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Abstract: The main aim of this article is to propose a general framework for the theoretical analysis of
discrete schemes used to solve multi-dimensional parabolic problems with fractional power elliptic
operators. This analysis is split into three parts. The first part is based on techniques well developed
for the solution of nonlocal elliptic problems. The obtained discrete elliptic operators are used
to formulate semi-discrete approximations. Next, the fully discrete schemes are constructed by
applying the classical and robust approximations of time derivatives. The existing stability and
convergence results are directly included in the new framework. In the third part, approximations of
transfer operators are constructed by using uniform and the best uniform rational approximations.
The stability and accuracy of the obtained local discrete schemes are investigated. The results of
computational experiments are presented and analyzed. A three-dimensional test problem is solved.
The rational approximations are constructed by using the BRASIL algorithm.

Keywords: fractional power elliptic operators; parabolic problems; discrete schemes; stability;
convergence analysis
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1. Introduction

Recently, fractional differential equations have been used to simulate non-standard dif-
fusive processes when an anomalous diffusion is important. We can mention models used
to describe chemical and contaminant transport in heterogeneous aquifers [1], physics [2],
medicine [3], and image processing [4]. More examples are given in [5,6].

This paper is a continuation of our previous work [7]. Recently, much attention has
been devoted to the solution of multi-dimensional parabolic problems with fractional
power elliptic operators. Our activity was initiated due to some critical experience in the
analysis of numerical methods for the solution of mathematical models when some/all
classical differential operators are substituted by fractional differential operators. A typi-
cal approach is to construct and investigate numerical algorithms for each problem from
scratch. Our aim is to propose a general framework and to specify what parts of this
analysis really require new modifications of existing techniques. We split the work into
three parts. The first part is based on techniques well known for the analysis of fractional
power elliptic problems. The constructed discrete elliptic operators make a basis to for-
mulate semi-discrete approximations. In the second part of the framework, fully discrete
schemes are constructed. Again, we can use some classical and robust approximations of
time derivatives. The stability and convergence of the discrete solutions follow directly
from the existing theoretical results for classical parabolic problems. In the third part,
approximations of transfer operators are constructed. Exactly this part of the framework
requires additional theoretical analysis and modifications of the discrete algorithms. In
this paper, we use uniform and the best uniform rational approximations. The stability
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and accuracy of the obtained local discrete schemes is investigated. The very efficient best
rational approximation by successive interval length adjustment (BRASIL) tool [8] is used
for the computation of the best uniform rational approximations (BURAs). Deep results on
BURA-type approximations for spectral fractional elliptic equations are presented in [9].
These results make a good theoretical basis for the analysis of discrete schemes for the
solution of parabolic problems with fractional elliptic operators.

Another popular technique for the solution of elliptic and parabolic fractional diffusion
problems is based on the unified rational Krylov method and investigated in [10]. The
authors compare several existing pole selection strategies and provide a certified error
bound to assess their quality. In addition they develop two new pole generation algorithms
tailored to the framework of fractional diffusion.

One more general approach is based on a Lanczos method. The main benefit of this
algorithm is that the required matrix–function–vector products are computed without ever
forming the dense matrix Aα

h . A preconditioned Lanczos method can be used to accelerate
the convergence of this method (see [11] and the references given therein).

A reduced basis method for fractional diffusion operators and applications for the
solution of fractional power elliptic problems is proposed in [12].

We note that additional classes of approximation algorithms should be also considered
as practical tools for the approximation of nonlocal operators; see as examples [13] and
techniques based on artificial neural networks [14,15].

Here, we comment briefly on a more general definition of fractional calculus. It is
a powerful tool that has been recently employed to model complex biological systems
and different processes with nonlinear behavior and long-term memory. The definition
of the fractional-order derivative is not unique; still, there are some generally accepted
and common definitions. We recommend [16] for an excellent and deep introduction to
this topic. Still, in this paper, we deal with a specific class of nonlocal problems, where,
instead of fractional derivatives, a fractional power of the full elliptic operator is considered.
Solutions of such models have quite different properties, and in many cases, they are
optimal tools to describe the complicated real-world applications.

In this paper, we use the spectral definition of the fractional power of an elliptic op-
erator Aα

h (the details are given in Section 2). As it is noted in many papers, the spectral
algorithm can be used for practical computations to solve parabolic-type problems with
nonlocal diffusion operators. Then, the complexity of such algorithms to solve nonlocal
parabolic problems is the same as for a fast Fourier transform (FFT) method targeted at stan-
dard elliptic operators. However, clearly, this strategy is computationally efficient only if the
differential problem is solved in a rectangular domain, the complete set of eigenfunctions
of operator Ah is known, in advance, and FFT-type techniques can be applied.

A more general idea is to transform nonlocal problems into the local classical differ-
ential problems. A very good review on these methods is given in [17]. The theoretical
analysis of various modifications of uniform rational approximations for the solution of
elliptic problems was presented in [18].

The rest of the paper is organized in the following way. In Section 2, the problem is
formulated. The non-stationary parabolic equation with a fractional power elliptic operator
is defined. As was mentioned above, the spectral definition is used to define fractional
power elliptic operators. A general framework for the analysis of discrete schemes targeted
at solving such problems is formulated. The first step of this scheme is analyzed, when the
nonlocal elliptic operator is approximated in a finite-dimensional space and a semidiscrete
scheme is constructed. A general approach is specified for how the approximation error of
this step is investigated. This technique is applied for a three-dimensional test problem.

