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Abstract: In this work, a mathematical model to describe drug delivery from polymer coatings on
implants is proposed. Release predictability is useful for development and understanding of drug
release mechanisms from controlled delivery systems. The proposed model considers a unidirectional
recursive diffusion process which follows Fick’s second law while considering the convective phe-
nomena from the polymer matrix to the liquid where the drug is delivered and the polymer–liquid
drug distribution equilibrium. The resulting model is solved using Laplace transformation for two
scenarios: (1) a constant initial condition for a single drug delivery experiment; and (2) a recursive
delivery process where the liquid medium is replaced with fresh liquid after a fixed period of time,
causing a stepped delivery rate. Finally, the proposed model is validated with experimental data.
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1. Introduction

Polymer coatings on implants and other biomedical devices are frequently used as
local drug delivery systems, which allows for in situ release in the immediate targeted
tissue, optimizing the therapeutic effects. Medications can be released at controlled rates
in the range of effective treatment levels, increasing their bioavailability [1]. In this sense,
mathematical modeling of drug delivery and release predictability is useful in development
and understanding of drug release mechanisms from controlled delivery systems. In most
cases, drug diffusional mass transport is the predominant step in the control of drug release,
while in others it is present in combination with polymer swelling or polymer erosion [2].
In general, it is common to use power law equations for modeling release kinetics, such as
the Higuchi and Ritger–Peppas models.

The Higuchi model [3] implies various assumptions, namely, that the initial drug
concentration in the polymer is higher than the drug’s solubility, that drug diffusion occurs
in only one dimension (i.e., the edge effect must be negligible), that the drug particles are
smaller than the polymer thickness, that matrix swelling and dissolution are negligible,
that drug diffusivity is constant, and that perfect sink conditions are always attained.
The Higuchi equation is provided by

Mt/M∞ = kt1/2

where the ratio Mt/M∞ is the fraction of drug released at time t and k is the Higuchi dissolu-
tion constant, which represents a Fickian diffusion of drugs without the matrix dissolution.
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The Ritger–Peppas model [4] is a simple relationship to describe drug release from a
polymeric system. This model analyzes both Fickian and non-Fickian release of drug from
swelling as well as non-swelling materials; however, it is only applicable up to 60% of the
drug amount released. The Ritger–Peppas release equation is provided by

Mt/M∞ = ktn

where the ratio Mt/M∞ is the fraction of drug released at time t, k is the Ritger–Peppas
kinetic constant, which characterizes the drug–matrix system, and n is the exponent that
indicates the drug release mechanism.

These semi-empirical models are easy to use and the established empirical rules help
to explain transport mechanisms. However, they do not provide further insights into a
more complex transport mechanism. Furthermore, these models might fail when specific
experimental methodology or physicochemical processes are involved [5]. For this reason, it
is important to develop a mathematical model to adequately study the release kinetics from
polymer coatings to liquid media. In this regard, this work is about a mathematical model
that describes drug delivery considering a unidirectional iterative diffusion process in Fick’s
second law while considering the convective phenomena from the polymer matrix to the
liquid where the drug is delivered and the polymer–liquid drug distribution equilibrium.
The resulting model is solved using Laplace transformation for two scenarios: (1) a constant
initial condition for a single drug delivery experiment; and (2) a recursive delivery process
where the liquid medium is replaced with fresh liquid after a fixed period of time, causing
a stepped delivery rate. Finally, the proposed model is validated with experimental data.

2. Model Formulation

The main goal of the following model is to understand the drug release mechanisms
from controlled delivery systems. Thus, the model must be able to evaluate whether the
delivery system is controlled by the diffusion of the drug in the solid matrix (usually a
polymer), by convection from the polymer surface to the liquid, or by the solid–liquid drug
distribution equilibrium. In particular, we are interested in the experimental configuration
shown in Figure 1, where a polymer coating (solid matrix in the following) on an implant
initially impregnated with the drug is immersed in a volume of liquid, Vl , for a fixed period
of time, producing a time-varied drug concentration in the liquid bulk, Cl(t), that can
be measured.

