
����������
�������

Citation: Edemacu, K.; Kim, J.W.

Scalable Multi-Party Privacy-

Preserving Gradient Tree Boosting

over Vertically Partitioned Dataset

with Outsourced Computations.

Mathematics 2022, 10, 2185. https://

doi.org/10.3390/math10132185

Academic Editors: Zibin Zheng,

Ruoxi Jia, Dan Li, Yuxun Zhou and

Liang Xu

Received: 1 June 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Scalable Multi-Party Privacy-Preserving Gradient Tree Boosting
over Vertically Partitioned Dataset with Outsourced Computations
Kennedy Edemacu 1 and Jong Wook Kim 2,*

1 Department of Computer Science and Electrical Engineering, Muni University, Arua P.O. Box 725, Uganda;
k.edemacu@muni.ac.ug

2 Department of Computer Science, Sangmyung University, Seoul 03016, Korea
* Correspondence: jkim@smu.ac.kr

Abstract: Due to privacy concerns, multi-party gradient tree boosting algorithms have become widely
popular amongst machine learning researchers and practitioners. However, limited existing works
have focused on vertically partitioned datasets, and the few existing works are either not scalable or
tend to leak information. Thus, in this work, we propose SSXGB, which is a scalable and acceptably
secure multi-party gradient tree boosting framework for vertically partitioned datasets with partially
outsourced computations. Specifically, we employ an additive homomorphic encryption (HE) scheme
for security. We design two sub-protocols based on the HE scheme to perform non-linear operations
associated with gradient tree boosting algorithms. Next, we propose secure training and prediction
algorithms under the SSXGB framework. Then, we provide theoretical security and communication
analysis for the proposed framework. Finally, we evaluate the performance of the framework with
experiments using two real-world datasets.

Keywords: gradient tree boosting; multi-party machine learning; privacy-preservation;
homomorphic encryption; vertically partitioned dataset

MSC: 68T07

1. Introduction

The privacy-preserving multi-party machine learning paradigm has shown promising
potential in encouraging collaboration between organizations while preserving the privacy
of their data [1]. The basic idea of the privacy-preserving multi-party machine learning
is that each collaborating party holds a private dataset and trains a local model using
the dataset. The local models from the participating parties are then aggregated to create
a single and more powerful model. Hence, different organizations can jointly train a
machine learning model without sharing their private datasets. Usually, privacy-preserving
mechanisms such as multi-party computation, homomorphic encryption, and differential
privacy are employed to improve the security of privacy-preserving multi-party machine
learning frameworks.

Although the privacy-preserving multi-party machine learning has attracted a lot of
attention recently, the majority of the existing works focus on linear regression [2,3], logistic
regression [4,5] and neural networks [6,7] over vertically and horizontally partitioned
datasets (For horizontally partitioned datasets, participants hold subsets of the samples
with the same features. For example, two regional banks may have different user groups
from their regions, with the intersection between the user groups being small (different
samples). However, the two banks have similar businesses and hence, similar features.
While for vertically partitioned datasets, participants hold the same samples with different
features. For example, two companies, a bank and an e-commerce company located in the
same city. The two companies are likely to have the same users, but since their businesses
are different, they will have different features [8]).

Mathematics 2022, 10, 2185. https://doi.org/10.3390/math10132185 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132185
https://doi.org/10.3390/math10132185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9877-9216
https://orcid.org/0000-0001-8373-1893
https://doi.org/10.3390/math10132185
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132185?type=check_update&version=2

Mathematics 2022, 10, 2185 2 of 20

Similar to the above methods, gradient tree boosting [9], which is one of the most pop-
ular machine learning methods, has also received considerable attention due to its effective-
ness in a wide range of application areas such as fraud detection [10], feature selection [11]
and product recommendation [12]. Efforts to address the privacy concerns for gradient
tree boosting in multi-party settings are presented in [13–18]. The datasets in [13–15] are
horizontally partitioned while the datasets are vertically partitioned in [16–18].

In this work, we focus on the latter dataset partitioning. The current privacy preser-
vation efforts proposed for the multi-party gradient tree boosting method with vertically
partitioned datasets have a number of limitations. In [18], the proposed scheme is not
scalable; it is limited to only two collaborating parties. In [16,17], intermediate information
is revealed during the model training. Thus, designing a scalable and yet secure gradient
tree boosting scheme has remained open for investigation, and hence, we intend to answer
the question of how to construct a scalable (in terms of collaborating parties) and secure
XGBoost [19] over vertically partitioned datasets in this work.

Apart from the high memory usage challenge, the secure XGBoost model training
requires complicated computation primitives such as division and argmax [18]. To address
these challenges and build a scalable but secure XGBoost over vertically partitioned datasets,
we propose the SSXGB framework that securely outsources and performs the complicated
computations in encrypted form. The key idea is to allow the participants to jointly train
a model by sharing their encrypted information with a server that, in turn, collaborates
with a second server to securely perform further computations to complete the generation
of the model. Specifically, we present an additive homomorphic encryption (HE) scheme
that provides the addition (Add) and subtraction (Sub) primitives. We also present sub-
protocols designed to provide additional primitives such as the multiplication (Mult) and
comparisons. Next, we propose new sub-protocols based on the HE scheme for the division
(Div) and argmax primitives. We employ the secure computation primitives to build the
scalable and secure XGBoost model. Then, we present a secure prediction algorithm for
predictions based on the trained model. We present the analysis of our framework and its
implementation using real-world datasets. A summary of our contributions is presented
as follows:

• We propose sub-protocols based on an additive HE scheme used to perform primitive
secure operations during a machine learning task. The sub-protocols are collabora-
tively executed by two non-colluding servers.

• We design a novel scalable and privacy-preserving multi-party XGBoost training
algorithm and a corresponding prediction algorithm. The algorithms are constructed
under the semi-honest security assumption and there is no limit on the number of
participants involved.

• We conduct experiments using real-world datasets to demonstrate the effectiveness
and efficiency of our proposed framework.

The rest of the paper is organized as follows. In Section 2, we present the related
works. Section 3 contains the preliminary concepts. In Section 4, we present our proposed
HE sub-protocols for non-linear operations. We present the overview of the proposed
SSXGB framework in Section 5. Sections 6 and 7 present the secure training and prediction
algorithms of the SSXGB framework. In Section 8, we present theoretical security and
communication analysis. Performance evaluation is presented in Section 9, and Section 10
concludes the paper.

2. Related Work

Recently, efforts devoted to multi-party machine learning research have shown a
huge potential in addressing the training data scarcity problem while preserving data
privacy [1,5,20,21]. However, the majority of the works focus on linear machine learning
models. Little effort has been invested in researching multi-party gradient tree boosting
models. Currently, multi-party gradient tree boosting frameworks can be categorized as

Mathematics 2022, 10, 2185 3 of 20

horizontal, vertical and generic frameworks, depending on how the datasets are partitioned
amongst the collaborating participants.

2.1. Horizontal Multi-Party Gradient Tree Boosting Frameworks

In horizontal multi-party gradient tree boosting frameworks, sets of samples are
shared amongst the collaborating participants. Several works have adopted this approach.
In [14], Ong et al. designed a multi-party gradient tree boosting framework in which
the participants exchange adaptive histogram representations of their data during model
learning. Liu et al. combined secret sharing with homomorphic encryption to prevent
participants from dropping out and securely aggregate their gradients during XGBoost
training [15]. Reference [22] employed an oblivious algorithm to prevent privacy violations
at hardware enclaves during learning of a multi-party gradient tree boosting model. In [23],
Yang et al. designed a multi-party tree boosting framework with anomaly detection from
extremely unbalanced datasets. Reference [24] designed secure training and prediction
frameworks for multi-party gradient tree boosting. A secret sharing scheme is employed
for the secure training, while a key agreement scheme and an identity-based encryption
and signature scheme are employed for the secure prediction framework. Unlike the above
frameworks, our work focuses on vertically partitioned datasets.