The second step of the proposed general framework of analysis is considered in
Section 3. Fully discrete schemes are constructed. Most of the well-known implicit methods
can be used to approximate the semidiscrete problem. As an example, we consider the
backward Euler method. The standard approximation error and stability estimates are
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provided. The results of the computational experiments are presented and analyzed. They
confirm a delicate interlacing of space and time discrete approximations.

In Section 4, the third step of the general framework is considered. A time transfer
operator of the fully discrete scheme depends on the nonlocal discrete operator Aα

h . The
goal of this step is to approximate it by some local operator. Here, we use methods based
on the best uniform rational approximations (BURAs). The required rational functions are
computed by applying the BRASIL algorithm (BURA-BRASIL scheme) [8]. The stability
analysis of the obtained scheme shows that it is stable at least for sufficiently small time step
sizes. In addition, a computational stability test is proposed. As an example, this criterion
is applied for the 3D test problem, and it is proven that, for different popular values of
fractional parameters and a broad set of time steps, the constructed BURA-BRASIL scheme
is unconditionally stable. Next, the approximation accuracy of the third step of the general
framework is investigated and a global error of the discrete solution is estimated. The
results of computational experiments are presented and analyzed.

In Section 5, the third step of the general framework is applied for one more approxi-
mation of the nonlocal operator, which is based on a uniform rational approximation (URA)
method. The experimental stability criterion is used in the analysis, and it is proven that
the URA-BRASIL scheme is unconditionally stable for the given fractional parameters and
time step sizes. The approximation error analysis shows that this error does not depend
on the time step size, and it can be reduced only by increasing the order m of the rational
approximation function.

In Section 6, a stability analysis of a Crank–Nicolson-type BURA-BRASIL scheme is
performed. The stability factor of the Crank–Nicolson scheme has a more complicated
dependence on large eigenvalues of the discrete elliptic operator; hence, the stability
analysis of the BURA-BRASIL approximation is a good test for the proposed general
framework techniques.

In Section 7, an applied problem is solved. The mathematical model describes biofilm
formation. A generalized nonlocal diffusion process is included in the model. A numerical
simulation is performed by using a symmetrical splitting scheme, where splitting is per-
formed with respect to physical processes. Applying techniques of the proposed theoretical
framework, it is shown that the scheme is second-order in time and space. The results of the
computational experiments are presented. Some final conclusions are given in Section 8.

2. Problem Formulation

Let H be a Hilbert space with a scalar product (u, v) for u, v ∈ H. Then, the L2-norm
is defined as ‖u‖ = (u, u)1/2.

Let A be a self-adjoint positive definite operator,

A : H → H, A = A∗, A > cI, c > 0,

where I is the identity operator.
Next, we define a fractional power of this operator Aα with a fractional parameter

0 < α < 1. This definition can be given in a non-unique way, and we use the spectral
approach. Let us solve the standard eigen-problem:

Aψj = λjψj, j = 1, 2, . . . .

All eigenvalues are positive:

0 < λ1 6 λ2 6 · · · 6 λm 6 · · ·

and the set of eigenfunctions {ψj}make an orthonormal basis for H. Then, any function
u ∈ H can be written as

u =
∞

∑
j=1

(u, ψj)ψj.
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A nonlocal operator Aα with fractional parameter 0 < α < 1 is defined as

Aαu =
∞

∑
j=1

λα
j (u, ψj)ψj.

Here, we note that it is possible to consider more general nonlocal operators:

g(A)u =
∞

∑
j=1

g(λj) (u, ψj)ψj,

where function g satisfies some specific requirements; first of all, we require that

g(λ) > δI, δ = min
λ∈σ(A)

g(λ) > 0.

Here, σ(A) denotes the spectrum of A. Such generalizations of nonlocal operators are
considered for example in [19]. In this paper, we restrict ourselves to polynomial functions
g(λ) = λα. Still, we remark that the proposed techniques of approximation can be used
for more general functions than the powers of eigenvalues. Such a modification of the
BURA-BRASIL approximation is described in Section 4.

We are interested in solving the following Cauchy problem:

∂u
∂t

+ Aαu = F, 0 < t 6 T, (1)

u(0) = u0, u0 ∈ H. (2)

By using the Fourier method, it is possible to write the solution of this problem in an
explicit form u(t) = ∑∞

j=1 uj(t)ψj, where

uj(t) = u0je
−λα

j t
+ e−λα

j t
∫ t

0
eλα

j s f j(s) ds,

F(t) =
∞

∑
j=1

f j(t)ψj, u0 =
∞

∑
j=1

u0jψj.

Semidiscrete Scheme

First, we approximate operator Aα by considering a finite-dimensional Hilbert space
Hh. For simplicity, we denote a scalar product in Hh again as (U, V), for U, V ∈ Hh. By
taking into account the spectral definition of the nonlocal operator Aα, we approximate the
local operator A by applying the finite-difference, finite-volume, or finite-element method.
It is required to guarantee that Ah is again a self-adjoint positive definite operator:

Ah : Hh → Hh, Ah = A∗h, Ah > cIh, c > 0,

where Ih is the discrete identity operator. Some modification of the definitions should be
performed in the case of finite-element approximations. Let {φh

j }, j = 1, . . . , J be a basis of

space Hh and introduce the mass Mh and stiffness Ãh matrix by

Mij =
(
φh

j , φh
i
)
, Ãij =

(
Aφh

j , φh
i
)
,

respectively. Then, the discrete operator Ah is defined by Ah = M−1
h Ãh.

