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Abstract: Accurately predicting the remaining useful life (RUL) of bearing by analyzing vibration
signals is challenging and meaningful. To address this issue, a novel method based on spectrum
image similarity is proposed in this paper. First, spectrum images for the whole lifecycle data
of reference bearings are obtained by performing fast Fourier transformation (FFT). Second, the
similarity is calculated between the current monitored data of operating bearing and run-to-failure
images of reference bearings. Then, the weights of reference bearings are derived based on the
similarity measures. Finally, the RUL of the operating bearing is estimated with the weighted average
of the RULs of referenced bearings. The proposed method is demonstrated based on 2012 PHM Data
Challenge Competition data, which shows its effectiveness and practicality.
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1. Introduction

Bearing is the basic component of rotating machinery, faults occurring in it may
cause the performance deterioration of equipment or even fatal breakdowns and personal
casualties [1]. Aiming at avoiding accidents and ensuring safety, prognostics and health
management (PHM) for bearing has received extensive attention in recent years [2,3]. As
a key technology for PHM, remaining useful life (RUL) prediction serves to indicate the
component’s lifetime before it loses function, based on which necessary maintenance actions
and preventive replacement are implemented [4–6]. Therefore, bearing RUL prediction is
critical for rotating machinery to reduce maintenance costs and improve reliability.

In order to conduct bearing RUL prediction, several kinds of signals could be used,
e.g., vibration, acoustics, temperature, oil analysis, pressure, etc. Among them, vibration
data is most commonly used due to the easy-to-measure signals and analysis [7–9], as well
as the abundant information carried regarding the health condition [10,11]. The physic-
based or model-based prognostics and data-driven prognostics are two main categories
of prognostic methods which employ vibration data [12]. Physic-based methods utilize
mathematic formulations of failure physical models to predict defect propagation [13,14].
They can provide reasonable and satisfying RUL predictions based on precise physical
models. However, it is usually difficult or expensive to construct an accurate physical model
of a complex system. In addition, these methods have shown obvious limitations because
of the simplifications and distortions of the adopted models [6,15]. On the contrary, the
data-driven methods perform RUL estimation only based on the monitored performance
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data related to system health. These approaches are suitable when the failure physical
model is complicated but the condition monitoring data is available.

With regard to the data-driven methods, they mainly take two steps: degradation
indicator selection and prediction model establishment [12,16,17]. An appropriate indicator
extracted from the raw vibration data which tracks the performance degradation process
is the premise of data-driven RUL prediction and the selection result is crucial to the
prediction accuracy. A wide range of literature has studied this topic from time domain,
frequency domain, and time–frequency domain. Mahamad et al. [18] selected RMS and
kurtosis obtained from time waveform as indicators, while Wu et al. [19] used the power
value on the sensitive frequency band to characterize bearing status. Ocak et al. [20]
and Pan et al. [21] firstly applied wavelet packet decomposition to the vibrations and
then adopted the node energies to indicate bearing degradation. Based on the selected
degradation indicator, various prediction models have been utilized to perform RUL
prediction, e.g., SVM [22–24], ANN [25–27], HMM [28–30], etc. Due to the training process
of the above-mentioned machine learning techniques, sufficient monitoring data is required
to obtain an accurate prediction model. Some researchers have investigated RUL prediction
using similarity measures. Niu et al. [31] measured the similarity of indicator degradation
curves between the monitored system and reference bearings and achieved a remarkable
prognostic result by calculating the weighted sum of referenced RULs. Lin et al. [32]
firstly mapped the original vibration data to a binary symbolic sequence with statistical
linguistic analysis (SLA) and then utilized the sequence similarity to detect changes in
health conditions. These methods are based on the assumption that an operating bearing
has a similar RUL if it has similar recent performance with a reference bearing [15].