Cl(t)
Vl

A
C(x, t)

x = 0
L

J = −D ∂C
∂x

C|x=L →

← Ceq = γCl

J|x=L = kC
(

C|x=L − Ceq
)

Diffusion

Convection

Figure 1. Scheme of the drug delivery system.
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In order to model drug delivery, the following assumptions are considered:

1. Drug diffusion is only in one dimension, x (i.e., the edge effect must be negligible);
therefore, the concentration of the drug in the solid matrix is expressed as C(x, t)

2. Drug particles (solute) are smaller than solid thickness
3. Matrix swelling and dissolution are negligible, therefore, the length of the diffusion

region, 2L, is constant, and by symmetry the problem is analyzed in the following
domain: 0 ≤ x ≤ L

4. Drug diffusivity in the solid matrix, D, is constant and Fick’s law can be applied,
i.e., J = −D∂C/∂x

5. There exists an equilibrium between the concentration of the drug in the interface of
the solid matrix and the liquid, provided by Ceq = γCl

6. There is a convective rate that depends on the difference of the concentration in the
solid–liquid interface, C|x=L, and the equilibrium concentration, Ceq, with the form
J|x=L = kC

(
C|x=L − Ceq

)
7. The entire surface of the solid is completely submerged.

In the following sections, a model is developed for two scenarios: (1) a constant initial
condition for a single drug delivery experiment; and (2) a recursive delivery process where
the liquid medium is replaced with fresh liquid after a fixed period of time, causing a
stepped delivery rate.

2.1. Single Drug Delivery Experiments

Consider a unidirectional diffusion of the solute in the solid matrix, described by the
following partial differential equation:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 ,
t > 0

0 < x < L
(1)

where D is the diffusivity and L is the length. The initial condition is

C(x, 0) = Cini (2)

and boundary conditions are

∂C(0, t)
∂x

= 0 (3)

−D
∂C(L, t)

∂x
= kC[C(L, t)− γCl(t)] (4)

where Cl(t) is the solute concentration in the liquid, kC is the mass transfer coefficient in the
liquid, and γ is the solute solid–liquid partition coefficient associated with the equilibrium.
Condition (2) indicates that the initial concentration in the solid matrix is homogeneous
and equal to Cini. Condition (3) appears due to the symmetry of diffusion in the middle of
the solid, while condition (4) represents the solid–liquid interface. The accumulation of the
solute in the liquid can be easily obtained from the mass balance,

Vl
dCl(t)

dt
= AkC[C(L, t)− γCl(t)] (5)

where A is the area of mass transport and Vl is the volume of the liquid. The total solute
mass in the solid matrix and the liquid is constant and equal to

mini = A
ˆ L

0
C(x, t)dx + VlCl(t) (6)
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where mini is the initial solute mass in the solid matrix and, assuming that initially the
solute concentration in the liquid is zero Cl(0) = 0, it is equivalent to

mini = A
ˆ L

0
C(x, 0)dx = ALCini. (7)

Notice that the time derivative of Equation (6) provides

Vl
dCl(t)

dt
= −A

ˆ L

0

∂C(x, t)
∂t

dx

and considering Equation (1) and boundary condition (3), the previous equation becomes

Vl
dCl(t)

dt
= −DA

∂C(L, t)
∂x

,

which agrees with the substitution of Equation (4) in Equation (5). The mass of the solute
in the liquid is therefore

Cl(t) =
mini −m(t)

Vl
= A

LCini −
´ L

0 C(x, t)dx
Vl

(8)

where m(t) = A
´ L

0 C(x, t)dx is the total mass of the solute in the solid matrix. Finally,
replacing Equation (8) in boundary condition (4), it follows that

L
Sh

∂C(L, t)
∂x

+ C(L, t) = β

[
mini
AL
− 1

L

ˆ L

0
C(x, t)dx

]
(9)

where β = γ AL
Vl

and Sh = kC
D/L are the Sherwood number, which represents the ratio of

convective mass transfer to the rate of diffusive mass transport.