Let us solve the standard eigen-problem:

Ahψh
j = µjψ

h
j , j = 1, . . . , J. (3)
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All eigenvalues are positive

0 < µ1 6 µ2 6 · · · 6 µJ

and the set of eigenfunctions {ψh
j }make an orthonormal basis for Hh. Then, any function

U ∈ Hh can be written as

U =
J

∑
j=1

(U, ψh
j )ψ

h
j .

We use the discrete eigenfunctions to replace the fractional operator Aα by its dis-
crete approximation

Aα
hU =

J

∑
j=1

µα
j (U, ψh

j )ψ
h
j .

We approximate the problem (1) and (2) by the following semidiscrete Cauchy problem:

∂U
∂t

+ Aα
hU = F, 0 < t 6 T, (4)

U(0) = U0, U0 ∈ Hh. (5)

By using the Fourier method it is possible to write the solution of this problem in an
explicit form U(t) = ∑J

j=1 Uj(t)ψh
j , where

Uj(t) = U0je
−µα

j t
+ e−µα

j t
∫ t

0
eµα

j sFj(s) ds,

F(t) =
J

∑
j=1

Fj(t)ψh
j , U0 =

J

∑
j=1

U0jψ
h
j .

In the following analysis, we always assume that there exists a sufficiently smooth solu-
tion of problem (1) and (2). The existence of a solution of the semidiscrete problem (4) and (5)
is demonstrated above. Still, we are interested in estimating the approximation accuracy
of this semidiscrete scheme. We restrict ourselves to the analysis of finite-difference and
finite-volume schemes. Let us assume that uh ∈ Hh is a suitable representation of the exact
solution of the PDE (1) and (2). The approximation error of the semidiscrete Equation (4) is
defined formally in a standard way (see [20,21]):

Ψh(t) :=
∂uh
∂t

+ Aα
huh − F = Aα

huh − (Aαu)h. (6)

For nonlocal operators, we cannot use the convenient technique of Taylor expansion.
The approximation error can be estimated in a different way. Let us apply the definition of
nonlocal operators Aα and Aα

h , then we obtain

Ψh =
J

∑
j=1

(
uhjµ

α
j ψh

j − ujλ
α
j ψj
)
−

∞

∑
j=J+1

λα
j ujψj.

The second term can be bounded by O(hk) depending on the smoothness of the
solution. Next, we formulate accuracy estimates that are sufficient to prove that the
approximation error is bounded by O(h2):

1.
∣∣(uh, ψh

j
)
− (u, ψj)

∣∣ 6 Ch2,

2.
∥∥ψh

j − ψjh
∥∥ 6 Ch2,

3.
∣∣µα

j − λα
j
∣∣ 6 Ch2, j = 1, . . . , J.
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Such estimates are known for many popular approximations of elliptic problems [21–23].

Example 1. In this example, we solve a linear fractional heat equation with a linear source term in
three-dimensional space Ω = [0, 1]× [0, 1]× [0, 1] (see [7]):

∂u
∂t

+ (−∆)αu = F(x, y, z, t, u), (x, y, z) ∈ Ω, (7)

F(x, y, z, t, u) = t2α
8

∑
i=1

βiλ
α
i vi +

(
2αt2α−1 + t2α

)
sin3(πx) sin3(πy) sin3(πz)− u,

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω,

where

v1 = sin(πx) sin(πy) sin(πz), λ1 = 3π2, β1 = 27/64,

v2 = sin(πx) sin(πy) sin(3πz), λ2 = 11π2, β2 = −9/64,

v3 = sin(πx) sin(3πy) sin(πz), λ3 = 11π2, β3 = −9/64,

v4 = sin(πx) sin(3πy) sin(3πz), λ4 = 19π2, β4 = 3/64,

v5 = sin(3πx) sin(πy) sin(πz), λ5 = 11π2, β5 = −9/64,

v6 = sin(3πx) sin(πy) sin(3πz), λ6 = 19π2, β6 = 3/64,

v7 = sin(3πx) sin(3πy) sin(πz), λ7 = 19π2, β7 = 3/64,

v8 = sin(3πx) sin(3πy) sin(3πz), λ8 = 27π2, β8 = −1/64.

This problem has the exact solution [5]

u(x, y, z, t) = t2α sin3(πx) sin3(πy) sin3(πz).

A discrete approximation of the 3D diffusion operator is constructed by using the finite-volume
method. A uniform space mesh is defined Ω̄h = ω̄x × ω̄y × ω̄z:

ω̄x =
{

xi : xi = ih, i = 0, . . . , Jx, h = 1/Jx},
ω̄y =

{
yj : yj = jh, j = 0, . . . , Jx, h = 1/Jx},

ω̄z =
{

zj : zk = kh, k = 0, . . . , Jx, h = 1/Jx}

and the discrete diffusion operator is constructed:

AhU = −
(Ui+1,jk − 2Uijk + Ui−1,jk

h2 +
Ui,j+1,k − 2Uijk + Ui,j−1,k

h2

+
Uij,k+1 − 2Uijk + Uij,k−1

h2

)
. (8)

The solution of eigen-problem (3) for this operator Ah is well known (see [21]):

ψh
h,lmr(xi, yj, zk) = 2

√
2 sin(πlxi) sin(πmyj) sin(πrzk), 0 < l, m, r < Jx,

µlmr =
4
h2

(
sin2

(π

2
lh
)
+ sin2

(π

2
mh
)
+ sin2

(π

2
rh
))

.