This paper develops a novel prognostic method based on spectrum image similarity
for the RUL prediction of bearing. First, spectrum images for the current monitored data of
an operating bearing and the whole lifecycle vibrations of reference bearings are obtained
with FFT, where all images are of the same size in pixels. Second, the calculation unit is
constructed by combining two adjacent images. Third, the similarities between the current
calculation unit and referenced run-to-failure units are computed and the weights are
derived. Finally, the RUL of the operating bearing is estimated through the weighted sum
of the RULs of reference bearings. The remainder of this paper is organized as follows.
Section 2 presents the procedures of the proposed method in detail. Section 3 describes an
experimental validation for the proposed method. Finally, some conclusions are drawn in
Section 4.

2. Description of the Proposed Approach
2.1. Image Creation

Instead of extracting various features from original vibrations, in this study, we utilized
FFT spectra to represent the health status of the bearing. The reason is that all information
contained in the spectrum images can be captured, which provides much more useful
knowledge of bearings than single or fusion features [33]. The x-axis of the spectrum is the
frequency in Hertz, and the y-axis is the amplitude. For a given signal, the range of the
x-axis in the spectrum is determined by the sampling rate, while the y-axis is auto-scaled.
However, the range of the y-axis is crucial for similarity measurement and RUL prediction
due to its influence on the value of each pixel. With auto-scaled images, the health status
is distorted and the deteriorated phase is confusing. Therefore, in order to indicate the
degradation process correctly through the spectrum images, the boundary of the y-axis
should be specified in the priority.

Supposing that there are M reference bearings, the number of monitored vibrations
of the ith reference bearing in its whole lifecycle is Ni (i = 1, 2, · · ·M). Transforming each
vibration signal into an FFT spectrum image (with w× h pixels), then the ith reference
bearing can be denoted as follows:

Ai =
[
Ai1, Ai2, · · · Aij, · · · AiNi

]
(1)
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Aij is an w× h matrix that represents the jth spectrum image, j = 1, 2, · · ·Ni.
Therefore, the calculation unit is defined as:

Ãik = [Ai(k−1)Aik] (2)

where k = 2, · · ·Ni. It is reasonable that two adjacent images are selected as a calculation
unit. On the one hand, the spectra at current and previous inspections can not only indicate
the degradation status but also introduce the change information. On the other hand, we
choose the images at two inspections instead of more because it can give the algorithm
better generalization capability [19].

2.2. Similarity Calculation

Given the operating bearing B:

B = [B1, B2, · · · , BNB ] (3)

Similarity is measured as the distance between B and the ith reference bearing Ai. The
expression is shown as:

d(q, i) = min(d(B̃q, Ãi2), d(B̃q, Ãi3), · · · , d(B̃q, ÃiNi )) = d(B̃q, Ãihi
) (4)

where q is the index of the current monitored data of bearing B, q = 2, · · ·NB, and hi is the
life position of reference bearing Ai when the distance is minimal.

In this study, Euclidean distance is applied to measure the distance between two
spectrum images:

d(B̃q, Ãik) =
∥∥∥B̃q, Ãik

∥∥∥
F
=

√
trace((B̃q − Ãik)

∗
(B̃q − Ãik)) (5)

where ‖·‖F denotes the Frobenius norm and (B̃q − Ãik)
∗

denotes the conjugate transpose
matrix of (B̃q − Ãik).

2.3. Weight Distribution

A smaller distance between operating bearing B and reference bearing Ai indicates a
larger similarity. As a function of similarity degree, a higher weight should be assigned to
the reference bearing with a smaller distance. Thus, the weight distribution function can be
defined as:

w∗(q, i) =
1

d(q, i)
(6)

After normalization, Equation (6) is transformed into:

w(q, i) =
w∗(q, i)

M
∑

i=1
w∗(q, i)

(7)

2.4. RUL Estimation

The RUL of the operating bearing B can be estimated through the weighted sum of
the RULs of reference bearings. The RUL of Ai when B is at the current inspection q can be
calculated as:

RUL(q, i) = Ni − hi (8)

where hi is the life position of reference bearing Ai when the operating bearing B is at the
current inspection q. Therefore, the RUL of bearing B at monitored time q is determined as:

RUL(q) =
M

∑
i=1

(w(q, i) · RUL(q, i)) (9)
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To summarize, the framework of the proposed method is presented in Figure 1.