2.2. Vertical Multi-Party Gradient Tree Boosting Frameworks

In vertical multi-party gradient tree boosting frameworks, dataset features are shared
amongst the collaborating participants. Several existing efforts have focused on addressing
concerns in this setting. In [16], Cheng et al. designed a lossless privacy-preserving
multi-party gradient tree boosting framework using a homomorphic encryption scheme.
The framework achieves the same accuracy as the non-federated gradient tree boosting
frameworks. However, it reveals the intermediate parameters during the training process,
which can lead to privacy violations. In [17,18], the authors propose secure training and
prediction frameworks for privacy-preserving multi-party gradient tree boosting. However,
their schemes have limited scalability, i.e., they are limited to two parties. In contrast, in our
work, we propose a privacy-preserving multi-party gradient tree boosting framework that
is scalable and does not expose the intermediate parameters.

2.3. Generic Multi-Party Gradient Tree Boosting Frameworks

Unlike the horizontal and vertical categories, the generic multi-party gradient tree
boosting frameworks support training for generically split datasets (vertical and horizontal
split datasets or their combinations). A recent work [25] proposed by Deforth et al. fo-
cuses on this category. By minimizing the number of oblivious permutation evaluations
using optimization techniques and employing the Manticore multi-party computation
framework [26], the authors are able to achieve a scalable and secure gradient tree boost-
ing framework. Our work focuses on using HE instead of the multi-party computation
techniques employed in this work.

3. Preliminaries

This section summarizes the gradient tree boosting framework, XGBoost, and the
cryptographic foundations used to construct our proposed privacy-preserving multi-party
gradient tree boosting framework.

3.1. XGBoost

XGBoost is an implementation of gradient tree boosting. It trains an additive ensemble
model in a sequence of iterations [19]. At each iteration, a weaker model is learned and
added to the ensemble model. Thus, the ensemble model is the sum of all the weaker
models. To train a model with n samples, let the feature set and label for sample i be (Xi, yi),

Mathematics 2022, 10, 2185 4 of 20

and ŷ be the model prediction. The goal is to build a model that minimizes the following
objective loss function at iteration t [16,18,19].

L =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(Xi)) +

t

∑
k=1

Ω(fk) (1)

where, ŷi
(t−1) denotes the predicted value of the ensemble model at iteration t− 1, ft(Xi)

denotes the predicted value of the weaker model built at the iteration t and Ω is the
regularization term associated with the leaf nodes’ number and weight values.

In XGBoost, the objective loss function is approximated as follows:

L =
n

∑
i=1

[l(yi, ŷ(t−1)
i) + gi ft(Xi) +

1
2

hi f 2
t (Xi)] +

t

∑
k=1

Ω(fk) (2)

where gi and hi are the first- and second-order gradients of the loss function for iteration
t− 1, which are defined as follows:

gi = ∂ŷi
(t−1) l(yi, ŷi

(t−1)) and hi = ∂2
ŷi

(t−1) l(yi, ŷi
(t−1)) (3)

The sum of gi and hi for a node’s instance set Ij can be computed as:

Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi. (4)

The optimal weight w∗j for the leaf node is obtained as:

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(5)

where λ is the regularizer for the leaf weight.
At each iteration, i.e., during the construction of each tree, Equation (6) is used for

split decisions at each intermediate node for every possible split. The split with the highest
value of Lsplit is chosen.

Lsplit =
1
2
[
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ
]− γ (6)

where γ is the regularizer for the leaf number, and IL and IR make up the instance set for
the left and right child nodes. Thus, GL = ∑i∈IL

gi and HL = ∑i∈IL
hi denote the sum of gi

and hi for the left child node instance space, and GR = ∑i∈IR
gi and HR = ∑i∈IR

hi denote
the sum of gi and hi for the right child node instance space.

3.2. Homomorphic Encryption (HE)

In this work, we adopt the BCP Scheme [27,28], which is an additive homomorphic
encryption scheme. The scheme comprises the following algorithms:

(1) Setup (κ): For a given security parameter κ and two large primes p and q of length
κ bits, the algorithm generates the public parameters (pp) and the master key (mk) as
follows. First, it computes N = pq. It then randomly chooses g ∈ Z∗N2 of order pp′qq′ (s.t.

gp′q′ = 1 + kN for k ∈ [1, N − 1]), where p′ = p−1
2 and q′ = q−1

2 . The algorithm outputs pp
as (N, g, k) and mk as (p′, q′).

(2) KeyGen (pp): Generates the public-secret key pairs for users. To generate the key
pair for a user i, the algorithm randomly picks ai ∈ ZN2 , and outputs the public key (pki)
as hi = gai mod N2 and the secret key (ski) as ai.

Mathematics 2022, 10, 2185 5 of 20

(3) Enc (pp, pki, m): Encrypts the message m ∈ ZN under the public key pki. To encrypt
m, the algorithm randomly chooses r ∈ ZN2 and outputs the ciphertext (CT) as (A, B), where

A = grmod N2 and B = hr
i (1 + mN)mod N2.

(4) Dec (pp, ski, CT): Recovers the message m from CT = (A, B) using the correspond-
ing ski = ai. The recovery is performed as follows:

m =
B/(Aai)− 1 mod N2

N
. (7)

Note that the above recovery is successful only for the pki-ski pair.
(5) mDec (pp, pki, mk, CT): Recovers any properly created ciphertext using the master

key, i.e., the algorithm can decrypt CT encrypted under any users’ public key pki (so
long as pki is legitimate). For the decryption to proceed, first a mod N and r mod N are
computed as:

a mod N =
hp′q′ − 1 mod N2

N
· k−1 mod N (8)

and

r mod N =
Ap′q′ − 1 mod N2

N
· k−1 mod N, (9)

where k−1 is the inverse of k mod N. m is recovered from CT as:

m =
(B/(gγ))p′q′ − 1 mod N2

N
· δ mod N, (10)

where δ is the inverse of p′q′ mod N and γ := ar mod N.

3.3. BCP Sub-Protocols

To perform arithmetic operations homomorphically, Refs. [27–29] proposed the fol-
lowing sub-protocols.

(a) KeyProd: The sub-protocol transforms the encryptions under the different user
public keys pk1, . . . , pkn to encryptions under a joint public key pkΣ: = ∏n

i=1 pki. The trans-
formation is an interactive process that involves two non-colluding servers (see [28] for the
details). The encryption under the joint public key pkΣ can only be decrypted using the
sum of all the user secret keys skΣ = ∑n

1 ski or the master key.
(b) Add: Returns the encrypted sum of two encrypted messages. Suppose two messages

m1 and m2 are encrypted as 〚m1〛 and 〚m2〛, respectively. 〚.〛 denotes an encryption operation
under the joint public key in our case. The Add sub-protocol sums the two ciphertexts as
〚m1 + m2〛. The fact that the BCP HE scheme achieves its additive nature under the same
public key straightaway simplifies the Add sub-protocol. The encryptions under different
user public keys can first be transformed to be under the same public key using the KeyProd
sub-protocol, then followed by their addition. Thus, the sum of two encryptions (A, B) and
(A′, B′) under the same public key can be computed as (see [28] for the details):

(Ā, B̄)← (A· A′mod N2, B· B′mod N2).

(c) Mult: The Mult sub-protocol returns the encrypted product of two ciphertexts.
The process involves an interaction between two non-colluding servers (see [28] for
the details). Thus, given two ciphertexts 〚m1〛 and 〚m2〛, the Mult sub-protocol returns
〚m1 ×m2〛.