As an example, we compute the global error of the solution of the semidiscrete scheme (4)
and (5):

e(Jx) = max
(x,y,z)∈Ωh

|u(x, y, z, T)−U(x, y, z, T)|
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for the final time T = 1 and the fractional power parameter α = 0.75. The computed errors confirm
the second-order accuracy of the proposed approximation:

e(200) = 7.298× 10−5, e(400) = 1.824× 10−5, e(800) = 4.564× 10−6. (9)

Hence, by selecting a sufficiently large J = (Jx − 1)3, we can control the space approximation
error at the specified smallness level.

3. Backward Euler Method

In the second step of the proposed general framework of analysis, a fully discrete
scheme is constructed. In this paper, we consider the backward Euler (BE) method.

For the simplicity of the notations, we consider a uniform time mesh:

ω̄t = {tn : tn = nτ, n = 0, . . . , N}, tN = T.

Then, the problem (4) and (5) is approximated by the following BE scheme [20]:

Un −Un−1

τ
+ Aα

hUn = Fn, n = 1, . . . , N, (10)

U0 = U0, (11)

where Un is a numerical approximation to the exact solution U(tn) of the problem (4)
and (5), and Fn = F(tn).

Lemma 1. If a solution of the problem (4) and (5) is sufficiently smooth, then the approximation
error of the BE scheme (10) is of order O(τ).

Proof. The proof is quite standard, and it is based on the Taylor expansion technique. It
is sufficient to compute the residual of the discrete formula

(
U(tn) −U(tn−1)

)
/τ for a

sufficiently smooth function U(t).

The stability analysis of the scheme (10) is also simple.

Lemma 2. The BE scheme (10) is unconditionally stable.

‖Un‖ 6 ‖U0‖+ τ
n

∑
k=1
‖Fk‖. (12)

Proof. The Fourier stability analysis can be used to show that

‖Un‖ 6 ‖Un−1‖+ τ‖Fn‖. (13)

The same estimate can be obtained by using the energy method and taking into account
that operator Aα

h is positive definite, i.e., (Aα
hUn, Un) > 0. We multiply Equation (10) by

Un and obtain the estimate

‖Un‖2 6 (Un−1, Un) + τ(Fn, Un)

from which the estimate (13) follows trivially. Applying the estimates (13) recursively, we
obtain the required stability estimate (12).

It is easy to see that, if the solution u ∈ H of (1) is a sufficiently smooth function and
an approximation error by U ∈ Hh functions is of order O(hk), then the error of the discrete
solution of the fully discrete BE scheme (10) can be estimated as

‖u(tn)−Un‖ 6 ‖u(tn)−U(tn)‖+ ‖U(tn)−Un‖ 6 C(τ + hk). (14)
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Such a delicate interlacing of space and time approximation errors is nicely seen from
the experimental results. We solve the differential problem (7) of Example 1. Table 1 gives,
for a sequence of decreasing time step widths τ, the errors E(τ), and the experimental
convergence rates ρ(τ) of the discrete solution for the BE scheme (10) in the maximum norm:

E(τ) = max
(xi ,yj ,zk)∈Ωh

∣∣∣UN
ijk − u(xi, yj, zk, T)

∣∣∣, ρ(τ) = log2

(
E(2τ)

E(τ)

)
.

The fractional power parameter α = 0.75 and a uniform space grid Ωh with Jx = 200
and 400 are used in the numerical experiments.

Table 1. Errors E(τ) and experimental convergence rates ρ(τ) for the discrete solution of the BE
scheme (10) for a sequence of time steps τ.

τ E(τ), Jx = 200 ρ(τ) E(τ), Jx = 400 ρ(τ)

0.1 2.012× 10−3 — 1.958× 10−3 —
0.05 1.031× 10−3 0.965 9.763× 10−4 1.004
0.025 5.491× 10−4 0.909 4.952× 10−4 0.979

0.0125 3.102× 10−4 0.824 2.561× 10−4 0.951

It follows from the presented results that the convergence order of the discrete solution
is close to the first, but it slowly decreases for smaller time steps. Such a behavior of the
error is due to the influence of the space approximation error (see the estimate (14)). In
order to illustrate this fact, let us consider the dynamics of a modified error component:

Ẽ(τ) = E(τ)− e(h),

where e(h) is the error of the solution of the semidiscrete scheme (4) and (5). The values of
e(h) for Jx = 200 and 400 are given in (9). Table 2 gives for a sequence of decreasing time
step widths τ the errors Ẽ(τ) and the experimental convergence rates ρ(τ) of the discrete
solution for the BE scheme (4).

Table 2. Modified errors Ẽ(τ) and experimental convergence rates ρ(τ) for the discrete solution of
the BE scheme (10) for a sequence of time steps τ.

τ E(τ), Jx = 200 ρ(τ) E(τ), Jx = 400 ρ(τ)

0.1 1.94× 10−3 — 1.94× 10−3 —
0.05 9.58× 10−4 1.018 9.58× 10−4 1.018

0.025 4.76× 10−4 1.009 4.78× 10−4 1.003
0.0125 2.37× 10−4 1.006 2.38× 10−4 1.006

The presented results agree well with the theoretical predictions.

4. Discrete Schemes Based on Rational Approximations

In the third step of a general theoretical framework, nonlocal operators Aα
h in a fully

discrete scheme are approximated by some local operators. In this paper, we consider
methods based on rational approximations.

We can write the BE scheme (10) in the following form:

Un = (Ih + τAα
h)
−1(Un−1 + τFn).

