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Abstract: In order to ensure the reliability and safety of complex engineering structures and allow 
their redesign and evaluation, the estimation of dynamic loads applied on them is vital. In this pa-
per, a novel time–frequency domain approach is proposed to identify random forces based on the 
weighted regularization algorithm. Firstly, the Newmark’s algorithm was applied to ob-
tain structural dynamic responses, then a weighed regularization algorithm was used to 
identify the random forces exerted on the engineering structure. The weighting matrix was 
used to control the identified error of the random forces. A spatial frame model was built 
to illustrate the practicality of the proposed approach. The experimental results demon-
strated that the proposed method is more effective than other methods for random forces 
identification. 
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1. Introduction 
In order to ensure the reliability and safety of complex engineering structures, the 

estimation of dynamic loads applied on them is very important and necessary. The infor-
mation regarding dynamic loads is critical to the redesign and evaluation of these struc-
tures. However, in most cases, it is impractical to measure the dynamic loads directly, due 
to the many limitations of various operating environments. This occurs, for example, 
when measuring the impact load suffered by fighter aircrafts during taking off and land-
ing on the deck, the buffeting loads of the vertical tail of aircrafts and the wind load acting 
on some high buildings. In these circumstances, it would be beneficial if the dynamic 
loads can be obtained by using the measured structural random response, which is rela-
tively easy to acquire using some acceleration sensors. The study of the identification of 
dynamic load has a very high engineering application value. 

The estimation of random forces is an inverse problem. Unfortunately, inverse prob-
lems are usually mathematically ill-posed. It means that a small change in the random 
response can lead to a big change in the force identification results [1]. To mitigate the 
challenges posed by the problem, J. O’Callahan et al. [2] used the singular value decom-
position (SVD) approach to solve the ill-posed equation related to the inverse process of 
the system matrix, and the results showed that the regularization approach was very prac-
tical. The Tikhonov regularization method [3] is often used to solve ill-posed problems in 
many studies. Jia et al. [4,5] used measured frequency response functions to identify ran-
dom forces considering the response error and model error. To improve the accuracy of 
their estimated results and reduce the impact of these errors, a weighted total least-square 
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(TLS) method was applied. The feasibility and practically of the proposed method were 
validated by a random force estimation experiment. Jie Liu and Kun Li [6] used blind 
source separation and orthogonal matching pursuit to identify time–space-coupled dis-
tributed dynamic loads which were applied on a complicated structure. Their results 
demonstrated the validity of their proposed method. Batou and Soize [7,8] built a non-
parametric probabilistic model to identify the random forces applied on a pressurized 
water reactor (PWR); good performance was obtained. Zhang et al. [9] proposed a Bayes-
ian approach to identify dynamic forces, in relation to force identification on uncertain 
structures. Their results showed good performance of their method. Qiao feng Li and Qiu 
hai Lu [10] proposed a novel method to automatically identify a force history. Posterior 
distributions and uncertainties were also studied by a Metropolis-within-Gibbs sampler; 
a cantilever beam was used to validate the proposed method. Zhou et al. [11] used a deep 
recurrent neural network to identify the impact load applied to a nonlinear structure; the 
deep RNN model contained two LSTM layers and one bidirectional LSTM layer. The re-
sults of the comparison illustrated the validity of their proposed method. Feng et al. [12] 
proposed a new time domain regularization method to localize and reconstruct dynamic 
loads applied on structures based on structural dynamic responses. Liu et al. [13] pro-
posed a novel method based on Artificial Neural Network (ANN) and Bayesian Probabil-
ity framework (BPF) to identify dynamic forces; the interval model was applied to take 
into consideration some variables. The identified curve fit very well with the real curve, 
both in magnitude and in regularity. An augmented Kalman filter algorithm was tested 
by R. Cumbo [14] to identify dynamic loads; an existing optimal sensor placement strategy 
for Kalman Filter was also adopted. The effectiveness of the filter and the quality of the 
results demonstrated the validity of the proposed method. Tang [15] proposes a new 
method to identify loads based on the random response power spectral density and deep 
transfer learning strategy. This method is a data-driven model that can deal with ill-posed 
inverse problems in conventional methods. Onur Avci [16] described some highlights of 
the traditional methods and provided a comprehensive review of the most recent appli-
cations of the Machine Learning and Deep Learning algorithms used for vibration-based 
structural damage detection in civil structures. Hai Tran and Hirotsugu Inoue [17] pro-
posed a wavelet deconvolution technique to identify impact forces by controlling the scale 
and shift components. Their results demonstrated the validity of their proposed method. 
A study [18] used the Bayesian approach to localize and estimate multiple dynamic loads 
in the time domain. Unknown dynamic loads were identified by the Markov chain Monte 
Carlo method with the Gibbs algorithm. In this paper, a novel inverse time–frequency 
domain approach is proposed, and the system matrix is also deduced. To solve the ill-
posed equation, a weighted regularization approach was studied. The numerical example 
and experimental model were built to illustrate the performance of the proposed method. 