(d) TransDec: The TransDec sub-protocol does the opposite of the KeyProd sub-
protocol. It transforms the encryptions under the joint public key pkΣ to encryptions
under the user public keys pk1, . . . , pkn. The transformation process involves interactions
between two non-colluding servers (see [28] for the details).

Mathematics 2022, 10, 2185 6 of 20

(e) Neg: The Neg sub-protocol negates an encrypted message. For example, given an
encryption of a message m as 〚m〛, the Neg sub-protocol transforms it to 〚−m〛 as (see [27,29]
for the details):(

g(N−1)·rmod N2, h(N−1)·r(1 + m·N)N−1mod N2) = 〚−m〛.

(f) Exp: Using the same principles as in (e) above, the Exp sub-protocol returns the
product of an encrypted message 〚m〛 and a constant κ as 〚κm 〛. It can be computed
as below: (

g(N+κ)·rmod N2, h(N+κ)·r(1 + m·N)N+κmod N2) = 〚κm〛.

The correctness is similar to the Neg sub-protocol.
(g) Sub: The Sub sub-protocol returns the difference between two ciphertexts. For ex-

ample, given m1 and m2 encrypted as 〚m1〛 and 〚m2〛, respectively, the Sub sub-protocol
returns 〚m1 −m2〛. We describe the sub-protocol as follows: First, 〚m2〛 is negated using the
Neg sub-protocol. Then, the Add is used to complete the process. Thus,

〚m1 −m2〛 = Add(〚m1〛, Neg(〚m2〛)).

(h) LGT: The less than or greater than (LGT) sub-protocol shows the relationship
between two ciphertexts, i.e., 〚m1〛 ≥ 〚m2〛 or 〚m1〛 < 〚m2〛. The sub-protocol returns
1 if 〚m1〛 < 〚m2〛, it returns 0 otherwise. It is an adaptation of the SLT protocol in [29].
A detailed description is presented in Appendix A.

4. Proposed Computation Primitives

Building gradient tree boosting algorithms requires more complicated computation
primitives such the division and argmax. The division sub-protocol based on BCP scheme
proposed in [29] is inefficient and unsuitable for our setting. Thus, we propose two sub-
protocols Div and Sargmax based on the BCP HE scheme to perform the division and argmax
operations, respectively.

4.1. Div

The Div sub-protocol outputs the encrypted division of two ciphertexts. Given two
ciphertexts 〚m1〛 and 〚m2〛, the Div sub-protocol returns 〚m1/m2〛, m1 being the nominator
and m2 the denominator. The protocol is run interactively between two non-colluding
servers, say server C and server S, as illustrated in Figure 1.

Using the Exp sub-protocol, the server C first masks the ciphertexts 〚m1〛 and 〚m2〛 as
〚τ1m1〛 and 〚τ2m2〛, respectively, where τ1, τ2 ∈ ZN . The server C then sends 〚τ1m1 + τ2m2〛
and 〚τ1m2〛 to the server S. The two ciphertexts are decrypted by the server S. In plaintext,
the server S performs 1

τ1m2
× (τ1m1 + τ2m2) and encrypts the result and sends it back to

the server C. The server C extracts 〚m1
m2

〛 by subtracting 〚 τ2
τ1

〛 out of the result received from
the server S. See Appendix B for the proof of correctness.

Mathematics 2022, 10, 2185 7 of 20

Figure 1. Illustration of the Div sub-protocol.

4.2. Sargmax

The Sargmax sub-protocol returns the arguments of the maximum value. In our case,
the maximum value returned is in encrypted form. The maximum encrypted value is
obtained using the LGT sub-protocol. Once the maximum value is obtained, its associated
arguments are returned as the Sargmax sub-protocol’s result. The details are shown in
Algorithm 1.

Algorithm 1: Secure argmax Computation Algorithm

1: function Sargmax(dict)
2: //Input: dict -is a dictionary of encrypted values
3: max=None
4: for key in dict.keys() do
5: if max==None then
6: max = dict[key]
7: else
8: //Securely compare the encrypted values
9: LGT(max, dict[key])

10: if max>dict[key] then
11: max=max
12: else
13: max=dict[key]
14: end
15: end
16: end
17: return key
18: end

5. Overview of Our Proposed Framework

In this section, we first describe the involved entities, followed by a security assump-
tion and the workflow of our proposed framework.

Mathematics 2022, 10, 2185 8 of 20

5.1. Entities of the Framework

Our proposed framework comprises three types of entities: a set of participants,
and two servers S and C, as illustrated in Figure 2.

Privacy-preserving Node

Split Finding

Server S Server C

Constructed

Model

E
n
c(
{x
}j
,k
),
[G

j,
k
],
[H

j ,k
]

[G
],
[H
],
I

I Lj,
k

1

2

4

3

5

6

Stores pk∑ , pk1,…, pknStores mk, pk∑ , pk1,…, pkn

Participants

Stores vertically partitioned dataset

Figure 2. Entities of our proposed framework.

Participants: Participants are volunteers willing to take part in multi-party gradient
tree boosting model learning. In this work, each participant holds a portion of a vertically
partitioned dataset. We refer to the participant holding the label feature as Label Bearing
Participant (LBP). There is only one LBP. Each participant only interacts with Server C.
Additionally, each participant holds a public-private key pair.

Server S: S holds pkΣ, mk and pk1, . . . , pkn. Thus, S can decrypt any legitimately
encrypted message. However, S only communicates directly with server C, i.e., it does not
directly access the participants’ data. It mainly helps with decrypting masked data from
server C. We assume that S is honest-but-curious [30–32].

Server C: C holds pkΣ and pk1, . . . , pkn. C directly communicates with all the other
entities. It has access to the instance space and encrypted intermediate parameters received
from the participants. C and S then collaboratively perform computations on the received
parameters to build the model. All the data from C to S are masked to prevent S from
observing the actual contents of the data. We also assume that C is honest-but-curious.
An example of C is a cloud server.

5.2. Security Assumptions

We assume a semi-honest and non-colluding security model. In other words, all the
entities follow the protocols but are curious about the other entities’ inputs and parameters.
Furthermore, the entities do not collude with each other. We also assume that the commu-
nication channels between the entities are secure, i.e., no information is revealed during
its transmission.

Mathematics 2022, 10, 2185 9 of 20

5.3. Workflow of Our Proposed Scheme

The general workflow of our proposed SSXGB training is shown in Algorithm 2.
As shown in Algorithm 2, three major protocols namely: LBPXGBTRAIN, SBUILDTREE and
SPREDTREE are invoked during the model learning. To prevent inference attacks on label
information, we adopt the second proposal of [16], where the first tree is built by the LBP.
The LBPXGBTRAIN protocol is thus executed by the LBP for the above purpose.

Algorithm 2: Scalable and Secure XGBoost Training

1: function SXGBTRAIN(X, Y)
2: //Input: X:{Xi}n

i=1 is an aggregation of Xi from n participants.
3: //Input: Y is the label borne by the LBP
4: for t = 1, . . . , T do
5: if TreeList==Empty then
6: LBPXGBTRAIN(Xlbp, Y)
7: else
8: Compute: 〚Gt−1〛: ∑i(〚gt−1〛) and 〚Ht−1〛: ∑i(〚ht−1〛)
9: //Construct a tree using 〚Gt−1〛 and 〚Ht−1〛

10: Ft = SBUILDTREE(〚Gt−1〛, 〚Ht−1〛)
11: //Predict using the current tree
12: 〚Ŷt〛 = SPREDTREE(Ft, X)
13: TREELIST.append(Ft)

14: 〚Ŷ〛= 〚Ŷ〛+ 〚Ŷt〛
15: end
16: end
17: return TREELIST

18: end

Once the LBPXGBTRAIN protocol is executed, the returned parameters are encrypted
and sent to server C for the rest of the participants to join the process. The two protocols
SBUILDTREE and SPREDTREE are then iteratively executed by all the participants and the
servers to complete the model learning process. At each iteration t, the SBUILDTREE is
invoked to securely build a tree, while the SPREDTREE is invoked to make predictions using
the built tree at t. Finally, the protocol returns a trained model TREELIST. The details are
presented in the subsequent sections.