Then, we approximate the nonlocal operator (Ih + τAα
h)
−1 by a local rational operator:

(Ih + τAα
h)
−1 ≈ rm(Ah),
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where a function rm(z) is defined as

rm(λ) =
pm(λ)

qm(λ)

with polynomials pm and qm of the same degree m. As a practical implementation of this
approach, the best uniform rational approximation (BURA) method is used, where rm is
the best rational approximation of the function

f (λ) =
1

1 + τλα

for λ ∈ [µ1, µJ ]. The required rational function is computed by applying the BRASIL
algorithm, which is based on the barycentric rational formula [8]. We used a free and
open-source implementation of this algorithm in Python.

Here, it is important to note that only slight changes are needed if, instead of a
polynomial function, we solve a problem with a more general nonlinear function g(λ).
Then, a rational approximation function rm(z) is defined for the modified function:

f (λ) =
1

1 + τg(α)
.

The constructed rational function rm can be written in a partial fraction decomposition
form [7]:

rm(λ) = c0 +
m

∑
j=1

cj

λ− dj
. (15)

Then, the following scheme is constructed:

Vn = rm(Ah)
(
Vn−1 + τFn), n = 1, 2, . . . , N, (16)

V0 = U0. (17)

Its implementation is efficient if all coefficients dj are non-positive.
The convergence analysis of the solution of the scheme (16) is performed by using the

classical technique. It is based on the stability and approximation error analysis. First, we
investigate the stability of the scheme (16). Note that

‖(Ih + τAα
h)
−1‖ 6 1

1 + τµα
1
6 1− τµα

1 .

Let m be a sufficiently large number in order to satisfy the estimate:∣∣∣(1 + τλα)−1 − rm(λ)
∣∣∣ 6 τµα

1 , ∀λ ∈ [µ1, µJ ],

Then, we obtain the required stability inequality:

‖rm(Ah)‖ 6 ‖rm(Ah)− (1 + τAα
h)
−1‖+ ‖(1 + τAα

h)
−1‖ 6 1.

Remark 1. As an additional stability test of the scheme (16), it is recommended to compute
the bound

R = max
06j6K

|rm(zj)|, zj = µ1 +
j
K
(µJ − µ1). (18)

The stability requirement is satisfied if R 6 1.
As an example, we applied this criterion for the scheme (16) and the problem (7). The results of

the computational experiments confirm that the condition R 6 1 is satisfied for fractional power
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parameters α = 0.25, 0.5, 0.75, space meshes with J = (Jx + 1)3, Jx = 200, 400, and time steps
τ = 10−k, k = 1, . . . , 4. The rational function rm is computed by applying the BURA-BRASIL
algorithm with m = 5, 7, 10, 12.

Next, we investigate the approximation accuracy of the scheme (16). In this analysis, we com-
pare Vn with the solution Un of the BE scheme (10). Let us write both functions in a spectral form:

Un =
J

∑
j=1

Un
j ψh

j , Vn =
J

∑
j=1

Vn
j ψh

j ,

where

Un
j −Un−1

j

τ
+ µα

j Un
j = Fn

j , j = 1, . . . , J,

Vn
j = rm(µj)(Vn−1

j + τFn
j ).

The second equation can be written as:

Vn
j −Vn−1

j

τ
+

r−1
m (µj)− 1

τ
Vn

j = Fn
j .

The approximation error of the scheme (16) is defined as

Ψ̃n(µj) =
Un

j −Un−1
j

τ
+

r−1
m (µj)− 1

τ
Un

j − Fn
j

=

(
r−1

m (µj)− 1
τ

− µα
j

)
Un

j = emjUn
j . (19)

Let us denote the error function as Zn
j = Un

j −Vn
j ; it satisfies equations

Zn
j = rm(µj)

(
Zn−1

j + τΨ̃n(µj)
)
.

Applying these equations iteratively, we obtain the estimate

‖Zn‖ 6 tn‖Ψ̃n‖.

Remark 2. As follows from (19), the approximation error depends not only on the accuracy with
which the rational function approximates fractional powers of eigenvalues µα, but also on Un

j .

For smooth solutions, the Fourier coefficients Un
j are bounded from above by O(j−k) with some

constant k.

Table 3 gives for a sequence of decreasing time step widths τ and different values of m
the approximation errors Ψ̃n(ξ) of the discrete solution for the BURA-BRASIL scheme (16)
in the maximum norm. It is assumed that Ψ̃n(ξ) = em(ξ)/ξ. The fractional power
parameter α = 0.75 and a uniform space grid Ωh with Jx = 200 and 400 are used in
numerical experiments.

A more detailed analysis of the approximation errors Ψ̃n
τ(ξ) shows that the largest

values are obtained for high spectral modes. For many applied problems, solutions depend
only on a few moderate size spectral modes. Hence, we computed these errors in a reduced
spectral interval [µ1, 20µ1]. The obtained results are presented in Table 4. As expected, the
accuracy of the approximation is improved in comparison with the results presented in
Table 3.
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Table 3. Approximation errors ‖Ψ̃n
τ(ξ)‖ for the discrete solution of the BURA-BRASIL scheme (16)

for a sequence of time steps τ and Jx = 200, 400.

τ m = 5 m = 7 m = 10

Jx = 200, 29.6 6 ξ 6 479,970

0.1 5.534× 10−4 2.317× 10−5 1.977× 10−7

0.05 4.632× 10−4 1.936× 10−5 1.652× 10−7

0.025 3.559× 10−4 1.484× 10−5 1.266× 10−7

0.0125 2.481× 10−4 1.033× 10−5 8.813× 10−8

Jx = 400, 29.6 6 ξ 6 1,919,970

0.1 1.552× 10−3 9.257× 10−5 1.274× 10−6

0.05 1.330× 10−3 7.876× 10−5 1.083× 10−6

0.025 1.056× 10−3 6.196× 10−5 8.513× 10−7

0.0125 7.673× 10−4 4.462× 10−5 6.128× 10−7

Table 4. Approximation errors ‖Ψ̃n
τ(ξ)‖ for the discrete solution of the BURA-BRASIL scheme (16) in

a reduced spectral interval. A sequence of time steps τ and Jx = 200, 400 are used.