Figure 1. The flowchart of the proposed method.

3. Experiment and Analysis

The vibration signals used in this paper are provided by the IEEE PHM 2012 prognostic
challenge [34] to demonstrate the effectiveness of the proposed prognostic method.

3.1. Experimental Setup

An experimental setup named PRONOSTIA is shown in Figure 2. In order to accelerate
the degradation process, a radial force of 4 kN is exerted on the tested bearings. The rotation
speed of the bearing is kept constant at 1800 rpm. The accelerometers are placed radially
on the external race of the bearing to capture the vibrations. With the sampling rate of
25.6 kHz, a set of data consisting of 2560 points is collected for 0.1 s every 10 s. In order to
avoid the propagation of damage to the whole setup (and for security reasons), tests are
stopped when the amplitude of the vibration signal exceeds 20 g. More detailed information
about this experiment can be found in [34].

Each tested bearing is naturally degraded without seeding defects initially. The
vibration signals during the whole lifetime of four tested bearings are presented in Figure 3.
Taking bearing 4 as an example, the spectrum images in three different operation stages are
shown in Figure 4. In this paper, bearing 4 is selected as the target bearing whose RUL is
estimated by the other three reference bearings 1–3.
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Figure 2. Overview of the experimental setup.

Figure 3. Vibration signals of four bearings: (a) bearing 1, (b) bearing 2, (c) bearing 3, and
(d) bearing 4.
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Figure 4. Spectrum images of bearing 4 in three operation stages: (a) Status 1, (b) Status 2, and
(c) Status 3.

3.2. Experimental Analysis

In most practical applications, it is meaningless and time-consuming to predict the
RUL from the beginning of the bearing’s lifetime. What counts more in RUL estimation
is the accurate prediction closer to the final failure. Therefore, it is necessary to pick the
first predicting time (FPT) from the whole lifecycle by a certain principle. In this paper,
the FPT is determined by a 3σ interval [35]. The data of bearing 4 after FPT is utilized
to construct the calculation unit and measure the minimum distance from each reference
bearing. As mentioned above, an appropriate range of the y-axis for spectra is required
when the proposed method is conducted. The reason for this involves two aspects. First,
the spectrum images will be ambiguous if the boundary of the y-axis is too large. Second,
the images will lose useful information in the large-amplitude range, especially at the
end of the bearing’s lifecycle, if the boundary is too small. By making a general view of
the spectral amplitudes of three reference bearings, the boundary is set to 0.5. Then, the
spectrum is captured as an image of 420 × 560 pixels. As a result, the calculation unit
is constructed by a 420 × 1120 matrix. For the sake of better understanding the process
of RUL estimation for bearing 4 with the proposed method, a pictorial presentation is
delivered in Figure 5.

Figure 5. Schematic sketch of the RUL estimation process.

From Figure 5, we can see that the prediction method consists of three steps. First, the
calculation units of the operating bearing B4 at current monitored data and three reference
bearings B1, B2, and B3 in the entire life cycle are established. In the middle step, the nearest
distances between the current calculation unit of B4 and each reference bearing are obtained
by traversing the life cycle of B1, B2, and B3. Finally, the weights for the reference bearings
are derived through the nearest distances according to the principle that a smaller distance
indicates a higher similarity degree. As a result, the RUL of the operating bearing B4 at the
current time is estimated as a weighted sum of the RULs of the three reference bearings.



Mathematics 2022, 10, 2209 7 of 10

Through measuring the similarity between the current calculation unit of bearing 4
and the run-to-failure units of three reference bearings, the RUL of bearing 4 is estimated
and the results are shown in Figure 6, which indicates a satisfactory RUL prediction of the
proposed method. In order to show the advantage of this method using two successive
images, two other similarity-based approaches are compared, namely similarity calculated
by a single spectrum image and similarity calculated by a spectral line. Thereinto, the
first contrast method utilizes a single spectrum image to represent the health status of the
bearing and the calculation unit is a 420 × 560 matrix. The second contrast method utilizes
a spectral line to represent the health status of the bearing and the calculation unit is a
2049-element vector. The other procedures are the same as the proposed method.