6. Scalable and Secure Multi-Party XGBoost Building

This section presents the building of our proposed SSXGB model over the vertically
partitioned dataset. We specify that all participants bear distinct sets of data features.
The LBP bears the label feature. We also assume that the participants have the same
samples. We emphasize that server C operates only on encrypted data and does not have
direct access to the participants’ data, including the label.

6.1. The First Secure Tree Building by LBP

As stated in the previous section, to prevent participants from inferring on the label infor-
mation, we adopt the proposal of [16] in which the LBP builds the first tree. The LBPXGBTRAIN

function shown in Algorithm 3 is invoked for that purpose. The LBPXGBTRAIN function takes
as input the dataset (Xlbp, Y), where Xlbp is the feature matrix of the LBP and Y is the label
information. In other words, the LBP does not require the other participants’ data to build
the first tree. Since there is no collaboration in building the first tree, the sub-routines:
COMPUTEBASESCORE, BUILDTREE and PREDTREE for computing the base score, building the first
tree and making the initial predictions, respectively, are consistent with the mechanisms of
XGBoost [19].

Mathematics 2022, 10, 2185 10 of 20

Algorithm 3: The First Tree Building by the LBP

1: function LBPXGBTRAIN(Xlbp, Y)

2: //Input: Xlbp:{xi,j
M×Nlbp

} where Nlbp is the number of features borne by the
LBP

3: //Input: Y:{y}M
i=1 is the label

4: //Compute the base score
5: F0 = COMPUTEBASESCORE(Y)
6: TREELIST = []
7: //Initial prediction
8: Ŷ = F0
9: Compute: G0:∑i g0 and H0:∑i h0

10: //Construct a tree using G0 and H0
11: F1 = BUILDTREE(G0, H0)
12: //Predict using the tree F1

13: Ŷ1 = PREDTREE(F1, Xlbp)
14: Ŷ = Ŷ + Ŷ1
15: //Encrypt the base score and the tree node values, and update the model list
16: TREELIST.append(Enc(F0)pklbp

, Enc(F1)pklbp
)

17: //Encrypt the label information and the updated prediction matrix
18: Enc(Y)pklbp

, Enc(Ŷ)pklbp

19: return TREELIST, Enc(Y)pklbp
, Enc(Ŷ)pklbp

20: end

Once the first tree is constructed, LBP encrypts the base score and the node values
of the tree with its public key (pklbp). Next, it updates the model with the encrypted base
score and the tree. It also encrypts the label information and the prediction matrix with its
public key. Finally, it returns TREELIST, Enc(Y)pklbp

and Enc(Ŷ)pklbp
. The returned parameters

are sent to server C to continue with the model training.

6.2. Secure BUILDTREE and PREDTREE

Once the first tree is built by the LBP and the results are returned to server C, the rest
of the participants can join to continue with the model training. First, the servers C and
S collaboratively transform the parameters from the LBP encrypted under the public key
pklbp to be under the joint public key pkΣ using the KeyProd sub-protocol discussed in
Section 3. For example, the encrypted label information Enc(Y)pklbp

is transformed to

〚Y〛, the encrypted prediction matrix Enc(Ŷ)pklbp
is transformed to 〚Ŷ〛, etc. Then server C

computes the first- and second-order derivatives using the encrypted parameters for all
the instances. Next, the joint model building resumes using the SBUILDSPREDTREE protocol
shown in Algorithm 4.

The SBUILDSPREDTREE protocol is executed by multiple entities. The algorithm takes in
as input the encrypted first- and second-order derivatives computed by server C. The execu-
tion begins in server C, which assigns the current node as the root node if there exists no root
node. Next, each participant, including the LBP, proposes split candidate values for each
of their features as in [19]. For ease of understanding, we shall refer to all the participants,
including the LBP as participant i. For each split candidate, each participant i computes
〚Gt−1〛, 〚Ht−1〛, which are associated with the left branch according to [19]. Each participant
i also creates a lookup table to record the split candidate information. Then, for each split
candidate, each participant i sends the parameter tuple T = ((j, k), 〚Gj,k

t−1〛, 〚Hj,k
t−1〛) to the

server C.

Mathematics 2022, 10, 2185 11 of 20

Algorithm 4: Secure BUILD and PRED TREE

1: function SBUILDSPREDTREE(〚Gt−1〛, 〚Ht−1〛)
2: //Input:- 〚Gt−1〛:{〚gt−1〛}M

i=1, 〚Ht−1〛:{〚ht−1〛}M
i=1

3: /* Computed by SERVER C */
4: if ROOTNODE==None then
5: //Register the current node as the root node
6: ROOTNODE=CURRENTNODE

7: end
8: /* Computed at each PARTICIPANT i */
9: foreach feature j do

10: Propose split candidates {x}j,0, . . . , {x}j,K

11: end
12: foreach {x}j,k do
13: Compute 〚Gj,k

t−1〛 and 〚Hj,k
t−1〛

14: Create a lookup table and record j, k and {x}j,k in the table
15: Create a tuple (j, k)
16: end

17: Send the tuple ((j, k), 〚Gj,k
t−1〛, 〚Hj,k

t−1〛) to SERVER C
18: /* Computed by SERVER C */

19: jopt, kopt = SSPLITNODE(〚Gj,k
t−1〛, 〚Hj,k

t−1〛, T)
20: /* Computed at the optimal PARTICIPANT */
21: Receive the optimal jopt, kopt from SERVER C
22: Check the lookup for {x}j,k associated with jopt, kopt

23: Partition I based on {x}j,k

24: Record the instance space IL with SERVER C
25: end

Server C then securely identifies the optimal split feature and value using the SSPLITNODE

algorithm and sends the result to the participant bearing the feature (optimal participant).
The optimal participant then decrypts the optimal value for the optimal feature and splits
the current node’s instance space accordingly. Finally, the optimal participant registers the
left branch instance space IL with server C after the partition.

6.3. Secure Node Split Decision

From Equation (6), it can be observed that the optimal split can be obtained if the
values of GL and HL, and GR and HR can be obtained. Hence, the secure split finding
algorithm SSPLITNODE shown in Algorithm 5 takes as input the first and second encrypted
derivatives 〚Gt−1〛 and 〚Ht−1〛 and the parameter tuple T . In this context, we simply use
〚G〛 and 〚H〛 for 〚Gt−1〛 and 〚Ht−1〛, respectively.

First, the algorithm returns and stores the encrypted prediction matrix if the current
node is a leaf node (shown in lines 4–9 of Algorithm 5). Otherwise, the algorithm proceeds
to securely identify the optimal score. It enumerates all the participants, their features and
the proposed encrypted split candidates for each of the features. For each proposed split
candidate, the algorithm computes an encrypted gain (shown in lines 21–30 of Algorithm 5).
The encrypted gains for all the proposed split candidates are stored in a dictionary. The al-
gorithm then executes the Sargmax primitive algorithm to identify the optimal feature jopt
and the threshold value kopt. Next, server C sends the optimal parameters jopt and kopt
to the optimal participant bearing the pair jopt − kopt. Then server C receives IL from the
optimal participant and uses it to split its instance space into IL and IR. Server C then stores
the current node and associates it with the optimal participant.

