Ls Tr(x)]k
=

es(tx)
[1Fs(1; r + 1, r + 1; . . . ; r + 1; x)]k

=
∞

∑
n=0

Ls B[r−1, k]
n (t)

xn

n!
, (28)

and the corresponding numbers Ls B[r−1, k]
n by[

xr

(r!)s+1

]k

[es(x)− Ls Tr(x)]k
=

1
[1Fs(1; r + 1, r + 1; . . . ; r + 1; x)]k

=
∞

∑
n=0

Ls B[r−1, k]
n

xn

n!
. (29)

However, as mentioned earlier, the construction of these mathematical items does not
present difficulties, since the method is essentially the same.
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