
Citation: Boxer, L. Freezing Sets for

Arbitrary Digital Dimension.

Mathematics 2022, 10, 2291. https://

doi.org/10.3390/math10132291

Academic Editor: Fu-Gui Shi

Received: 31 May 2022

Accepted: 29 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Freezing Sets for Arbitrary Digital Dimension
Laurence Boxer 1,2

1 Department of Computer and Information Sciences, Niagara University, Lewiston, NY 14109, USA;
boxer@niagara.edu

2 Department of Computer Science and Engineering, State University of New York at Buffalo
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1. Introduction

The study of freezing sets is part of the fixed point theory of digital topology. Freezing
sets were introduced in [1] and studied in subsequent papers including [2–5]. These papers
focus mostly on digital images in Z2.

In the current paper, we obtain results for freezing sets in Zn, for arbitrary n. We show
that given a finite connected digital image X ⊂ Zn, if we use the c1 or cn adjacency and X
is decomposed into a union of cubes Ki, then we can construct a freezing set for X from
those of the Ki.

2. Preliminaries

Researchers have taken several different approaches to the study of digital topology,
including the Khalimsky topology [6–8], the Marcus–Wyse topology [9,10], and Rosenfeld’s
graph-based approach [11,12]. We use the latter in this paper.

For Rosenfeld’s graph-based approach, we present foundational material in this section
on adjacencies, digitally continuous functions, and terminology.

2.1. Adjacencies

Much of this section is quoted or paraphrased from [13].
A digital image is a pair (X, κ) where X ⊂ Zn for some n and κ is an adjacency on X.

Thus, (X, κ) is a graph with X for the vertex set and κ determining the edge set. Usually,
X is finite, although there are papers that consider infinite X. Usually, adjacency reflects
some type of “closeness” in Zn of the adjacent points. When these “usual” conditions are
satisfied, one may consider the digital image as a model of a black-and-white “real world”
digital image in which the black points (foreground) are the members of X and the white
points (background) are members of Zn \ X.

We write x ↔κ y, or x ↔ y when κ is understood or when it is unnecessary to mention
κ, to indicate that x and y are κ-adjacent. Notations x -κ y, or x - y when κ is understood,
indicate that x and y are κ-adjacent or are equal.

The most commonly used adjacencies are the cu adjacencies, defined as follows. Let
X ⊂ Zn and let u ∈ Z, 1 ≤ u ≤ n. Then, for points

x = (x1, . . . , xn) 6= (y1, . . . , yn) = y

we have x ↔cu y if and only if
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• for at most u indices i we have |xi − yi| = 1, and
• for all indices j, |xj − yj| 6= 1 implies xj = yj.

The cu-adjacencies are often denoted by the number of adjacent points a point can
have in the adjacency. For example,

• in Z, c1-adjacency is 2-adjacency;
• in Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency;
• in Z3, c1-adjacency is 8-adjacency, c2-adjacency is 18-adjacency, and c3-adjacency is

26-adjacency.

In this paper, we mostly use the c1- and cn-adjacencies.
When (X, κ) is understood to be a digital image under discussion, we use the following

notations. For x ∈ X,
N(x) = {y ∈ X | y↔κ x},

N∗(x) = {y ∈ X | y -κ x} = N(x) ∪ {x}.

Definition 1 ([11]). Let X ⊂ Zn. The boundary of X is

Bd(X) = { x ∈ X | there exists y ∈ Zn \ X such that x ↔c1 y }.

2.2. Digitally Continuous Functions

Much of this section is quoted or paraphrased from [13].
We denote by id or idX the identity map id(x) = x for all x ∈ X.

Definition 2 ([12,14]). Let (X, κ) and (Y, λ) be digital images. A function f : X → Y is (κ, λ)-
continuous, or digitally continuous or just continuous, when κ and λ are understood, if for every
κ-connected subset X′ of X, f (X′) is a λ-connected subset of Y. If (X, κ) = (Y, λ), we say a
function is κ-continuous to abbreviate “(κ, κ)-continuous.”

Theorem 1 ([14]). A function f : X → Y between digital images (X, κ) and (Y, λ) is (κ, λ)-
continuous if and only if for every x, y ∈ X, if x ↔κ y then f (x) -λ f (y).

Similar notions are referred to as immersions, gradually varied operators, and gradually
varied mappings in [15,16].

Theorem 2 ([14]). Let f : (X, κ) → (Y, λ) and g: (Y, λ) → (Z, µ) be continuous functions
between digital images. Then, g ◦ f : (X, κ)→ (Z, µ) is continuous.