The structure of this paper is as follows. The equations of motion of the structure and 
the system matrix are deduced, and the random responses are obtained by the Newmark’s 
method, as described in Section 2.1. In Section 2.2, a novel inverse time–frequency domain 
approach based on the weighed regularization algorithm is proposed. Section 3 verifies 
the proposed method by numerical simulation. In Section 4, an eight-storey spatial frame 
is studied to illustrate the practically of the proposed approach. Section 5 summarizes the 
conclusions. 

2. Random Forces Identification 
2.1. Equation of Motion 

Consider an n degree-of-freedom (d. o. f) mechanical system, the equation of motion 
is as follows [19]: 𝐌𝐲(t) + 𝐂𝐲(t) + 𝐊𝐲(𝑡) = 𝐅(t) (1)
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where 𝐲(t) ∈ R ×  is the displacement vector, 𝐌, 𝐂, 𝐊 ∈ 𝐑 ×  are the mass, damping and 
stiffness matrices, respectively, 𝐅(t) ∈ 𝐑 ×  is the random force vector. 

Introducing the state vector  𝐱(t) = [y(t), y(t)] , Equation (1) can be rewritten as fol-
lows: 𝐱(t) = 𝐀x + 𝐁𝐅(t) (2)

where 𝐀 = 𝟎 𝐈−𝐌 𝐊 −𝐌 𝐂 , 𝐁 = 𝟎𝐌  

The measured output vector 𝐳(t) is: 𝒛(t) = 𝐂𝐱(t) + 𝐃𝐅(t) (3)

where C and D are state matrices 
Equation (1) can be transformed into the following discrete equation: 𝐱 t = 𝐀𝐃𝐱 t + 𝐁𝐃𝐅(t ) (4)

where 𝐀𝐃 = exp(𝐀∆t) , 𝐁𝑫 = 𝐀 (exp(𝐀∆t) − 𝐈)𝐁. 
Equation (3) can be formulated by the following discrete equation: 𝐳(j) = 𝐂𝐳(j) + 𝐃𝐅(j) (5)

Using the zero initial response of the engineering structure, the output vector can be 
expressed: 

𝐳(j) = 𝐃𝐅(j) + 𝐂 𝐀 𝐁𝐅(j − k) (6)

let 𝐇 = 𝐃, k = 0𝐂𝐀𝐤 𝟏𝐁, k = 1, … N − 1 (7)

Equation (6) can be expressed in matrix form: 𝐙 = 𝐇𝐅 (8)

where 

𝐇 = 𝐇𝟎 𝟎 ⋯ 𝟎𝐇𝟏 𝐇𝟎 ⋯ 𝟎⋮𝐇𝐍 𝟏 ⋮𝐇𝐍 𝟐 ⋱⋯ ⋮𝐇𝟎 , 𝐙 = 𝐙𝟎𝐙𝟏⋮𝐙𝐍 𝟏 , 𝐅 = 𝐅𝟎𝐅𝟏⋮𝐅𝐍 𝟏  

To identify a random force, the random responses of the structure applied on the 
random loads are calculated by the Newmark’s β method. Considering the computa-
tional efficiency and computational speed, the constant average acceleration method was 
applied in this paper [20]. The random noise was added to the random responses to in-
vestigate its influence on the accuracy of the proposed method. 