Mathematics 2022, 10, 2185 12 of 20

Algorithm 5: Securely Finding Node Split

1: function SSPLITNODE(〚Gt−1〛, 〚Ht−1〛, T)
2: //Input:- 〚Gt−1〛:{〚gt−1〛}M

i=1, 〚Ht−1〛:{〚ht−1〛}M
i=1, and T .

3: /*Collaboratively Computed by SERVER S and SERVER C*/
4: if CURRENTNODE==LEAFNODE then
5: //Compute the weight of the leaf node
6: 〚w∗〛 = Div(Σi{〚g〛}i, (Σi{〚h〛}i + 〚λ〛))
7: {〚ŷ〛}i = 〚w∗〛
8: return 〚Ŷ〛
9: end

10: //Compute the CURRENTNODE’s gain (cgain)
11: 〚G〛 = Σi{〚g〛}i

12: 〚H〛 = Σi{〚h〛}i

13: 〚cgain〛 = Div(Mult(〚G〛, 〚G〛), (〚H〛+ 〚λ〛))
14: //Initialize the gain dictionary
15: gainDict = {}
16: //Enumerate all the PARTICIPANTS

17: for p = 0, . . . , P do
18: //Enumerate all the features of a PARTICIPANT

19: for j = 0, . . . , J do
20: //Enumerate all the proposed thresholds
21: for k = 0, . . . , K do
22: Receive 〚GL〛 and 〚HL〛 from a PARTICIPANT

23: //Compute the first derivative for the right branch
24: 〚GR〛 = Sub(〚G〛, 〚GL〛)
25: //Compute the second derivatives for the right branch
26: 〚HR〛 = Sub(〚H〛, 〚HL〛)
27: //Compute gains
28: 〚lgain〛 = Div((〚GL〛)2, (〚HL〛+ 〚λ〛))
29: 〚rgain〛 = Div((〚GR〛)2, (〚HR〛+ 〚λ〛))
30: 〚gain〛 = lgain + (Sub(rgain, cgain))
31: //Update the gain dictionary
32: gainDict[(p, j, k)] = 〚gain〛
33: end
34: end
35: end
36: joptimal , koptimal = Sargmax

j,k
(gainDict)

37: return jopt, kopt to optimal participant p
38: Server C receives IL from optimal participant p
39: Server C partitions its instance space into IL and IR
40: Server C associates the CURRENTNODE with the optimal participant p as

[p : Nodej,k]
41: end

7. Secure Prediction

Our proposed secure prediction algorithm is collaboratively executed by all the entities,
as shown in Algorithm 6. The SPREDICT algorithm takes as input the trained model TREELIST

and a record to be predicted xi,j
1×N with N number of features. Suppose xi,j

1×N is held by a
client c with a public key pkc. To make predictions on the record, the client first encrypts
the record with his public key as Enc(xi,j

1×N)pkc and sends it to server C. This preserves
the privacy of the record from server C. Next, server C compares and passes the record

Mathematics 2022, 10, 2185 13 of 20

down the tree, starting from the root node. At each node, server C identifies the participant
p holding the node, and the j, k pair associated with the node. Server C then transforms
the record value for the feature j of the participant p’s to be under the public key of the
participant p as Enc(xi,j)pkp (shown in lines 12–17 of Algorithm 6). Server C then sends
Enc(xi,j)pkp to the participant p. Next, p decrypts the Enc(xi,j)pkp using his secret key and
compares the value with the node’s threshold in plaintext. Depending on the comparison
result, the participant decides on whether to follow the left or the right child nodes of the
current node and sends the decision to server C. Server C repeats the process until a leaf
node is reached. Once a leaf node is reached, the algorithm returns the encrypted weight
〚w〛 of the leaf node stored in server C as its result. The final prediction result is obtained
by cumulating the predictions of all the trees in TREELIST.

Algorithm 6: Secure Prediction Algorithm

1: function SPREDICT(TREELIST, xi,j
1×N)

2: //Input:-TREELIST and xi,j
1×N , where N is the number of features for the record

3: /* Computed by all the entities */
4: //Client c encrypt the values of the record

5: Enc(xi,j
1×N)pkc

6: Send the encrypted record to the SERVER C
7: while True do
8: //Start from the ROOTNODE

9: if CURRENTNODE ! = LEAFNODE then
10: SERVER C identifies feature j for the split at CURRENTNODE

11: SERVER C identifies the PARTICIPANT p bearing the feature j
12: //Transform the encryption to be under the public key of the

PARTICIPANT p
13: Enc(xi,j + r)pkc ← Enc(xi,j)pkc + Enc(r)pkc // r ← ZN

14: SERVER C send Enc(xi,j + r)pkc to SERVER S
15: SERVER S decrypts Enc(xi,j + r)pkc using mDec
16: SERVER S re-encrypts as Enc(xi,j + r)pkp and sends to SERVER C
17: SERVER C extracts Enc(xi,j)pkp as:

Enc(xi,j)pkp ← Enc(xi,j + r)pkp − Enc(r)pkp

18: //Collaboration with the participant bearing the optimal feature for the
current node

19: SERVER C sends Enc(xi,j)pkp to the PARTICIPANT p bearing the feature j
20: PARTICIPANT p decrypts Enc(xi,j)pkp and compares it with the threshold

value at the node
21: Based on whether xi,j is greater or less than the threshold, PARTICIPANT p

decides on the tree branch to follow
22: PARTICIPANT p forwards the decision to SERVER C to continue with the

process at NEXTNODE

23: //Update the CURRENTNODE

24: CURRENTNODE = NEXTNODE

25: else
26: Return the encrypted weight 〚w〛 of the LEAFNODE

27: end
28: end

Mathematics 2022, 10, 2185 14 of 20

8. Analysis
8.1. Security Analysis

We consider the semi-honest (and non-colluding) model in our security analysis,
i.e., we consider the scenario where all the entities adhere to the protocols but try to
gather information about the other entities’ input and intermediate parameters as much as
they can.

8.1.1. Security of BCP Sub-Protocols

First, we present the security analysis of all the sub-protocols used in this work.
The security of the KeyProd, Add, Mult, TransDec, Sub, Exp and Neg sub-protocols under
the semi-honest model have already been proven in [27,28].

Div: Similar to the other sub-protocols, the security of the Div sub-protocol is based on
blinding or masking the plaintext. Given the ciphertexts (numerator and denominator), we
employ the properties of the homomorphic encryption to blind the ciphertexts with random
elements. These random elements serve as keys. When server S decrypts the ciphertexts,
without knowing the random blinding elements, it cannot obtain any information about
the nominator and the denominator. They look random. On the other hand, since server
C does not have access to the decryption key, it also does not obtain any information
about the ciphertexts. Note that we assume the two servers do not collude. Thus, the Div
sub-protocol is secure in the semi-honest and non-colluding security model.

LGT and Sargmax: The security of the LGT sub-protocol is based on the fact that
server S only computes the difference between two data values. Thus, server S obtains no
information about the actual data. However, server C can learn the relational information
of the comparison process without learning the actual data. This is a partial information
leakage and makes the sub-protocol partially secure in the semi-honest and non-colluding
model. Therefore, our proposed Sargmax sub-protocol, which relies on the LGT is also
partially secure in the semi-honest and non-colluding model.

8.1.2. Security of SSXGB

The security analysis of the SSXGB can be split into three parts: server S part, server C
part and participant part.

Server S part: Server S does not have access to the sample and feature space. It
only collaborates with Server C in performing computations. However, the computations
performed by server S are on masked values. Thus, no information is leaked to server S.

