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Abstract: As freight volumes increase, airports are likely to require additional infrastructure devel-
opment, increased air services, and expanded facilities. Prediction of freight volumes could ensure
effective investment. Among the computational intelligence models, support vector regression (SVR)
has become the dominant modeling paradigm. In this study, a fuzzy-based SVR (FSVR) model was
used to solve the freight volume prediction problem in international airports. The FSVR model can
use a fuzzy time series of historical traffic changes for predictions. A fuzzy classification algorithm
was used for elements of similar levels in the time series to appropriately divide traffic changes
into fuzzy sets, generate membership function values, and establish a fuzzy relationship to produce
a fuzzy interpolation with a minimal error. A comparison of the FSVR model with other models
revealed that the FSVR model had the lowest mean absolute percentage error (all < 2.5%), mean
absolute error, and root mean square error for all types of traffic at all the analyzed airports. Fuzzy
sets can handle uncertainty and imprecision in time series. Therefore, the prediction accuracy of the
entire time series model is improved by taking advantage of SVR and fuzzy sets. By using the highly
accurate FSVR model to predict the future growth of air freight volume, airport management could
analyze their existing facilities and service capacity to identify operational bottlenecks and plan future
development. The FSVR model is the most accurate forecasting model for air traffic forecasting.

Keywords: air freight volume; fuzzy logic; support vector regression; time series prediction

MSC: 37M10

1. Introduction

Globalization has changed people’s lives. According to the International Monetary
Fund [1], the four fundamental aspects of globalization are “trade and international ex-
changes” [2], “capital and investment flows” [3], “population flows”, and “knowledge
spreading”. Increasing international trade and investment have integrated the global
markets into a “global village” [4]. Air transportation, which facilitates international
interactions, is a global industry. Transportation for any purpose—including tourism, en-
tertainment, business, and freight delivery—deepens the connections among international
terminals worldwide; these terminals are closely related and affect each other. The 20-Year
Passenger Forecast by the International Air Transport Association (IATA) indicated that air
passenger and freight transportation demand has remained strong. The center of the indus-
try has been speeding up eastward in October 2018. They further stated that, compared
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with the current standard, the approaching 20-year air transport would double [5]. The
compound growth rate of air transport will reach up to 3.5%. By 2037, air passengers will
double again, up to 8.2 billion [6]. Furthermore, air transport remains strong compared
with July 2021 (calculated based on freight ton/kilometers) according to the global air
transport periodic report published on 31 August 2021. Global air freight demand in July
2021 was 8.6% higher than in July 2019, a substantial increase in comparison with the
long-term average increase of 4.7% [7].

According to the IATA, global air traffic reached only 43% of its pre-pandemic level
in 2021 [8], a downward revision from the estimation of 51% at the end of 2020. However,
freight demand is increasing rapidly and may continue to exceed expectations. The IATA
expected air freight volumes to increase by 13.1% in 2021 to 63.1 million tons, surpassing
2019 levels and approaching the peak in 2018. Air transport is ripe for development in
numerous countries and the future of the aviation industry is bright. Aviation will flourish
and remain a vital component of the world economy due to the benefits of increased
international connectivity. However, the IATA has also suggested that airports and air traffic
control may not be able to handle passenger demand if this trend continues. Governments
and infrastructure management authorities must strategically plan the future development
of aviation infrastructure and their decisions affect the value created by aviation in their
corresponding regions [9].

Southwest Airlines instigated the age of low-cost aviation by entering the market
as the earliest low-cost carrier (LCC) in 1971 [10]. In the last decade, LCCs have already
increased the transportation demand. They provided approximately 3.6 billion seats in 2008
and this number had increased to approximately 5.3 billion by 2017. Likewise, the LCC
market share grew from 21% in 2007 to 29% in 2017. Moreover, LCCs grew from having
4.4% of the intercontinental market share in 2008 to 11.4% in 2017; LCCs’ regional market
share grew from 23.6% to 31.4% in the same time period. Thus, both intercontinental and
regional LCCs have grown rapidly.