A κ-path is a continuous function r: ([0, m]Z, c1)→ (X, κ).
For a digital image (X, κ), we use the notation

C(X, κ) = { f : X → X | f is κ-continuous}.

A function f : (X, κ)→ (Y, λ) is an isomorphism (called a homeomorphism in [17]) if f is
a continuous bijection such that f−1 is continuous.

For X ∈ Zn, the projection to the ith coordinate is the function pi: X → Z defined by

pi(x1, . . . , xn) = xi.

A (digital) line segment in (X, κ) is a set S = f ([0, m]Z), where f is a digital path, such
that the points of S are collinear; S is axis parallel if for all but one of the indices i, pi ◦ f is a
constant function.

2.3. Cube Terminology

Let Y = Πn
i=1[ai, bi]Z, where bi ≥ ai.
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If for 1 ≤ j ≤ n there are exactly j indices i such that bi > ai (equivalently, exactly n− j
indices i such that bi = ai), we call Y a j-dimensional cube or a j-cube.

A j-cube K in Y, such that

• for j indices i, pi(K) = [ai, bi]Z and
• for all other indices i, pi(K) = {ai} or pi(K) = {bi},
is a face or a j-face of Y.

A corner of Y is any of the points of Πn
i=1{ai, bi}. An edge of Y is an axis-parallel digital

line segment joining two corners of Y.

3. Tools for Determining Fixed Point Sets

Definition 3 ([1]). Let (X, κ) be a digital image. We say A ⊂ X is a freezing set for X if given
g ∈ C(X, κ), A ⊂ Fix(g) implies g = idX .

Theorem 3 ([1]). Let A be a freezing set for the digital image (X, κ) and let F : (X, κ)→ (Y, λ)
be an isomorphism. Then, F(A) is a freezing set for (Y, λ).

The following are useful for determining fixed point and freezing sets.

Proposition 1 (Corollary 8.4 of [13]). Let (X, κ) be a digital image and f ∈ C(X, κ). Suppose
x, x′ ∈ Fix( f ) are such that there is a unique shortest κ-path P in X from x to x′. Then, P ⊆ Fix( f ).

Lemma 1, below,

“. . . can be interpreted to say that in a cu-adjacency, a continuous function that
moves a point p also moves a point that is “behind” p. E.g., in Z2, if q and q′ are
c1- or c2-adjacent with q left, right, above, or below q′, and a continuous function
f moves q to the left, right, higher, or lower, respectively, then f also moves q′ to
the left, right, higher, or lower, respectively [1].”

Lemma 1 ([1]). Let (X, cu) ⊂ Zn be a digital image, 1 ≤ u ≤ n. Let q, q′ ∈ X be such that
q↔cu q′. Let f ∈ C(X, cu).

1. If pi( f (q)) > pi(q) > pi(q′), then pi( f (q′)) > pi(q′).
2. If pi( f (q)) < pi(q) < pi(q′), then pi( f (q′)) < pi(q′).

Definition 4 ([2]). Let (X, κ) be a digital image. Let p, q ∈ X such that

N(X, p, κ) ⊂ N∗(X, q, κ).

Then, q is a close κ-neighbor of p.

Lemma 2 ([2,13]). Let (X, κ) be a digital image. Let p, q ∈ X such that q is a close κ-neighbor of
p. Then, p belongs to every freezing set of (X, κ).

Theorem 4. Let Y = Π3
i=1[ai, bi]Z be such that bi > ai + 1 for all i. Let A = Π3

i=1{ai, bi}. Then,
A is a subset of every freezing set for (X, c3).

Proof. By Theorem 3, we may assume ai = 0 for all i, so A = Π3
i=1{0, bi}. It is easily seen

that every a ∈ A has a close neighbor in X, namely the unique member of X that differs
from a by 1 in every coordinate. Therefore, by Lemma 2, A is a subset of every freezing set
for (X, c3).

4. c1-Freezing Sets for Cubes

The following is presented as Theorem 5.11 of [1]. However, there is an error in the
argument given in [1] for the proof of the first assertion. We give a correct proof below.
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Theorem 5. Let X = Πn
i=1[ri, si]Z. Let A = Πn

i=1{ri, si}.
• Let Y = Πn

i=1[ai, bi]Z be such that [ri, si] ⊂ [ai, bi]Z for all i. Let f : X → Y be (c1, c1)-
continuous. If A ⊂ Fix( f ), then X ⊂ Fix( f ).

• A is a freezing set for (X, c1) that is minimal for n ∈ {1, 2}.

The argument given in [1] is based on induction. We quote the beginning of the
argument’s inductive step:

“Now suppose n = k + 1 and f : X → Y is c1-continuous with A ⊂ Fix( f ). Let

X0 = Πk
i=1[0, mi]Z × {0}, X1 = Πk

i=1[0, mi]Z × {mk+1}.