Figure 6. RUL prediction results of bearing 4.

From Figure 6, we can see that the proposed method and the method calculated
with a single spectrum image outperform the approach calculated with a spectral line in
terms of prediction accuracy and convergence. The proposed method generates stable and
acceptable results earlier than the method calculated with a single image. This demonstrates
that a spectrum image is more suitable than a spectral line for similarity-based prediction
due to its abundant useful information regarding the degradation process. Two successive
images instead of one can represent the health status more accurately and reduce random
errors. In addition, the performance is not very desirable at the beginning of prediction
because bearing 4, at that stage, experiences an early defect process, the fault signature
is weak, and the degradation does not exhibit a strong tendency to certain reference
bearings. To quantify the prediction performance, the root mean squared error (RMSE) [24],
mean absolute percentage error (MAPE) [36], and convergence [37,38] are calculated and
summarized in Table 1. RMSE and MAPE quantify how accurately a prediction method
performs at a specific time index with absolute and relative prediction error, respectively.
Lower values mean better accuracy. Convergence depicts how fast the accuracy improves
with time to reach its perfect result. A lower value indicates a faster convergence.

Table 1. Metrics comparison of different prediction methods.

Metric With Spectrum Image With Spectral Line The Proposed Method

RMSE 248.24 1093.74 62.98
MAPE 0.36% 2.43% 0.21%

Convergence 400.94 1112.38 141.03

It is noticed from Table 1 that the RMSE and MAPE of the proposed method are
the smallest among these methods, which means that the proposed method has the most
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accurate prediction result. The convergence of the proposed method is the lowest, which
implies that the proposed method approaches the actual RUL fastest. In conclusion, the
proposed method performs better than the two comparative approaches in RUL prediction
for bearing 4.

Moreover, due to the common ground in adopting similarity-based approaches, Refer-
ence [31] is utilized to compare with the proposed method. By predicting the RUL of the
same bearing, the RMSE in comparative literature is 108.02, while the RMSE in this paper
is 62.98, which indicates a better accuracy of the proposed method.

To make the conclusion more convincing, we utilize bearing 1 as the target bearing
to conduct another validation following the same technical process with the other three
bearings 2–4 as the reference bearings.

The prediction results are shown in Figure 7.

Figure 7. RUL prediction results of bearing 1.

It can be seen that the prediction performance using the proposed method outperforms
the comparative approaches in terms of prediction accuracy and convergence, especially at
the stage closer to the final failure.

4. Conclusions

The accurate RUL prediction of bearing is significant to perform PHM of rotating
machinery for the sake of improving reliability and reducing maintenance costs. Most
of the literature on RUL prediction mainly concentrates on the search for the so-called
‘good’ degradation indicators or the development of an excellent prediction model. In this
paper, a similarity-based method is proposed to perform RUL estimation. The spectrum
image is utilized to represent the bearing degradation process. In order to improve the
generalization capability and reduce random error, two successive spectra are combined
as a calculation unit. Then, the similarity between the target bearing at current inspection
and the reference bearings throughout failure histories is computed and the weight of each
reference bearing is distributed. Finally, the RUL of the target bearing is estimated through
the weighted sum of the referenced RULs.

In the experimental verification, two prognostic methods were compared with the
proposed method. The results showed that the proposed method provided a more accurate
prediction and a faster convergence, which demonstrated the effectiveness of this method
in predicting the RUL of bearings. It needs to point out that the proposed method is suitable
for the situation in which similar bearings with whole lifecycle data are available. For
the key rotating parts in modern industry, it is increasingly common to collect vibrations
throughout the lifecycle. When the operating bearing fails, it can be viewed as another
reference bearing to update the prediction results of the new bearing. There is no need to
explore the operating mode of monitored bearing or the failure modes of reference bearings
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because the operating status of monitored bearing can be matched to the most similar life
stage of reference bearings by similarity measures.