2.2. Random Forces Identification 
To obtain the random forces F, Equation (8) can be transformed into the following 

optimization problem min‖𝐇𝐅 − 𝐙‖  (9)

The random forces can be calculated by: 𝐅 = 𝐇 𝐙 (10)

where the superscript “+” denotes the Moore–Penrose pseudoinverse operator. 
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Because 𝐙 and 𝐇 contain some random noises, the identified dynamic loads from 
Equation (10) will have large deviations in some frequency Points. The identified error 
can be obtained: ‖𝛅𝐅‖𝟐‖𝐅‖𝟐 ≤ 𝐤(𝐇) ‖𝛅𝐙‖𝟐‖𝐙‖𝟐  (11)

To deal with this ill-posed problem, the weighted regularization method was 
adopted to control the identified error in this paper. Therefore, the ill-posed Equation (10) 
can be solved by the following optimization problem: 𝐽 = min ( √𝐖𝐇𝐅 − √𝐖𝐙 + 𝜆 ‖𝐅‖ ) (12)

where 

𝐖 = 𝑤 0 ⋯0 𝑤 0⋮ ⋱ ⋱ 00⋮0 0 0 𝑤  

To solve Equation (12), this optimization problem can be written as: min𝑭 √𝐖𝐇𝛌𝐈 𝑭 − √𝐖𝐙𝟎  (13)

where λ is a regularization parameter. 
By simplifying Equation (13), we obtain  ( √𝐖𝐇 √𝐖𝐇 + λ 𝐈)𝐅 = ( √𝐖𝐇 √𝐖𝐙 (14)

Through the approach of truncated singular value decomposition (TSVD), the matrix √𝐖𝐇 can be turned into the following form: √𝐖𝐇 = 𝐔𝚺𝐕𝐓 (15)

where 𝐔 and 𝐕 are orthogonal matrices, 𝜎 ≥ 0 are singular values of the matrix √𝐖𝐇, r is the rank of the matrix √𝐖𝐇. 
Substituting Equation (15) into Equation (14), the estimated random forces can be 

expressed in this form: 𝐅 = 𝐕𝚺 𝐔 √𝐖𝐙 (16)

where 

𝚺 =
⎣⎢⎢
⎢⎢⎢
⎡ 𝜎𝜎  + 𝜆 ⋯ ⋯ 0 ⋯ 0⋮ ⋱ 0 ⋮ ⋮0⋮0 0⋮0

𝜎𝜎  + 𝜆⋮0
0⋱0

0⋮𝜎𝜎  + 𝜆 ⎦⎥⎥
⎥⎥⎥
⎤
 (17)

According to the Fourier transform, the frequency domain random forces of the 
structure is obtained as follows [21] 𝐅(ω) = 𝐕(ω)𝚺 (ω)𝐔 (ω)𝐙(ω) (18)

According to the formula of power spectral density, the power spectral density ma-
trix of random forces can be calculated by: 

𝐒𝐅𝐅(ω) = 𝐅 (ω) 𝐅 (ω)  (19)
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The parameter λ in Equation (17) can be obtained by the Generalized Cross Validated 
GCV (GCV) method, and its optimal value can be achieved by obtaining the minimum 
value of the GCV function G(λ) = 𝐖(𝐇𝐅 − 𝐙)tr(I − √𝐖𝐇(𝐇 𝐖𝐇 + λ 𝐈) 𝐇 √𝐖) (20)

where tr( ) denotes the matrix trace operator. 

2.3. Summary of the Time–Frequency Method 
In the above section, a novel inverse time–frequency domain approach based on the 

weighted regularization method was proposed. To better understand this approach, the 
algorithm can be briefly applied in these subsequent steps: 

(1) Obtain the random responses Z(t) by the Newmark’s β method. 
(2) Give the weighting matrix W and calculate the matrix√𝐖𝐇. 
(3) Perform the truncated singular value decomposition of the matrix√𝐖𝐇. 
(4) Select the proper regularization parameter λ by using the GCV function. 
(5) Compute the identified random forces 𝐅(ω). 
(6) Obtain the PSD of the identified random forces 𝐒𝐅𝐅(ω) 

3. Numerical Validation 
A five−layer frame model was built to demonstrate the proposed new method in this 

text, as shown in Figure 1. The structural parameters of the frame model were: modulus 
of elasticity E = 30 × 109 N/m2, modal damping ratio ξ = 0.03. The mass matrix and stiff-
ness matrix of the frame structure are, respectively 