2.2. Recursive Delivery Experiment

Now, let us consider an iterative process where for each fixed period of time δ the liquid
is replaced by fresh liquid without solute. Then, the iterative process can be modeled by
the diffusion equation,

∂Ck(x, t)
∂t

= D
∂2Ck(x, t)

∂x2 ,
kδ < t ≤ (k + 1)δ

0 < x < L
(10)

with an initial condition that depends on the concentration of the previous iteration:

Ck(x, kδ) = Ck−1(x, kδ) (11)

and the following boundary conditions:

∂Ck(0, t)
∂x

= 0 (12)

L
Sh

∂C(L, t)
∂x

+ Ck(L, t) = β

[
m0,k

AL
−
´ L

0 Ck(x, t)dx
L

]
kδ < t ≤ (k + 1)δ (13)

where k = 1, 2, 3, . . . and the initial mass of the solute in the solid at iteration k depends on
the final concentration of iteration k− 1, i.e.,

m0,k = A
ˆ L

0
Ck−1(x, kδ)dx.
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To analyze the iterative behavior, it is proposed that a shift in time τk = t − kδ be
defined in such a way that the previous model becomes

∂Ck(x, τk)

∂τk
= D

∂2Ck(x, τk)

∂x2 ,
τk > 0

0 < x < L
(14)

Ck(x, 0) = [Ck−1(x, τk−1)]τk−1=δ (15)

∂Ck(0, τk)

∂x
= 0 (16)

L
Sh

∂Ck(L, τk)

∂x
+ Ck(L, τk) = β

[
m0,k

AL
−
´ L

0 Ck(x, τk)dx
L

]
(17)

for k = 1, 2, 3, . . . . Then, the analytical solution of the models for the two scenarios is
presented in the following section using Laplace transformation [6].

3. Analytical Solutions
3.1. Single Drug Delivery Experiment

To solve the problem described by Equations (1)–(3) and (9), let us define the Laplace
transformation:

L{C(x, t)} =
ˆ ∞

0
C(x, t)e−stdt = Ĉ(x, s) (18)

therefore, the Laplace transformation of Equation (1) is

sĈ(x, s)− Cini = D
d2Ĉ(x, s)

dx2 , 0 < x < L (19)

while the Laplace transformations of the boundary conditions (Equations (3) and (9)) are

dĈ(0, s)
dx

= 0, (20)

L
Sh

dĈ(L, s)
dx

+ Ĉ(L, s) = β

[
mini
AL
s
− 1

L

ˆ L

0
Ĉ(x, s)dx

]
. (21)

The solution of Equation (19) together with Conditions (20) and (21) is

Ĉ(x, s) =
Cini

s

1−
ρ cosh

(
x
√

s
D

)
cosh

(
L
√

s
D

)
+ 1

L

√
D
s

(
L2s
DSh + β

)
sinh

(
L
√

s
D

)
 (22)

where ρ = 1 + β
(

1− mini
Cini AL

)
. Notice that, for this particular case ρ = 1, because mini =

ALCini; however, here, we use ρ, as the general solution for ρ 6= 1 is used for the recursive
problem analyzed latter.

The concentration profile can be obtained by applying the inverse Laplace transfor-
mation to Equation (22). The inverse of the first term can be obtained with the formula
L−1

{
1
s

}
= 1, while for the second term a more elaborated procedure is required.

We define

p(s) = cosh

(
x
L

√
L2s
D

)
and

q(s) = cosh

√
L2s
D

+

√
D

L2s

(
β +

1
Sh

L2s
D

)
sinh

√
L2s
D

.
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where for sn = −D
( αn

L
)2, it holds that

q(sn) = cos(αn) +

(
β

αn
− αn

Sh

)
sin(αn).