Server C part: Server C has access to the sample and feature space, and it stores leaf
nodes. It also knows which participant holds which feature. However, the intermediate
values it has access to are encrypted, and it only performs computations on the encrypted
values. Although it stores the leaf nodes, the leaf values are kept in encrypted form. Thus,
no information on the actual leaf values is leaked to server C. During the node split process,
illustrated by Algorithm 5, comparison results leak to server C. However, server C does
not learn the actual values being compared, thus, making it difficult to re-construct the
feature values from the leaked information. We, therefore, believe that the benefits of this
framework outweigh this partial leakage.

Participant part: Each participant has access to the sample space for each split. Each
participant knows the intermediate nodes it holds. However, each participant does not
know the actual values of the intermediate parameters apart from the LBP immediately
after the construction of the first tree. The participants also do not have access to the leaf
nodes. Thus, no information leaks to the participants.

Since there is no information leakage in the involved entities, the proposed SSXGB is
secure in the semi-honest and non-colluding model.

Mathematics 2022, 10, 2185 15 of 20

8.2. Communication Overhead Analysis

We analyze the communication overhead in terms of analyzing the communication
costs associated with a single split. Here, we look at server C-participant and server C-server
S communication costs.

server C-participant communication cost: The server C-participant communication cost is
similar to that of [16]. Given ζ as the ciphertext size, n as the number of samples for the
current node, q as the number of samples in a bucket and d as the number of features held
by a participant, the communication cost can be computed as 2× ζ × d× (n/q).

server C-server S communication cost: During each split, the server C-server S communica-
tion cost can be computed as 12× ζ + (3× ζ × (n/q)× D), where D is the total number of
features. Our proposed SSXGB experiences fairly heavy communication overhead during
the collaborative computation of gains by the two servers.

9. Performance Evaluation

This section presents experiments to demonstrate the effectiveness and efficiency of
the proposed SSXGB.

9.1. Experimental Setup
9.1.1. Hardware and Software

All the experiments were performed using a desktop computer with Intel Core i5-6500
CPU with 3.20 GHz × 4 speed and 16 GB RAM running an Ubuntu 20.04 operating system
(Canonical Ltd., London, UK). We used Python 3.8.5 and gmpy2 library for the implemen-
tation. We also used Cython 0.29.23 to speed up sections of the code. The participant and
server functionalities were all executed on the same computer. Thus, latency is ignored in
the experiments.

9.1.2. Datasets

We experimented using two datasets: Iris [33] and MNIST [34]. The Iris dataset
comprises three classes of iris plants, each with 50 instances. Each instance bears the
features of sepal length, sepal width, petal length and petal width. Thus, the dataset
contains 150 instances with 4 features (150 × 4).

The MNIST dataset consists of 70,000 samples of gray-scale handwritten images of
digits (0–9). The training set contains 60,000 samples, while the test set contains 10,000 sam-
ples. Each gray-scale sample has 28× 28 (784) pixels. Thus, the training set is (60,000× 784)
and the test set is (10,000 × 784).

9.2. Evaluation of SSXGB

First, we evaluate the regression effectiveness of the proposed SSXGB with the two
datasets. The effectiveness is measured in terms of regression accuracy and loss.

Setup Configuration: We simulated the two servers, four (4) participants for the
Iris dataset and sixteen (16) participants for the MNIST dataset. In each case, one of the
participants serves as an LBP. We partitioned the datasets vertically and shared the features
between the participants, i.e., for the Iris dataset, each participant held one (1) feature and
for the MNIST dataset, each participant held forty-nine (49) features (Each image sample of
MNIST contains 28× 28 = 784 pixels, and we consider each pixel to be a feature. Thus, each
image sample contains 784 features. When partitioned equally among 16 participants, each
participant ends with 49 features). Since we performed regression analysis, we considered
only two classes. Thus, we take “Iris-setosa” as positive for the Iris dataset and the rest of
the classes as negative. To make the dataset balanced, we synthetically generated 50 more
instances of the “Iris-setosa” class. Meanwhile, for the MNIST dataset, we take the digits
0–4 as positive and 5–9 as negative. During each simulation, we set the learning rate as
0.08, and the sampling rate as 0.8 for both samples and features. We set maximum depths
as 6 and 4 for the MNIST and Iris datasets experiments, respectively. We employed the
approximated sigmoid function in [35].

Mathematics 2022, 10, 2185 16 of 20

Results: Figure 3 presents the accuracy and loss against the training round with the
Iris and MNIST datasets. We can observe that the proposed SSXGB converges slowly
in comparison with the XGBoost scheme, and it is slightly less effective as compared to
the XGBoost, i.e., the accuracy of 0.9789 vs. 0.9826 for the MNIST dataset and 0.97712
vs. 0.97778 for the Iris dataset. The accuracy loss in SSXGB can be attributed to the use
of the approximated sigmoid function and the restrictive nature of training the first tree.
However, the slight loss in accuracy is totally acceptable.

(a) Accuracy with Iris (b) Accuracy with MNIST

(c) Loss with Iris (d) Loss with MNIST

Figure 3. Training convergence with the Iris and MNIST datasets.

9.3. Privacy-Preservation Computation Overhead

Since HE is crucial for privacy preservation in our proposed SSXGB, identifying a
suitable configuration for the BCP scheme was paramount. Thus, we implemented the
BCP scheme and measured the computation times of its algorithms and sub-protocols
under different key sizes. For each operation, the experiment was repeated 20 times and
we obtained the average computation times.

Results: The results are shown in Table 1. We can see that the computation times
increase with the increase in key size for all the algorithms and sub-protocols. Amongst the
BCP algorithms, the mDec is computationally the most demanding, while encryption is
computationally the least demanding. Meanwhile, amongst the sub-protocols, the Mult
is computationally the most demanding while KeyProd is computationally the least de-
manding. For the KeyProd, we only considered a joint public key from two users and the
joint public key generation does not involve encryption of data as in [28]. Furthermore,
for the TransDec, we considered only two users. Based on the shown computation times
and security requirements, we considered the key size of 1024 during the implementation
of the SSXGB.

Much as the HE provides the required security and utility, it significantly increases the
computation overhead. Adopting a differential privacy mechanism [36] can be considered
a possible solution, so long as the right balance between utility and security is identified,
which can be challenging.

Mathematics 2022, 10, 2185 17 of 20

Table 1. Computation times of BCP algorithms and sub-protocols.

Operation Key Size (Bits)
512 1024 2048

Enc 10.61 ms 12.02 ms 16.98 ms
Dec 18.27 ms 29.13 ms 38.64 ms
mDec 29.34 ms 40.96 ms 63.72 ms
KeyProd 0.02 ms 0.05 ms 0.11 ms
Add 8.86 ms 10.23 ms 12.61 ms
Mult 180.74 ms 259.97 ms 310.03 ms
TransDec 161.20 ms 196.69 ms 283.74 ms
Exp 2.04 ms 2.32 ms 4.01 ms
Sub 8.93 ms 12.06 ms 13.02 ms
LGT 120.17 ms 143.72 ms 171.05 ms
Div 140.29 ms 183.18 ms 251.67 ms

9.4. Efficiency of SSXGB

Finally, we investigate the efficiency of the proposed SSXGB by examining its running
time. We performed the investigation under a varying number of participants. We consid-
ered the running time for training using the two datasets. Figure 4 shows the running time
of training using the MNIST and Iris datasets against the varying number of participants.
Since we intended to examine the running time comparatively for the datasets, and the Iris
dataset has only 4 features, we limited the number of participants to only 4. In Figure 4,
it can be observed that there is no significant change in running time against the varying
number of participants. We can attribute this to the number of features and samples re-
maining almost the same under the vertically partitioned datasets; hence, the number of
feature and sample operations remain fairly constant. However, the running time is higher
for the MNIST dataset compared to the Iris dataset. This is mainly because the MNIST
dataset has more features and samples as compared to the Iris dataset.