Future work will develop deeper research on similarity measurement optimization,
which will provide a more accurate localization of the referenced degradation phase and
contribute to a sounder weight distribution. The normal data of operating bearing is
supposed to be exploited sufficiently to perform domain adaptation and space alignment
with the reference bearings as the assistance in similarity measurement. In addition, the
exact relationship between the boundary of the y-axis and the prediction performance
should be further investigated as well.

Author Contributions: Formal analysis, writing—original draft preparation, B.W. and W.L.; method-
ology, writing—review, B.Z.; editing, software, W.L.; Conceptualization, revised the manuscript, F.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
under Grant 2019ZDPY08, and the National Key R&D Program of China under Grant 2019YFB2006400.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, J.; Azamfar, M.; Li, F.; Lee, J. A systematic review of machine learning algorithms for prognostics and health management

of rolling element bearings: Fundamentals, concepts and applications. Meas. Sci. Technol. 2020, 32, 012001. [CrossRef]
2. Xia, P.C.; Huang, Y.X.; Li, P.; Liu, C.L.; Shi, L. Fault knowledge transfer assisted ensemble method for remaining useful life

prediction. IEEE Trans. Ind. Inform. 2022, 18, 1758–1769. [CrossRef]
3. Deng, F.Y.; Bi, Y.; Liu, Y.Q.; Yang, S.P. Deep-learning-based remaining useful life prediction based on a multi-scale dilated

convolution network. Mathematics 2018, 6, 3035. [CrossRef]
4. Teng, W.; Han, C.; Hu, Y.K.; Cheng, X.; Song, L.; Liu, Y.B. A robust model-based approach for bearing remaining useful life

prognosis in wind turbines. IEEE Access 2020, 8, 47133–47143. [CrossRef]
5. Li, N.P.; Xu, P.C.; Lei, Y.G.; Cai, X.; Kong, D.T. A self-data-driven method for remaining useful life prediction of wind turbines

considering continuously varying speeds. Mech. Syst. Signal Process. 2022, 165, 108315. [CrossRef]
6. Chen, Z.Z.; Cao, S.C.; Mao, Z.J. Remaining useful life estimation of aircraft engines using a modified similarity and supporting

vector machine (SVM) approach. Energies 2018, 11, 28. [CrossRef]
7. Behzad, M.; Arghand, H.A.; Bastami, A.R. Remaining useful life prediction of ball-bearings based on high-frequency vibration

features. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2018, 232, 3224–3234. [CrossRef]
8. Tran, V.T.; Pham, H.T.; Yang, B.S.; Nguyen, T.T. Machine performance degradation assessment and remaining useful life prediction

using proportional hazard model and support vector machine. Mech. Syst. Signal Process. 2012, 32, 320–330. [CrossRef]
9. Gao, Z.W.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based

and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [CrossRef]
10. Gebraeel, N.; Lawley, M.; Liu, R.; Parmeshwaran, V. Residual life predictions from vibration-based degradation signals: A neural

network approach. IEEE Trans. Ind. Electron. 2004, 51, 694–700. [CrossRef]
11. Nistane, V.M.; Harsha, S.P. Prognosis of degradation progress of ball bearings using supervised machine learning. Proc. Inst.