Thus, the values of αn at which q(sn) = 0 are provided by the characteristic equation

tan(αn) =
αn

α2
n

Sh − β
. (23)

according to the following formula:

L−1
{

p(s)
q(s)

}
=

∞

∑
n=1

p(sn)

q′(sn)
exp(snt) (24)

where p(s) and q(s) are infinite series of s, q′(s) is the derivative of q(s) with respect to
s, and sn are the infinite values of s satisfying the equation q(s) = 0; thus, the following
inverse transformation is obtained

L−1
{

p(s)
q(s)

}
=

2D
L2

∞

∑
n=1

α3
n cos

(
αn

x
L
)

exp
(
−D

( αn
L
)2t
)

[
β + α2

n

(
1 + 1

Sh

)
+
(

β− α2
n

Sh

)2
]

sin(αn)

.

Finally, for any arbitrary function f (s) = L{ f (t)}, the following inverse Laplace
transformation holds: L−1

{
f (s)

s

}
=
´ t

0 F(τ)dτ; then,

L−1
{

1
s
· p(s)

q(s)

}
= 2

∞

∑
n=1

cos
(
αn

x
L
)[

1− exp
(
−D

( αn
L
)2t
)]

[
αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

and the concentration becomes the following Fourier series [7]:

C(x, t) = Cini

1− 2ρ
∞

∑
n=1

cos
(
αn

x
L
)[

1− exp
(
−D

( αn
L
)2t
)]

[
αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

. (25)

The relationship between the mass at any time and the initial mass of solute in the
solid matrix is

m(t)
mini

=
1
L

ˆ L

0

C(x, t)
Cini

dx

and considering the solution, this integral is

´ L
0

C(x,t)
Cini

dx

L
= 1− 2ρ

∞

∑
n=1

1− exp
[
−D

( αn
L
)2t
]

α2
n

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1 + β)β

while the amount of mass of solute that has left the solid matrix and diffused to the liquid is

1− m(t)
mini

= 2ρ
∞

∑
n=1

1− exp
[
−D

( αn
L
)2t
]

α2
n

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1 + β)β
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At steady state, the concentration in the solid matrix does not depend on time; thus,
C(x, t) becomes C∗(x). Therefore, Equation (1) reduces to

D
d2C∗(x)

dx2 = 0 (26)

while conditions (3) and (4) become

dC∗(0)
dx

= 0 (27)

L
Sh

dC∗(L)
dx

+ C∗(L) = β

[
mini
AL
− 1

L

ˆ L

0
C∗(x)dx

]
(28)

The solution of Equation (26) together with the boundary conditions (27) and (28) is

C∗(x) =
β

1 + β

mini
AL

= γCl,∞ (29)

where Cl,∞ is the steady state concentration of the solute in the liquid. Notice that the
steady state concentration profile of the solute in the solid matrix is constant.

Now, considering the transient solution (25) and the solution at steady state (29), given
that C∗(x) = limt→∞ C(x, t) it is straightforward to verify that the following Fourier series
can be expressed as

2
∞

∑
n=1

cos
(
αn

x
L
)[

αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

=
1

1 + β
(30)

and solution (25) is equivalent to

C(x, t) =
β

1 + β

mini
AL

+ 2ρCini

∞

∑
n=1

cos
(
αn

x
L
)

exp
[
−D

( αn
L
)2t
]

[
αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

. (31)

The integral of this concentration is

m(t)
mini

=
1
L

ˆ L

0

C(x, t)
C0

dx =
β

1 + β

mini
ALCini

+ 2ρ
∞

∑
n=1

exp
[
−D

( αn
L
)2t
]

α2
n

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1 + β)β

,

and the mass of the solute in the liquid is

ml(t)
mini

:= 1− m(t)
mini

= ρ

 1
1 + β

− 2
∞

∑
n=1

exp
[
−D

( αn
L
)2t
]

α2
n

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1 + β)β

. (32)

3.2. Recursive Delivery Experiment

In order to solve this problem, we first state that

Ck(x, τk) = Ck−1(x, τk−1 + δ) + Wk(x, τk), (33)

where Wk(x, τk) is an auxiliary variable and Ck−1(x, τk−1 + δ) is the solution at the previous
iteration. Therefore, the substitution of Equation (33) in Equation (14) and conditions (15)–(17)
produces the following problem for Wk(x, τk):