τ m = 5 m = 7 m = 10

Jx = 200, 29.6 6 ξ 6 592.2

0.1 2.262× 10−5 8.415× 10−7 8.208× 10−9

0.05 2.438× 10−5 9.940× 10−7 8.759× 10−9

0.025 4.842× 10−5 2.000× 10−6 2.747× 10−8

0.0125 1.037× 10−4 4.299× 10−6 3.661× 10−8

Jx = 400, 29.6 6 ξ 6 592.2

0.1 3.214× 10−5 1.829× 10−6 6.555× 10−7

0.05 3.644× 10−5 2.427× 10−6 1.629× 10−7

0.025 7.427× 10−5 4.246× 10−6 5.791× 10−8

0.0125 1.645× 10−4 9.335× 10−6 1.247× 10−7

Next, we solve the differential problem (7) of Example 1. Table 5 gives for a sequence
of decreasing time step widths τ the errors Em(τ) of the discrete solution for the BURA-
BRASIL scheme (16) in the maximum norm:

Em(τ) = max
(xi ,yj ,zk)∈Ωh

∣∣∣VN
ijk − u(xi, yj, zk, T)

∣∣∣.
The fractional power parameter α = 0.75 and a uniform space grid Ωh with Jx = 200

and 400 are used in the numerical experiments.

Table 5. Errors Em(τ) for the discrete solution of the BURA-BRASIL scheme (16) for a sequence of
time steps τ and Jx = 200, 400.

τ E5(τ) E7(τ) E10(τ)

Jx = 200

0.1 2.012× 10−3 2.011× 10−3 2.012× 10−3

0.05 1.028× 10−3 1.030× 10−3 1.031× 10−3

0.025 5.271× 10−4 5.472× 10−4 5.491× 10−4

0.0125 2.232× 10−4 3.082× 10−4 3.100× 10−4

Jx = 400

0.1 1.960× 10−3 1.956× 10−3 1.959× 10−3

0.05 9.711× 10−4 9.742× 10−4 9.771× 10−4

0.025 4.512× 10−4 4.923× 10−4 4.940× 10−4

0.0125 9.011× 10−5 2.513× 10−4 2.561× 10−4
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5. URA-Type Discrete Scheme

In this section, as another application of the proposed framework of analysis, we
consider a discrete scheme, which is based on the uniform rational approximation (URA)
method [24]. Let Ah be a self-adjoint and positive definite operator 0 < µ1 Ih 6 Ah 6 µJ Ih.
Our aim is to approximate the scalar function f (λ), which can be written as a function of a
new variable ξ = µ1/λ:

f (λ) =
1

1 + τλα
=

ξα

ξα + τµα
1

, ξ ∈
[
µ1/µJ , 1

]
.

Let r̃m(ξ) be the BURA of ξα on [0, 1], then we define the URA of f (λ) as

r̄m(ξ) =
r̃m(ξ)

r̃m(ξ) + τµα
1

. (20)

Remark 3. If an estimate of µ1/µJ > c0 > 0 is known, then it is recommended to compute r̃m(ξ)
as the BURA of ξα on [c0, 1]. The BRASIL algorithm can be used to efficiently find coefficients of
r̃m(ξ).

Then, the following URA-type discrete scheme is constructed:

Vn = r̄m(µ1 A−1
h )
(
Vn−1 + τFn), n = 1, 2, . . . , N, (21)

V0 = U0.

Let us consider the implementation algorithm. The rational function r̄m can be written in a
partial fraction decomposition form

r̄m(ξ) = c̄0 +
m

∑
j=1

c̄j

ξ − d̄j
. (22)

The following lemma can be proven by applying simple modifications of the proof given in [24].

Lemma 3. All poles of the function r̄m(ξ) are real and negative:

dj < 0, j = 1, . . . , m. (23)

The computation of Vn requires numerical solving of m linear systems; all systems are
independent and can be solved in parallel:

Vn = c̄0
(
Vn−1 + τFn)+ m

∑
j=1

c̄jGn
j ,

where functions Gn
j are solutions of the following linear systems:

(µ1 Ih − dj Ah)Gn
j = Ah

(
Vn−1 + τFn), j = 1, . . . , m.

All system are of the same type, and due to (23), all shifts (−dj) are positive, and the
operator Ah is self-adjoint and also positive.

The development of URA-type approximations is motivated by one important prop-
erty of these schemes: the BURA of function ξα is computed only once, and it can be
used for different operators Ah, time steps τ, and discrete approximations of the time
derivative (e.g., BE or Crank–Nicolson methods). After the development of new efficient
methods to construct BURA-type rational approximations, the importance of this property
decreases sharply. All computational experiments of this paper were performed by using
the BRASIL method.
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Still, it is interesting to apply the proposed general framework of analysis to the
scheme (21). First, it follows that this scheme is stable if the stability inequality:

‖r̄m(µ1 A−1
h )‖ 6 1

is satisfied. We restrict our analysis to the computation of the numerical bound:

R = max
06j6K

|r̄m(µ1z−1
j )|, zj = µ1 +

j
K
(µJ − µ1).