Figure 4. Running time of the SSXGB with the Iris and MNIST datasets.

10. Conclusions

In this work, we proposed the SSXGB framework for scalable and privacy-preserving
multi-party gradient tree boosting over vertically partitioned datasets with outsourced
computations. We adopted BCP HE for secure computations and proposed sub-protocols
based on the BCP HE for two non-linear operations of gradient tree boosting. Analysis
of the framework shows that only minimal information is leaked to the entities under the
semi-honest and non-colluding security model. However, the benefits of the framework
outweigh this weakness. We also implemented the secure training algorithm of the SSXGB
framework. We performed experiments using two real-world datasets. The results show
that the SSXGB is scalable and reasonably effective. In the future, we shall aim to minimize
the communication overhead of the proposed framework and perform more complicated
experiments on more real-world datasets.

Mathematics 2022, 10, 2185 18 of 20

Author Contributions: Conceptualization, K.E.; methodology, K.E. and J.W.K.; software, J.W.K.;
validation, K.E. and J.W.K.; formal analysis, K.E.; investigation, K.E. and J.W.K.; resources, J.W.K.;
data curation, K.E. and J.W.K.; writing—original draft preparation, K.E.; writing—review and editing,
J.W.K.; visualization, K.E.; supervision, J.W.K.; project administration, J.W.K.; funding acquisition,
J.W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF2020R1F1A1072622).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details of the LGT Sub-Protocol

The LGT sub-protocol is an adaptation of the SLT sub-protocol in [29]. The only
difference is that we intentionally reveal the result of the comparison to the server C.
An illustration of the sub-protocol is shown in Figure A1. Given two ciphertexts 〚m1〛
and 〚m2〛 encrypted under the joint public key pkΣ. To determine if 〚m1 〛 ≥ 〚m2〛 or
〚m1〛 < 〚m2〛, the following procedures are collaboratively performed by servers C and S.

SERVER C STORES pk� and pk1,…,pkn SERVER S STORES mk, pk� and pk1,…,pkn

On input the ciphertexts [m1] and [m2]under pk�

Flip a coin s

[2m1] Exp([m1], 2)

[2m1+1] Add([2m1], [1])

[2m2] Exp([m2], 2�1)

u' = 1if L (l) > L (N)/2:

if s=1:

if s=1:

else:

Sub([2m1 + 1], [2m2]) [l]
Sub([2m2], [2m1 + 1]) [l]

[l]

else:u' = 0

u*= u'
else: u*= 1 u'
if u*= 0: m1 � m2
else if u*=1: m1 < m2

mDec([l])l

u'

Figure A1. The LGT sub-protocol.

As in [29], first server C uses the Exp sub-protocol to multiply the ciphertexts by two
as 〚2m1〛 and 〚2m2〛. Server C also encrypts 1 using the Enc algorithm as 〚1〛, and adds the
result to 〚2m1〛 as 〚2m1 + 1〛.

Server C then flips a coin s. If s = 1, server C uses the Sub sub-protocol and computes
〚l〛 as (〚2m1 + 1〛 − 〚2m2〛). Otherwise, 〚l〛 is computed as (〚2m2〛 − 〚2m1 + 1〛). Server C
then sends 〚l〛 to server S.

Next, server S uses the mDec algorithm to decrypt 〚l〛 as l. L(l) is then computed by
server S as in [29] (L(x) denotes the bit length of x. See [29] for the details). If L(l) > N/2,
server S sets u′ = 1, otherwise u′ = 0. Server S then returns u′ to server C.

Next, server C checks for s, and if s = 1, server C sets u∗ = u′. Otherwise, u∗ = 1− u′.
If u∗ = 0, m1 ≥ m2, otherwise m1 < m2.

Appendix B. Proof of Correctness for the Div Sub-protocol

Consider the division of 〚m1〛 by 〚m2〛 (〚m1 ÷m2〛) using the Div sub-protocol. For the
purpose of this proof, we assume 〚m1〛 and 〚m2〛 are encrypted under the same public key.

Mathematics 2022, 10, 2185 19 of 20

First, the server C randomly selects τ1 , τ2 ∈ ZN . Using the Exp sub-protocol, the server C
generates 〚τ1 m1〛, 〚τ2 m2〛 and 〚τ1 m2〛 as follows:

〚τ1 m1〛 =
(

gτ1 ·r1 mod N2, hτ1 ·r1 (1 + τ1 ·m1·N)mod N2)
〚τ2 m2〛 =

(
gτ2 ·r2 mod N2, hτ2 ·r2 (1 + τ2 ·m2·N)mod N2)

〚τ1 m2〛 =
(

gτ1 ·r3 mod N2, hτ1 ·r3 (1 + τ1 ·m2·N)mod N2) (A1)

Using the Add sub-protocol, the server C computes 〚τ1 m1 + τ2 m2〛 as:

〚τ1 m1 + τ2 m2〛 =
(

g(τ1 r1+τ2 r2)mod N2,

h(τ1 r1+τ2 r2)(1 + (τ1 m1 + τ2 m2)N)mod N2) (A2)

The server C then sends 〚τ1 m2〛 and 〚τ1 m1 + τ2 m2〛 to the server S. Using the mDec
algorithm, the server S decrypts 〚τ1 m2〛 and 〚τ1 m1 + τ2 m2〛 as τ1 m2 and τ1 m1 + τ2 m2, re-
spectively. In plaintext, the server S then computes (m1

m2
+

τ2
τ1

) as:

(
m1

m2
+

τ2

τ1

) =
1

τ1 m2
(τ1 m1 + τ2 m2) (A3)

Next, the server S encrypts (m1
m2

+
τ2
τ1
) to 〚m1

m2
+

τ2
τ1

〛 as:

〚
m1

m2
+

τ2

τ1

〛 =
(

grmod N2, hr(1 + (
m1

m2
+

τ2

τ1

).N)mod N2) (A4)

and sends the result to server C.
After receiving 〚m1

m2
+

τ2
τ1

〛, the server C computes
τ2
τ1

in plaintext and encrypts it as 〚
τ2
τ1

〛.

The server C extracts 〚m1
m2

〛 using the Sub sub-protocol as:

〚
m1

m2
〛 = Sub(〚

m1

m2
+

τ2

τ1

〛, 〚
τ2

τ1

〛). (A5)

References
1. Gong, M.; Feng, J.; Xie, Y. Privacy-enhanced multi-party deep learning. Neural Netw. 2020, 121, 484–496. [CrossRef] [PubMed]
2. Cock, M.d.; Dowsley, R.; Nascimento, A.C.; Newman, S.C. Fast, privacy preserving linear regression over distributed datasets

based on pre-distributed data. In Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, Denver, CO,
USA, 12–16 October 2015; pp. 3–14.

3. Hall, R.; Fienberg, S.E.; Nardi, Y. Secure multiple linear regression based on homomorphic encryption. J. Off. Stat. 2011, 27, 669.
4. Kim, M.; Song, Y.; Wang, S.; Xia, Y.; Jiang, X. Secure logistic regression based on homomorphic encryption: Design and evaluation.