∂Wk(x, τk)

∂τk
= D

∂2Wk(x, τk)

∂x2 ,
τk > 0

0 < x < L
(34)
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Wk(x, 0) = 0 (35)

∂Wk(0, τk)

∂x
= 0 (36)

L
Sh

∂Wk(L, τk)

∂x
+ Wk(L, τk) + β

´ L
0 Wk(x, τk)dx

L
= β

(
m0,k −m0,k−1

AL

)
(37)

where

m0,k = A
ˆ L

0
[Ck−1(x, τk−1)]τk−1=δdx,

m0,k−1 = A
ˆ L

0
[Ck−1(x, τk−1)]τk−1=0dx.

Notice that Equations (34)–(37) are analogue to Equations (1)–(3) and (9) with Cini = 0
and mini = m0,k −m0,k−1; therefore, the solution is

Wk(x, τk) = 2β

(
m0,k −m0,k−1

AL

) ∞

∑
n=1

cos
(
αn

x
L
)[

1− exp
(
−D

( αn
L
)2

τk

)]
[
αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

while considering the identity in (30), this function becomes

Wk(x, τk) = β

(
m0,k −m0,k−1

AL

)
[1−W0(x, τk)]

where

W0(x, t) =
β

1 + β
+ 2

∞

∑
n=1

cos
(
αn

x
L
)

exp
[
−D

( αn
L
)2t
]

[
αn

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1+β)β

αn

]
sin(αn)

.

The concentration provided in Equation (33) becomes

Ck(x, τk) = Ck−1(x, τk−1 + δ) + β

(
m0,k −m0,k−1

AL

)
[1−W0(x, τk)],

which in terms of the original time variable is

Ck(x, t) = Ck−1(x, t) + β

(
m0,k −m0,k−1

AL

)
[1−W0(x, t− kδ)],

kδ < t ≤ (k + 1)δ
0 < x < L

. (38)

Notice that for k = 0, the solution is obtained through Equations (25) or (31)

C0(x, t) = CiniW0(x, t),
0 < t ≤ δ
0 < x < L

;

for k = 1, it holds that

C1(x, t) = CiniW0(x, t) + β
(m0,1

AL
− Cini

)
[1−W0(x, t− δ)],

δ < t ≤ 2δ
0 < x < L

,

while for k = 2,

C2(x, t) = CiniW0(x, t) + β
(m0,1

AL
− Cini

)
[1−W0(x, t− δ)]

+β

(
m0,2 −m0,1

AL

)
[1−W0(x, t− 2δ)],

2δ < t ≤ 3δ
0 < x < L

.

and in general,
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Ck(x, t)
Cini

= W0(x, t) + β
k

∑
i=1

(
m0,i

m0,0
− m0,i−1

m0,0

)
[1−W0(x, t− iδ)],

kδ < t ≤ (k + 1)δ
0 < x < L

(39)

where m0,0 = ALCini = mini.
The total fraction of solute mass inside the solid matrix with respect to the initial solute

mass at each instant is

mk(t)
m0,0

=
A
´ L

0 Ck(x, t)dx
m0,0

= M0(t) + β
k

∑
i=1

(
m0,i

m0,0
− m0,i−1

m0,0

)
[1−M0(t− iδ)]

where

M0(t) =
1
L

ˆ L

0
W0(x, t)dx =

β

1 + β
+ 2

∞

∑
n=1

exp
[
−D

( αn
L
)2t
]

α2
n

(
1 + 1−2β+α2

n/Sh
Sh

)
+ (1 + β)β

therefore,
m0,1

m0,0
= M0(δ)

and

m0,k

m0,0
=

mk−1(kδ)

m0,0
= M0(kδ) + β

k−1

∑
i=1

(
m0,i

m0,0
− m0,i−1

m0,0

)
[1−M0((k− i)δ)], k = 2, 3, . . .