The experimental stability requirement is satisfied if R 6 1.
As an example, we applied this criterion for the scheme (21) and the problem (7). The

results of the computational experiments confirm that the condition R 6 1 is satisfied
for fractional power parameters α = 0.25, 0.5, 0.75, space meshes with J = (Jx + 1)3,
Jx = 200, 400, and time steps τ = 10−k, k = 1, . . . , 4. The rational approximation r̃m(ξ) of
function ξα is computed by applying the BURA-BRASIL algorithm with m = 5, 7, 10, 12 for
ξ ∈ [µ1/µJx , 1].

Next, we consider the approximation accuracy. The approximation error of the
scheme (21) is defined as

Ψ̄n(µj) =
Un

j −Un−1
j

τ
+

r̄−1
m (µ1/µj)− 1

τ
Un

j − Fn
j

=

(
r̄−1

m (µ1/µj)− 1
τ

− µα
j

)
Un

j = ēmjUn
j . (24)

By substituting (20) into this equation, we obtain that

ēmj =
µα

1
r̃m(µ1/µj)

− µα
j .

Hence, the approximation error does not depend on the time step size τ, and it can be
reduced by increasing the order m of the rational function r̃m.

Table 6 gives for different values of m the approximation errors

Ēm(µ) = ēm(µ)/µ

of the discrete solution for the URA-BRASIL scheme (21) in the maximum norm. The
fractional power parameter α = 0.75 and a uniform space grid Ωh with Jx = 200 and 400
are used in the numerical experiments. The rational approximation r̃m(ξ) of function ξα is
computed by applying the BURA-BRASIL algorithm for ξ ∈ [µ1/µJx , 1].

Table 6. Approximation errors ‖Ēm‖ for the discrete solution of the URA-BRASIL scheme (21) for
different orders m of the rational approximation functions and Jx = 200, 400.

m = 5 m = 7 m = 10

Jx = 200, 29.6 6 µ 6 479,970

7.050× 10−4 2.961× 10−5 2.524× 10−7

Jx = 400, 29.6 6 µ 6
1,919,970

1.914× 10−3 1.155× 10−4 1.587× 10−6

The computational results show that the accuracy of the URA-BRASIL scheme is
similar to the accuracy of the BURA-BRASIL scheme (16). Hence, both schemes can be
recommended as solvers for real-world applications. The final selection can be based on
additional criteria, such as a better parallelization property [7].
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6. Stability Analysis of a Crank–Nicolson-Type BURA-BRASIL Scheme

In this section, the problem (4) and (5) is approximated by the following Crank–
Nicolson (CN) scheme [20]:

Un −Un−1

τ
+ Aα

hUn− 1
2 = Fn+ 1

2 , n = 1, . . . , N, (25)

U0 = U0,

where Un− 1
2 = 0.5

(
Un + Un−1).

In order to efficiently compute the solution Un, we write the CN scheme (25) in the
following form:

Un− 1
2 = (Ih + 0.5τAα

h)
−1(Un−1 + 0.5τFn− 1

2
)
, (26)

Un = 2Un− 1
2 −Un−1.

Then, we approximate the nonlocal operator (Ih + τAα
h)
−1 by a local rational operator:

(Ih + 0.5τAα
h)
−1 ≈ rm(Ah).

The BURA-BRASIL algorithm is used to construct rm(λ). Finally, the nonlocal discrete
scheme (26) is approximated by the following local discrete scheme:

Vn− 1
2 = rm(Ah)

(
Vn−1 + 0.5τFn− 1

2
)
, (27)

Vn = 2Vn− 1
2 −Vn−1.

The stability factor of the CN scheme (25) has a more complicated dependence on the
large eigenvalues of Ah, and this factor changes the sign and converges to (−1). Thus, it is
most important to investigate the stability of the scheme (27). According to the proposed
framework of the theoretical analysis, we should estimate the norm ‖2rm(Ah)− Ih‖.

This can be performed by applying the computational approach, when the stability
factor R of the scheme (25) is computed for a specific class of operators Ah and fractional
power parameters α:

R = max
06j6K

|2rm(zj)− 1|, zj = µ1 +
j
K
(µJ − µ1).

The stability requirement is satisfied if R 6 1.
As an example, we applied this criterion for the scheme (27) and the problem (7). The

results of the computational experiments confirm that the condition R 6 1 is satisfied
for fractional power parameters α = 0.25, 0.5, 0.75, space meshes with J = (Jx + 1)3,
Jx = 200, 400, and time steps τ = 10−k, k = 1, . . . , 6. The rational function rm is computed
by applying the BURA-BRASIL algorithm with m = 3, 5, 7, 10, 12.

7. Simulation of Biofilm Formation

In this section, we construct non-standard finite-volume schemes for the solution
of nonlinear problems used to simulate biofilm formation. The mathematical model is
generalized to include a nonlocal diffusion operator. The governing two-dimensional
mathematical model is based on the Allen–Cahn equation ([25,26]):

∂u
∂t

+ D(−∆)α = ru(1− u)(u− γ), (x, y) ∈ Ω = (0, 1)× (0, 1), t ∈ (0, T], (28)
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where D is the diffusion coefficient, α is the fractional power parameter, and γ ∈ [0, 1]
defines the extinction process when the initial population is too low to survive and attain
the maximum capacity otherwise. If α = 1, then we obtain the classical diffusion model.

The initial conditions are defined as

u(x, y, 0) = u0(x, y), (x, y) ∈ [0, 1]× [0, 1]

Homogeneous Dirichlet conditions are considered on the boundary points of Ω:

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ (0, T].