Mech. Eng. K J. Mul. 2018, 232, 183–198. [CrossRef]
12. Mi, L.; Tan, W.; Chen, R. Multi-steps degradation process prediction for bearing based on improved back propagation neural

network. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013, 227, 1544–1553. [CrossRef]
13. Kacprzynski, G.J.; Sarlashkar, A.; Roemer, M.J.; Hess, A.; Hardman, W. Predicting remaining life by fusing the physics of failure

modeling with diagnostics. JOm 2004, 56, 29–35. [CrossRef]
14. Huang, R.Q.; Xi, L.F.; Li, X.L.; Liu, C.R.; Qiu, H.; Lee, J. Residual life predictions for ball bearings based on self-organizing map

and back propagation neural network methods. Mech. Syst. Signal Process. 2007, 21, 193–207. [CrossRef]
15. Zio, E.; Maio, F.D. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear

system. Reliab. Eng. Syst. Saf. 2010, 95, 49–57. [CrossRef]
16. Djeziri, M.A.; Benmoussa, S.; Zio, E. Review on Health Indices Extraction and Trend Modeling for Remaining Useful Life Estimation;

Springer: Berlin/Heidelberg, Germany, 2020.
17. Yu, J.B. Bearing performance degradation assessment using locality preserving projections. Expert Syst. Appl. 2011, 38, 7440–7450.

[CrossRef]

http://doi.org/10.1088/1361-6501/ab8df9
http://doi.org/10.1109/TII.2021.3081595
http://doi.org/10.3390/math9233035
http://doi.org/10.1109/ACCESS.2020.2978301
http://doi.org/10.1016/j.ymssp.2021.108315
http://doi.org/10.3390/en11010028
http://doi.org/10.1177/0954406217734885
http://doi.org/10.1016/j.ymssp.2012.02.015
http://doi.org/10.1109/TIE.2015.2417501
http://doi.org/10.1109/TIE.2004.824875
http://doi.org/10.1177/1464419317731046
http://doi.org/10.1177/0954406212462520
http://doi.org/10.1007/s11837-004-0029-2
http://doi.org/10.1016/j.ymssp.2005.11.008
http://doi.org/10.1016/j.ress.2009.08.001
http://doi.org/10.1016/j.eswa.2010.12.079


Mathematics 2022, 10, 2209 10 of 10

18. Mahamad, A.K.; Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural network.
Comput. Math. Appl. 2010, 60, 1078–1087. [CrossRef]

19. Wu, B.; Li, W.; Qiu, M.Q. Remaining useful life prediction of bearing with vibration signals based on a novel indicator. Shock Vib.
2017, 2017, 8927937. [CrossRef]

20. Ocak, H.; Loparo, K.A.; Discenzo, F.M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic
modeling: A method for bearing prognostics. J. Sound Vib. 2007, 302, 951–961. [CrossRef]

21. Pan, Y.N.; Chen, J.; Guo, L. Robust bearing performance degradation assessment method based on improved wavelet packet–
support vector data description. Mech. Syst. Signal Process 2009, 23, 669–681. [CrossRef]

22. Dong, S.J.; Yin, S.R.; Tang, B.P.; Chen, L.L.; Luo, T.H. Bearing degradation process prediction based on the support vector machine
and Markov model. Shock Vib. 2014, 2014, 717465. [CrossRef]

23. Widodo, A.; Yang, B.S. Machine health prognostics using survival probability and support vector machine. Expert Syst. Appl.
2011, 38, 8430–8437. [CrossRef]

24. Chen, X.F.; Shen, Z.J.; He, Z.J.; Sun, C.; Liu, Z.W. Remaining life prognostics of rolling bearing based on relative features and
multivariable support vector machine. Proc. Inst. Mech. Eng. C J. Mech. 2013, 227, 2849–2860. [CrossRef]

25. Tian, Z.G. An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring.
J. Intell. Manuf. 2012, 23, 227–237. [CrossRef]

26. Wu, S.J.; Gebraeel, N.; Lawley, M.A.; Yih, Y. A neural network integrated decision support system for condition-based optimal
predictive maintenance policy. IEEE Trans. Syst. Man Cybern. A 2007, 37, 226–236. [CrossRef]

27. Lee, J.; Ni, J.; Djurdjanovic, D.; Qiu, H.; Liao, H.T. Intelligent prognostics tools and e-maintenance. Comput. Ind. 2006, 57, 476–489.
[CrossRef]