Finally, the mass of the solute that has been delivered from the solid matrix is

ml,k(t)
m0,0

:= 1− mk(t)
m0,0

= 1−M0(t)− β
k

∑
i=1

(
m0,i

m0,0
− m0,i−1

m0,0

)
[1−M0(t− iδ)]. (40)

4. Case Study
4.1. Materials and Methods

Surface sections (1× 1 cm2) from a roughness breast implant purchased from Mentor®
brand (USA) were polymerized with (2-Hydroxypropyl)-b-cyclodextrin and citric acid
according to the protocol of [8]. Samples were loaded with a concentrated solution of Rose
Bengal (RB) stain for 12 h. The RB release profile, Cl(t), was obtained as a mean of triplicate
experiments. Loaded samples were placed into vials filled with phosphate-buffered saline
(PBS) at 37 ºC in a horizontal shaker (100 rpm) (NB-2005LN Biotek, Winooski, VT, USA).
In order to maintain perfect sink conditions, the PBS medium of the samples was changed
every 24 h, for ten times in total. The RB content in the withdrawn bulk PBS was analyzed
by UV-spectrophotometry (Evolution 220 model, Thermo Scientific, Waltham, MA, USA) at
545 nm [9]. Reactive chemicals were obtained from Sigma-Aldrich® (St. Louis, MO, USA).

4.2. Model Prediction

Figure 2a shows the RB release profile for the first 24 h of the experiment as ml(t)/mini
vs. t. As a first approach, these experimental data were used to estimate the three pa-
rameters of the model presented in Section 2.1 (D, β, Sh), with a least-squares method
using a derivative-free algorithm [10] to minimize the sum of the squares of the error
between the data and the prediction of Equation (32). As a result, a very large value
was obtained for the Sherwood number, Sh = kC

D/L ∼ 105, suggesting that diffusion con-
trols the interface transport for the experimental conditions; therefore, the characteristic
Equation (23), the concentration profile (31), and the release profile (32) can be simplified
to tan(αn) = −αn/β:
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C(x, t)
Cini

=
β

1 + β
+ 2

∞

∑
n=1

cos
(
αn

x
L
)

exp
[
−D

( αn
L
)2t
]

(
αn +

(1+β)β
αn

)
sin(αn)

and

ml(t)
mini

=
1

1 + β
− 2

∞

∑
n=1

exp
[
−α2

n
D
L2 t
]

α2
n + (1 + β)β

,

respectively. This simplified model contains only two parameters,
(

D/L2, β
)
, the numerical

values of which, D/L2 = 4.102× 10−2 h−1 and β = 6.095× 10−2, were estimated using
the same least-square method [10]. Finally, the same parameters were used to predict the
behavior of the recursive delivery experiment, where the PBS medium of the samples was
changed every 24 h for ten days (see Figure 3a).
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Figure 2. Single drug delivery. (a) Comparison of the experimental data and prediction for the
delivered mass using Equation (32). (b) Prediction of the drug concentration profile in the solid
matrix using Equation (31). The parameters are D/L2 = 4.102 × 10−2 h−1, β = 6.095 × 10−2,
and Sh−1 = 0.
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Figure 3. Recursive drug delivery. (a) Comparison of the experimental data and prediction for the
delivered mass using Equation (40). (b) Prediction of the drug concentration profile in the solid
matrix using Equation (39). The parameters are D/L2 = 4.102× 10−2 h−1, β = 6.095× 10−2, and
Sh−1 = 0.

5. Discussion

The proposed models for single and recursive release experiments presented in
Sections 2.1 and 2.2, respectively, are general and allow us to clarify the predominant
step in the control of drug release, This is because these models consider the drug diffusion
in the solid matrix, the convective phenomenon from the solid matrix to the liquid, where
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the drug is delivered, and the solid–liquid drug distribution equilibrium. In particular,
considering the experimental conditions of the study case presented in Section 4, diffusion
dominates over convection thanks to the mixing conditions established by the horizontal
shaker (with 100 rpm) in our experiments. For this reason, we was obtained Sh−1 ≈ 0,
reducing the number of parameters to two, namely,

(
D/L2, β

)
; however, convection might

be relevant as well for in situ applications.
In the Higuchi model [3], the characteristic values are of the form