A discrete approximation of the diffusion operator is constructed in a similar way
as for Example 1. A uniform space mesh ωx × ωy is defined, and the discrete diffusion
operator Ah is constructed by using the finite-volume method.

We note that very interesting results were obtained in [25], where the authors con-
structed a non-standard unconditionally positive finite-difference scheme and applied it
to solve three test problems for the problem (28). We note that this scheme has first-order
accuracy in time and second-order accuracy in space.

Our goal is to construct a non-standard splitting-type discrete scheme that has second-
order accuracy in time and solves a general nonlocal diffusion problem. Here, we used the
techniques presented also in [7]. As an additional bonus of the proposed general framework,
we show that no additional theoretical analysis is needed to justify this splitting scheme,
when the results of previous sections are already given.

We applied the symmetrical splitting technique with respect to different physical
processes and obtained the following template of a discrete scheme

dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn) = Un, tn < t 6 tn+ 1

2 , (29)

Un+ 1
3 = Ũ(tn+ 1

2 ),

Un+ 2
3 −Un+ 1

3

τ
+ Aα

h
Un+ 2

3 + Un+ 1
3

2
= 0, (30)

dŨ
dt

= F(X, tn+ 1
2 , Ũ), Ũ(tn+ 1

2 ) = Un+ 2
3 , tn+ 1

2 < t 6 tn+1, (31)

Un+1 = Ũ(tn+1).

From this template, we can define different cases of the fully discrete scheme.
First, the dynamics of the nonlinear interaction can be resolved by using specialized

solvers targeted at specific nonlinear functions. In some cases, these subproblems can even
be solved exactly. For the applied problem (28), we used the well-known symmetrical
predictor–corrector method, e.g., for the step (29), we obtain:

Un+ 1
3 ,0 = Un,

Un+ 1
3 ,s+1 = Un +

τ

4
rUn+ 1

3 ,s(1−Un+ 1
3 ,s)(Un+ 1

3 ,s − γ), s = 0, 1,

Un+ 1
3 = 2Un+ 1

3 ,2 −Un. (32)

Second, only one subproblem with nonlocal operators is solved for each time step. We
can use the Crank–Nicolson-type BURA-BRASIL scheme, which is constructed and investi-
gated in Section 6. On the basis of the proposed theoretical framework, we automatically
obtain that the proposed scheme (29)–(31) is stable and a discrete solution converges to the
solution of the problem (28). The constructed scheme has second-order accuracy in time
and space.
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In order to illustrate the performance of the proposed scheme, we present some results
on the simulation of biofilm on medical implants. This problem was also investigated
in [25,27]. We considered an initial profile with the density function given as

u(x, y, 0) =
2

∑
p=1

Cpe−wp‖X−Xp‖2
,

where X = (x, y), C1 = 0.68, C2 = 0.65, w1 = 60, w2 = 100, X1 = (0.35, 0.60),
X2 = (0.48, 0.45). We also took r = 200, γ = 0.05 and D = 0.0002.

First, we compared the numerical rate of convergence in time using the new splitting-
type scheme (29)–(31) and two schemes from the paper [25], the results are presented in
Table 7. The results for the nonstandard finite-difference scheme (NFSD) and the classical
explicit Euler scheme were taken from Table 4. The test problem was solved for a sequence
of time steps τ till time t = 0.01 with α = 1, h = 0.02.

Table 7. Errors E(τ) and experimental convergence rates ρ(τ) for the discrete solution of the splitting
scheme (29)–(31) and the NSFD and classical explicit Euler schemes from [25] for a sequence of time
steps τ.

τ ESS(τ) ρ(τ) ENSFD(τ) ρ(τ) EEE(τ) ρ(τ)

0.0025 1.858× 10−4 1.926 3.403× 10−2 0.290 1.443× 10−2 0.786
0.00125 4.763× 10−5 1.964 2.347× 10−2 0.536 7.875× 10−3 0.874

0.000625 1.201× 10−5 1.988 1.423× 10−2 0.722 4.134× 10−3 0.930
0.0003125 2.964× 10−6 2.018 7.913× 10−3 0.846 2.121× 10−3 0.963

It follows from the presented results that the second-order convergence rate is achieved
for the splitting scheme (29)–(31), and therefore, it enables computing more accurate
approximations for the same time step.

The computational experiments also proved that, for fractional parameters
0.2 6 α 6 0.75, it is sufficient to take m 6 5 for the BURA-BRASIL algorithm in or-
der to obtain the same accuracy of solutions as for the full discrete nonlocal problem (30).
We note that for the given biofilm model, the development of population mostly depends
on the nonlinear reaction process, and the fractional power of diffusion has only a sec-
ondary impact.

8. Conclusions

A general framework of analysis was proposed for the analysis of solutions of parabolic
problems with fractional power elliptic operators. The analysis was split into three parts,
and each part dealt with a specific subproblem, which can be solved and analyzed in a
simpler way.

An additional bonus of this approach is that the existing stability and convergence
results can be included directly in the first and second parts of the framework. This
possibility makes the proposed technique quite efficient and robust.

New stability and approximation techniques were proposed for the analysis of dis-
crete schemes, which were constructed by using the uniform rational approximations of
transfer functions. The BRASIL algorithm was used for the practical construction of such
rational approximations.

The results of extended experiments were reported to illustrate the accuracy and
efficiency of the proposed general framework.

The analysis of the influence of efficient parallel solvers for the stability and accuracy
of the obtained algorithms can be added as the fourth part of this framework. These results
will be presented in a separate paper.
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