𝐌 = 144000 ⎣⎢⎢⎢
⎡1 0 0 0 00 1 0 0 0000 000 100 0 01 00 1⎦⎥⎥⎥

⎤  (21)

𝐊 = 2.0267 × 10  ⎣⎢⎢⎢
⎡ 2.9 −1.4 0 0 0−1.4 2.7 −1.3 0 0000 −1.300 2.5−1.20 −1.2 02.3 −1.1−1.1 2.1⎦⎥⎥⎥

⎤
 (22)

In order to obtain the structural dynamic responses, random forces were exerted on 
the 2nd, 3rd and 5th degree of freedom of the frame structure. The time histories of the 
exerted random forces are shown in Figure 1. 
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Figure 1. Random forces exerted on the structure. 

Assuming that the initial velocity and initial displacement of the frame model were 
set to zeros, the sampling step of the system was 0.01 s, and the sampling frequency was 
100 Hz. In this section, the structural response (displacement responses and acceleration 
responses) were obtained by using the Newmark’s β = 0.25. The 5% random noise was 
also added into the random responses. The time histories of the displacement responses 
are shown in Figure 2. 
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Figure 2. Calculated displacement responses. 

In this approach, the weighted regularization method was adopted to identify the 
random forces applied on the five-layer frame model. Figure 3 shows a comparison be-
tween the actual random forces and the identified random forces. The two curves in Fig-
ure 3 show that the identified result and the actual result matched very well. 

   
(a) (b) (c) 

Figure 3. Estimation of the random forces. (a) Force 1; (b) force 2; (c) force 3. 
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4. Experimental Verification 
To illustrate the validity of the proposed inverse time–frequency domain method, an 

eight-degree-of-freedom frame structure was built in this study, as shown in Figure 4. 
According to the structural characteristics of the model, we assumed that the mass of each 
of its layers was concentrated on the layer spacer frames, while the stiffness was concen-
trated on the inter story columns. There were four pillars between two layers, and one 
pillar was made of three flat bars with a cross section of 0.139 m × 0.027 m × 0.001 m. Two 
electromagnetic exciters perpendicular to the frame structure were used to apply the ran-
dom loads. Four response measurement points were selected on the frame to install accel-
eration sensors and obtain acceleration response signals during structural vibration. The 
frequency range in this experiment was 0–30 Hz, and the sampling frequency was 256 Hz. 
The experimentally measured the five acceleration random responses are shown in Figure 
5. 

 
Figure 4. Experimental setup. 
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Figure 5. Measured random acceleration responses. 

To control the propagation of errors, the weighting matrix chosen for the experiments 
was 

𝐖 = w ⋱ w  (23)

where 

w = H  (24)

According to the formula of power spectral density (PSD), the random response 
power spectral density can be obtained by using the time histories of four acceleration 
responses and the Fast Fourier Transform algorithm. Then, the PSDs of random forces can 
be determined. 

As can be seen in Figure 6, the estimation errors of random forces were mainly con-
centrated around the natural frequency, especially within the range of 0–4 Hz. The main 
reasons of this were the random error of the random response and the system matrix error. 
To further illustrate the method, a comparison was made with a method described in ref-
erence [22]. The Root Mean Square (RMS) of the estimated random forces are presented 
in Table. From the data in the Table 1, the proposed time–frequency domain method ap-
peared superior to the method presented in reference [22]. 

 
(a) 

 
(b) 
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Figure 6. Comparison of estimated results and actual results: (a) force 1; (b) force 2. 

Table 1. Estimated RMS results. 

Method Force 1 Force 2 
Actual 0.5426 0.5662 

Proposed method 0.6212 0.6108 
method [22] 0.4587 0.4369 

5. Conclusions 
In this paper, a novel inverse time–frequency domain random force identification 

approach using the weighted regularization algorithms is proposed. The feasibility and 
practicality of the proposed method were verified by numerical simulations and experi-
ments. Some concluding remarks can be drawn: 
(1) The results show that the time–frequency inverse method is able to correctly identify 

the random forces acting on engineering structures. It was also found that large er-
rors mainly occurred at the beginning of the analysis. 

(2) The weighted regularization method can significantly improve the accuracy of load 
identification. 

(3) The format of the weighting matrix is not unique and can be optimized to improve 
the effectiveness of the method. 
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