28. Liu, Z.J.; Li, Q.; Liu, X.H.; Mu, C.D. A hybrid LSSVR/HMM-based prognostic approach. Sensors 2013, 13, 5542–5560. [CrossRef]
29. Soualhi, A.; Razik, H.; Clerc, G.; Doan, D.D. Prognosis of bearing failures using hidden Markov models and the adaptive

neuro-fuzzy inference system. IEEE Trans. Ind. Electron. 2014, 61, 2864–2874. [CrossRef]
30. Tobon-Mejia, D.A.; Medjaher, K.; Zerhouni, N.; Tripot, G. A data-driven failure prognostics method based on mixture of Gaussians

hidden Markov models. IEEE Trans. Reliab. 2012, 61, 491–503. [CrossRef]
31. Niu, G.; Qian, F.; Choi, B.K. Bearing life prognosis based on monotonic feature selection and similarity modeling. Proc. Inst. Mech.

Eng. C J. Mech. 2016, 230, 3183–3193. [CrossRef]
32. Lin, J.S.; Dou, C.H. A novel method for condition monitoring of rotating machinery based on statistical linguistic analysis and

weighted similarity measures. J. Sound Vib. 2017, 390, 272–288. [CrossRef]
33. Li, W.; Qiu, M.Q.; Zhu, Z.C.; Wu, B.; Zhou, G.B. Bearing fault diagnosis based on spectrum images of vibration signals. Meas. Sci.

Technol. 2016, 27, 035005. [CrossRef]
34. Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An Experimental

Platform for Bearings Accelerated Life Test. In Proceedings of the IEEE International Conference on Prognostics and Health
Management, Denver, CO, USA, 18–21 June 2012; pp. 1–8.

35. Li, N.P.; Lei, Y.G.; Lin, J.; Ding, S.X. An improved exponential model for predicting remaining useful life of rolling element
barings. IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [CrossRef]

36. Qiu, M.Q.; Li, W.; Jiang, F.; Zhu, Z.C. Remaining useful life estimation for rolling bearing with SIOS-based indicator and particle
filtering. IEEE Access 2018, 6, 24521–24532. [CrossRef]

37. Saxena, A.; Celaya, J.; Balaban, E.; Goebel, K.; Saha, B.; Saha, S.; Schwabacher, M. Metrics for Evaluating Performance of Prognostic
Techniques. In Proceedings of the 2008 International Conference on Prognostics and Health Management (PHM), Denver, CO,
USA, 6–9 October 2008; pp. 1–17.

38. Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Metrics for offline evaluation of prognostic performance. Int. J. Progn. Health
Manag. 2010, 1, 4–23. [CrossRef]

http://doi.org/10.1016/j.camwa.2010.03.065
http://doi.org/10.1155/2017/8927937
http://doi.org/10.1016/j.jsv.2007.01.001
http://doi.org/10.1016/j.ymssp.2008.05.011
http://doi.org/10.1155/2014/717465
http://doi.org/10.1016/j.eswa.2011.01.038
http://doi.org/10.1177/0954406212474395
http://doi.org/10.1007/s10845-009-0356-9
http://doi.org/10.1109/TSMCA.2006.886368
http://doi.org/10.1016/j.compind.2006.02.014
http://doi.org/10.3390/s130505542
http://doi.org/10.1109/TIE.2013.2274415
http://doi.org/10.1109/TR.2012.2194177
http://doi.org/10.1177/0954406215608892
http://doi.org/10.1016/j.jsv.2016.12.005
http://doi.org/10.1088/0957-0233/27/3/035005
http://doi.org/10.1109/TIE.2015.2455055
http://doi.org/10.1109/ACCESS.2018.2831455
http://doi.org/10.36001/ijphm.2010.v1i1.1336

	Introduction 
	Description of the Proposed Approach 
	Image Creation 
	Similarity Calculation 
	Weight Distribution 
	RUL Estimation 

	Experiment and Analysis 
	Experimental Setup 
	Experimental Analysis 

	Conclusions 
	References