We have that f |X0 and f |X1 are c1-continuous, A ∩ X0 ⊂ Fix( f |X0), and A ∩
X1 ⊂ Fix( f |X1). Since X0 and X1 are isomorphic to k-dimensional digital cubes,
by Theorem 3 [of the current paper; it’s Theorem 5.2 of [1]] and the inductive
hypothesis, we have(

Πk
i=1[0, mi]Z × {0}

)
∪
(

Πk
i=1[0, mi]Z × {mn}

)
⊂ Fix( f ).′′

Note that the above fails to show that f (X0) ⊂ X0 and f (X1) ⊂ X1; hence, if X
is a proper subset of Y it does not follow from the above that A ∩ X0 ⊂ Fix( f |X0) and
A ∩ X1 ⊂ Fix( f |X1). In the following, we give a correct proof of the first assertion of
Theorem 5, using a rather different approach than was employed in [1].

Proof. By Theorem 3, we may assume

X =
n

∏
i=1

[0, mi]Z, A =
n

∏
i=1
{ 0, mi }.

Let f : X → Y be (c1, c1)-continuous such that f |A = idA. Observe that by Proposi-
tion 1,

if b1 and b2 are members of Fix( f ) that differ in exactly one coordinate,
then the digital segment from b1 to b2 is a subset of Fix( f ).

(1)

In particular, let

X1 =

{
x ∈ X | x belongs to a 1-cube (an axis-parallel segment)

with endpoints in A

}
.

By (1), X1 ⊂ Fix( f ).
We proceed inductively. For j ∈ { 1, . . . , n }, let

Xj = { x ∈ X | x belongs to a j-face of X }.

Note a j-face of X is a j-cube with corners in A. Suppose X` ⊂ Fix( f ) for some ` ≥ 1.
Given x ∈ X`+1, let K be an (`+ 1)-face of Y such that x ∈ K. Let F1 and F2 be opposite
`-faces of K, i.e., for some index d, xi ∈ Fi implies, without loss of generality, pd(x1) = 0
and pd(x2) = md.

Let x ∈ K. Then, x is a point of an axis-parallel segment from a point of F1 to a point
of F2. By (1), x ∈ Fix( f ). Thus, K ⊂ Fix( f ); therefore, X`+1 ⊂ Fix( f ). This completes our
induction. In particular, X = Xn ⊂ Fix( f ).

Thus, for Y = X, it follows that A is a freezing set for (X, c1). That A is minimal for
n ∈ { 1, 2 } follows as in [1].

The set of corners of a cube is not always a minimal c1-freezing set, as shown by the
following example in which the set A is a proper subset of the set of corners.
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Example 1 ([1]). Let X = [0, 1]3Z. Let

A = { (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0) }.

Then, A is a freezing set for (X, c1).

5. c1-Freezing Sets for Unions of Cubes

In this section, we show how to obtain c1-freezing sets for finite subsets of Zn.

Theorem 6. Let X =
⋃m

i=1 Ki where m ≥ 1,

Ki =
n

∏
j=1

[aij, bij]Z ⊂ Zn,

and X is c1-connected. Let

Ai =
n

∏
j=1
{ aij, bij }.

Let A =
⋃n

i=1 Ai. Then, A is a freezing set for (X, c1).

Proof. Let f ∈ C(X, c1) be such that A ⊂ Fix( f ).
Given x ∈ X, we have x ∈ Ki for some i. Since Ai ⊂ Fix( f ), it follows from Theorem 5

that x ∈ Fix( f ). Thus, X = Fix( f ), so A is a freezing set.

Corollary 1. The wedge K1 ∨ K2 of two digital cubes in Zn with axis-parallel edges has for a
c1-freezing set K′1 ∪ K′2, where K′i is the set of corners of Ki.

Proof. This follows immediately from Theorem 6.

Remark 1. Theorem 6 can be used to obtain a freezing set for any finite c1-connected digital image
X ⊂ Z3, since X is trivially a union of 1-point cubes [a, a]Z × [b, b]Z × [c, c]Z. More usefully, if a
subset H of X is a union of cubes,

H =
m⋃

i=1

n

∏
j=1

[aij, bij]Z,

then a freezing set A for (X, c1) is

A = (X \ H) ∪
m⋃

i=1

n

∏
j=1
{ aij, bij }.

Remark 2. Often, the freezing set of Theorem 6 is not minimal. However, the theorem is valuable
in that it often gives a much smaller subset of X than X itself as a freezing set. As a simple example
of the non-minimal assertion, consider

X = [0, 4]2Z × [0, 2]Z ∪ [0, 4]2Z × [2, 4]Z.