JMIR Med. Inform. 2018, 6, e19. [CrossRef] [PubMed]
5. Aono, Y.; Hayashi, T.; Phong, L.T.; Wang, L. Privacy-preserving logistic regression with distributed data sources via homomorphic

encryption. IEICE Trans. Inf. Syst. 2016, 99, 2079–2089. [CrossRef]
6. Zheng, L.; Chen, C.; Liu, Y.; Wu, B.; Wu, X.; Wang, L.; Wang, L.; Zhou, J.; Yang, S. Industrial scale privacy preserving deep neural

network. arXiv 2020, arXiv:2003.05198.
7. Phong, L.T. and Phuong, T.T. Privacy-preserving deep learning via weight transmission. IEEE Trans. Inf. Forensics Secur. 2019,

14, 3003–3015. [CrossRef]
8. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019,

10, 1–19. [CrossRef]
9. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
10. Minastireanu, E.A.; Mesnita, G. Light gbm machine learning algorithm to online click fraud detection. J. Inform. Assur. Cybersecur.

2019, 2019, 263928. [CrossRef]
11. Punmiya, R.; Choe, S. Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing.

IEEE Trans. Smart Grid 2019, 10, 2326–2329. [CrossRef]
12. Wang, Y.; Feng, D.; Li, D.; Chen, X.; Zhao, Y.; Niu, X. A mobile recommendation system based on logistic regression and gradient

boosting decision trees. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC,
Canada, 24–29 July 2016; pp. 1896–1902.

http://doi.org/10.1016/j.neunet.2019.10.001
http://www.ncbi.nlm.nih.gov/pubmed/31648120
http://dx.doi.org/10.2196/medinform.8805
http://www.ncbi.nlm.nih.gov/pubmed/29666041
http://dx.doi.org/10.1587/transinf.2015INP0020
http://dx.doi.org/10.1109/TIFS.2019.2911169
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.5171/2019.263928
http://dx.doi.org/10.1109/TSG.2019.2892595

Mathematics 2022, 10, 2185 20 of 20

13. Li, Q.; Wen, Z.; He, B. Practical federated gradient boosting decision trees. In Proceedings of the AAAI Conference on Artificial
Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4642–4649.

14. Ong, Y.J.; Zhou, Y.; Baracaldo, N.; Ludwig, H. Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning. arXiv
2020, arXiv:2012.06670.

15. Liu, Y.; Ma, Z.; Liu, X.; Ma, S.; Nepal, S.; Deng, R. Boosting privately: Privacy-preserving federated extreme boosting for mobile
crowdsensing. arXiv 2019, arXiv:1907.10218.

16. Cheng, K.; Fan, T.; Jin, Y.; Liu, Y.; Chen, T.; Yang, Q. Secureboost: A lossless federated learning framework. arXiv 2019,
arXiv:1901.08755.

17. Feng, Z.; Xiong, H.; Song, C.; Yang, S.; Zhao, B.; Wang, L.; Chen, Z.; Yang, S.; Liu, L.; Huan, J. Securegbm: Secure multi-party
gradient boosting. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12
December 2019; pp. 1312–1321.

18. Fang, W.; Chen, C.; Tan, J.; Yu, C.; Lu, Y.; Wang, L.; Wang, L.; Zhou, J.; Liu, A.X. A hybrid-domain framework for secure gradient
tree boosting. arXiv 2020, arXiv:2005.08479.

19. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

20. Phong, L.T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption.
IEEE Trans. Inf. Forensics Secur. 2017, 13, 1333–1345. [CrossRef]

21. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1310–1321.

22. Leung, C. Towards Privacy-Preserving Collaborative Gradient Boosted Decision Tree Learning. 2020. Available online:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-100.pdf (accessed on 4 August 2021).

23. Yang, M.; Song, L.; Xu, J.; Li, C.; Tan, G. The tradeoff between privacy and accuracy in anomaly detection using federated
XGBoost. arXiv 2019, arXiv:1907.07157.

24. Wang, Z.; Yang, Y.; Liu, Y.; Liu, X.; Gupta, B.B.; Ma, J. Cloud-based federated boosting for mobile crowdsensing. arXiv 2020,
arXiv:2005.05304.

25. Deforth, K.; Desgroseilliers, M.; Gama, N.; Georgieva, M.; Jetchev, D.; Vuille, M. XORBoost: Tree boosting in the multiparty
computation setting. Cryptol. ePrint Arch. Report 2021/432 2021. Available online: https://eprint.iacr.org/2021/432 (accessed on
15 June 2022).

26. Carpov, S.; Deforth, K.; Gama, N.; Georgieva, M.; Jetchev, D.; Katz, J.; Leontiadis, I.; Mohammadi, M.; Sae-Tang, A.; Vuille, M.
Manticore: Efficient framework for scalable secure multiparty computation protocols. Cryptol. ePrint Arch. Paper 2021/200 2021.
Available online: https://eprint.iacr.org/2021/200 (accessed on 15 June 2022) .

27. Bresson, E.; Catalano, D.; Pointcheval, D. A simple public-key cryptosystem with a double trapdoor decryption mechanism and
its applications. In Proceedings of the International Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, 30 November–4 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 37–54.

28. Peter, A.; Tews, E.; Katzenbeisser, S. Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf.
Forensics Secur. 2013, 8, 2046–2058. [CrossRef]

29. Liu, X.; Deng, R.H.; Choo, K.R.; Weng, J. An Efficient Privacy-Preserving Outsourced Calculation Toolkit with Multiple Keys.
IEEE Trans. Inf. Forensics Secur. 2016, 11, 2401–2414. [CrossRef]

30. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282. Available online: http://proceedings.mlr.press/v54/mcmahan17a?ref=https:
//githubhelp.com (accessed on 20 August 2021).

31. Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig, H.; Zhang, R.; Zhou, Y. A hybrid approach to privacy-preserving
federated learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, UK, 15 November
2019; pp. 1–11.

32. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1175–1191.

33. Fisher, R.A. Iris Data Set. 1936. Available online: https://archive.ics.uci.edu/ml/datasets/iris (accessed on 7 June 2021).
34. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
35. Chen, T.; Zhong, S. Privacy-preserving backpropagation neural network learning. IEEE Trans. Neural Netw. 2009, 20, 1554–1564.

[CrossRef] [PubMed]
36. Kim, J.W.; Edemacu, K.; Kim, J.S.; Chung, Y.D.; Jang, B. A Survey Of differential privacy-based techniques and their applicability

to location-Based services. Comput. Secur. 2021, 111, 102464. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2017.2787987
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-100.pdf
https://eprint.iacr.org/2021/432
https://eprint.iacr.org/2021/200
http://dx.doi.org/10.1109/TIFS.2013.2288131
http://dx.doi.org/10.1109/TIFS.2016.2573770
http://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
http://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://archive.ics.uci.edu/ml/datasets/iris
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TNN.2009.2026902
http://www.ncbi.nlm.nih.gov/pubmed/19709975
http://dx.doi.org/10.1016/j.cose.2021.102464

	Introduction
	Related Work
	Horizontal Multi-Party Gradient Tree Boosting Frameworks
	Vertical Multi-Party Gradient Tree Boosting Frameworks
	Generic Multi-Party Gradient Tree Boosting Frameworks

	Preliminaries
	XGBoost
	Homomorphic Encryption (HE)
	BCP Sub-Protocols

	Proposed Computation Primitives
	Div
	Sargmax

	Overview of Our Proposed Framework
	Entities of the Framework
	Security Assumptions
	Workflow of Our Proposed Scheme

	Scalable and Secure Multi-Party XGBoost Building
	The First Secure Tree Building by LBP
	Secure BUILDTREE and PREDTREE
	Secure Node Split Decision

	Secure Prediction
	Analysis
	Security Analysis
	Security of BCP Sub-Protocols
	Security of SSXGB

	Communication Overhead Analysis

	Performance Evaluation
	Experimental Setup
	Hardware and Software
	Datasets

	Evaluation of SSXGB
	Privacy-Preservation Computation Overhead
	Efficiency of SSXGB

	Conclusions
	Details of the LGT Sub-Protocol
	Proof of Correctness for the Div Sub-protocol
	References