(
n− 1

2

)
π, leading

to the approximation Mt/M∞ = kt1/2. However, the assumption of solid–liquid interface
equilibrium leads to the characteristic Equation (23), which depends on both Sh and
β and the characteristic values of which must be numerically computed. In particular,
for Sh−1 = 0 and β = 6.095× 10−2 the first characteristic values are α1 ≈ 0.6π, α2 ≈ 1.54π,
α3 ≈ 2.524π, α4 ≈ 3.518π,. . . , which tends towards αn →

(
n− 1

2

)
π as n increases

(see Figure 4). The deviation from
(

n− 1
2

)
π of the first characteristic values produces a

response that is non necessarily proportional to t1/2, as in the Higuchi model [3].
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Figure 4. Characteristic values, αn, for β = 6.095× 10−2.

The experimental evidence shown in Figures 2a and 3a supports the use of the solid–
liquid interface equilibrium assumption, Ceq = γCl , because at the end of the first 24 h
the concentration in the liquid seems to reach a constant value (see Figure 2a); it was
only after the PBS medium was exchanged for a fresh one that the drug release continued
(see Figure 2a). Condition (9) or its equivalent for the recursive delivery (17) includes the
solid–liquid interface equilibrium assumption, and these conditions indicate that the rate
of drug delivery to the liquid is time-varyiant, as it depends on the total mass of the drug
in the liquid at the same instant. This concentration is proportional to the total mass inside
the solid matrix due to the total mass balance of the total solid–liquid system. As a result of
these conditions, the delivered mass with respect to the initial mass within the solid matrix
tends to (1 + β)−1 as time tends to infinity (see Equation (32)), which is consistent with
the experimental data, i.e., ml/mini ≈ 0.621 for β = 6.095× 10−2. Thus, for the particular
experimental study case, when the drug concentration in the liquid is low, diffusion controls
the delivery rate; however, as this concentration increases, the equilibrium plays a greater
role, becoming the controlling mechanism as time increases.

The proposed models for single or recursive delivery are able to describe the deliv-
ered mass profile (see Figures 2a and 3a), that is, the usual experimental measurement,
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and allows prediction of the concentration profile within the solid matrix, as shown in
Figures 2b and 3b. Notice that for the particular experimental study case, after each 24 h the
profile concentration in the solid matrix is approximately constant, because the solid–liquid
interface equilibrium has been reached. In addition, in order to validate the analytical
solutions provided in Equation (32) for single release experiments and Equation (40) for re-
cursive release experiments, numerical solutions of the proposed models were determined
using an orthogonal collocation method; Figures 2a and 3a show that the numerical and
analytical solutions overlap.

6. Conclusions

In this work, a mathematical model to describe drug delivery from polymer coatings
on implants was proposed. The model considers a unidirectional recursive diffusion
process which follows Fick’s second law and considers the convective phenomena from the
polymer matrix to the liquid where the drug is delivered as well as the polymer–liquid drug
distribution equilibrium. The resulting model is solved using Laplace transformation for
two scenarios: (1) a constant initial condition for a single drug delivery experiment; and (2) a
recursive delivery process where the liquid medium is replaced with fresh liquid after a
fixed period of time, causing a stepped delivery rate. Finally, the study case shows that
these models can satisfactorily reproduce the experimental data, clarifying the predominant
step in the control of drug release.

The proposed models for single and recursive release experiments presented in
Sections 2.1 and 2.2 have linear partial differential equations and boundary conditions;
therefore, it was possible to obtain the analytical solutions provided in Equations (25), (31)
and (32) for single release experiments, and Equations (39) and (40) for recursive release
experiments. However, numerical methods are another option to solve these problems,
and they become mandatory when extra phenomena need to be included in the drug
release models in order to obtain satisfactory predictions, for instance, when swelling and
degradation of the solid matrix become relevant, causing moving boundaries, or when a
drug has more complex interactions such as biodegradation or adsorption, which produce
non-linear terms in the model due to the reaction kinetics or adsorption isotherms.
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