For this description of X, Theorem 6 gives the c1-freezing set

A = { 0, 4 }2 × { 0, 2 } ∪ { 0, 4 }2 × { 2, 4 } = { 0, 4 }2 × { 0, 2, 4 },

a set of 12 points. However, by observing that X can be described as X = [0, 4]3Z, we obtain from
Theorem 5 the c1-freezing set A′ = { 0, 4 }3, a set of 8 points.

The following example shows that a cubical “cavity” (see Figure 1) need not affect
determination of a freezing set.
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Example 2. Let X = [0, 6]3Z \ [2, 4]3Z. Then, A = { 0, 6 }3 is a freezing set for (X, c1).

Figure 1. A cube with a cubical cavity.

Proof. Note that by Theorem 5, A is a freezing set for K = ([0, 6]3Z, c1). We show that
removing [2, 4]3Z need not change the freezing set.

Observe that we can decompose X as a union of cubes as follows: Let

LX (left) = [0, 6]Z × [0, 1]Z × [0, 6]Z, RX (right) = [0, 6]Z × [5, 6]Z × [0, 6]Z,

FX (front) = [5, 6]Z × [0, 6]2Z, BaX (back) = [0, 1]Z × [0, 6]2Z,

BoX (bottom) = [0, 6]2Z × [0, 1]Z, TX (top) = [0, 6]2Z × [5, 6]Z.

Then, X = LX ∪ RX ∪ FX ∪ BaX ∪ BoX ∪ TX. Theorem 5 gives us a freezing set B for
(X, c1) consisting of the corners of each of LX , RX , FX , BaX , BoX , TX .

However, suppose f ∈ C(X, c1) is such that f |A = idA. As in the proof of Theorem 6,
each of the faces L, R, F, Ba, Bo, T of K is a subset of Fix( f ). Therefore, each x ∈ B \ A is
on an axis-parallel digital segment that joins two points of one of L, R, F, Ba, Bo, T, so by
Proposition 1, x ∈ Fix( f ). Therefore, A is a freezing set for (X, c1).

6. cn-Freezing Sets in Zn

We have the following.

Proposition 2 ( [1]). Let X be a finite digital image in Zn. Let A ⊂ X. Let f ∈ C(X, cu), where
1 ≤ u ≤ n. If Bd(A) ⊂ Fix( f ), then A ⊂ Fix( f ).

Theorem 7 ([1]). Let X be a finite digital image in Zn. For 1 ≤ u ≤ n, Bd(X) is a freezing set for
(X, cu).

The following is inspired by Theorem 7.

Theorem 8. Let X = ∏n
i=1[ai, bi]Z, where n > 1 and for all i, bi > ai. Then, Bd(X) is a minimal

freezing set for (X, cn).

Proof. By Theorem 7, Bd(X) is a freezing set for (X, cn). We must show its minimality.
Consider a point x0 = (x1, . . . , xn) ∈ Bd(X). For some index i, pi(x0) ∈ { ai, bi }.

• If pi(x0) = ai, the point (x1, . . . , xi−1, ai + 1, xi, . . . , xn) is a close neighbor of x0.
• If pi(x0) = bi, the point (x1, . . . , xi−1, bi − 1, xi, . . . , xn) is a close neighbor of x0.

In either case, we must have x0 as a member of every freezing set for (X, c1), by
Lemma 2. Thus, Bd(X) is a minimal freezing set.
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Theorem 9. Let X =
⋃m

i=1 Ki where m ≥ 1,

Ki =
n

∏
j=1

[aij, bij]Z ⊂ Zn,

and X is cn-connected. Let Ai = Bd(Ki) and let A =
⋃m

i=1 Ai. Then, A is a freezing set for
(X, cn).

Proof. By Theorem 7, Ai is a freezing set for (Ki, cn). Let f ∈ C(X, cn) be such that
f |A = idA. It follows from Proposition 2 that each Ki ⊂ Fix( f ). Thus, f = idX, and the
assertion follows.

7. Conclusions and Future Work

We have studied freezing sets for finite digital images in Zn with respect to the c1- and
cn-adjacencies. For both of these adjacencies, we have shown that a decomposition of an
image X as a finite union of cubes lets us find a freezing set for X as a union of freezing sets
for the cubes of the decomposition. Such a freezing set is not generally minimal, but often
is useful in having cardinality much smaller than the cardinality of X.

More general restrictions on f |A, where A is a freezing set for (X, κ) and f ∈ C(X, κ),
restrict f on all of X in interesting ways. This will be shown in future work.
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