As air traffic increases, the aviation industry continues to develop. Governments
worldwide must devise methods for reducing airline bottlenecks and developing do-
mestic air transport infrastructure [11]. Existing infrastructure and air services must be
improved in response to the increased demand and any expansion of these services must
be sustainable. Forecasting airport operations is necessary to ensure that investments
are well-targeted and obtain a return. Governments must also understand that global-
ization has increased the social and economic prosperity of the world and the use of
protectionism to curb globalization will reduce development opportunities. Therefore,
governments worldwide must perform appropriate traffic forecast planning for the aviation
industry [12], construct efficient infrastructure and services, and deploy programs to meet
national economic development goals [13].

Wang et al., explored the relative efficiency of three combined forecasts in forecasting
the tourism demand for Hong Kong. Two-, three- and four-model are consisted of four
modeling techniques: autoregressive integrated moving average (ARIMA) model, autore-
gressive distributed lag model, error correction model, and vector autoregressive model.
The results showed that the combined forecast outperformed the best single forecasting
model and avoided the risk of complete forecast failure [14]. Therefore, if predictive models
are available—which model would generate the best predictions is unknown—combining
the predictions of the alternative models is an optimal low-risk approach. Saayman used
the Naive and Naive Forecasting Model, the Holt–Winters Exponential Smoothing Model
(ETS) [15], ARIMA [16], and seasonal ARIMA (SARIMA) [17] to model and forecast tourism
in South Africa’s major intercontinental tourism markets, namely the United Kingdom,
Germany, the Netherlands, the United States, and France [18]. The results revealed that the
SARIMA model had the most accurate arrival predictions on three time horizons: 3, 6, and
12 months. Univariate forecasts were concluded to provide relatively accurate forecasts of
tourist arrivals in South Africa, especially in the short term. However, the model did not
assess the impact of external events; thus, its policy applications are limited [18].
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Hassani used the root mean square error (RMSE) and direction of change (DC) to
evaluate models; singular spectrum analysis (SSA)-R, SSA-V [19], ARIMA, and the trigono-
metric Box—Cox autoregression (AR)-moving average (MA) trend seasonal model [20]
outperformed other models for forecasting the number of tourists arriving in Europe.
Suryani developed a system dynamics model to forecast air freight demand in the future
to determine terminal capacity required to support long-term growth in Taiwan Taoyuan
International Airport [21]. Alexander developed a gravity model to predict air freight
demand. They evaluated the gravity models to predict and accurately explain major eco-
nomic shocks such as the global financial crisis [22]. The least accurate models were a
neural network [15], the ETS, and AR fractionally integrated MA (ARFIMA), MA, and
weighted MA (WMA) models [23]. Cao et al., used the hybrid prediction of ARIMA and
support vector machines (SVMs) to explore research and analysis of the diversion law of
passenger transportation on the subway during holidays [24]. Passenger flow data from
China’s Xi’an Line 3 subway station on National Day were used with the ARIMA model,
the SVM model, and a hybrid of these models to predict the hourly passenger flow on the
subway during the holiday. The research results revealed that the relative error between the
predicted results and the actual results of the hybrid model was smaller than those for the
other models. The hybrid model (ARIMA+SVM) is practical, generalizable, and suitable
for predicting subway passenger diversion; thus, the hybrid model provides a quantitative
basis for rationally developing the organization and management of passenger transport
in subway stations during holidays or festivals [25]. Moreover, Bildirici has proposed
modeling strategies that possess benefit from neural network-based GARCH models and
SVR-GARCH models to augment commonly used volatility models with support vector
machines and neural networks [26]. Sharifian proposed a hybrid ensemble of SVR/GARCH
predictors in each subscale and trained it to predict the refactored components of workload
dynamic resource allocation in mobile cloud computing environments [27]. In summary,
hybrid models can obtain better forecasting results than single models. No single model is
ever superior in terms of prediction accuracy. Traditional time-series analysis models are
not entirely inferior to machine-learning prediction models; single traditional time-series
analysis and forecasting models can be the best forecasting choice for a specific time series.
However, all these models still have many disadvantages in forecasting in real situations.
The traditional methods could not handle the forecasting problems in which the historical
data presented as approximate numerical forecast values [28]. A comparison of the SVR-
based and ARIMA-based methods, each having their own merits and weaknesses, has not
been undertaken in the field of forecasting the approximate numerical forecast values of
historical data.

The fuzzy time series (FTS) model has demonstrated to effectively solve the limitation
related with forecasting the approximate numerical forecast values of historical data [29].
Tai proposed an improved fuzzy time-series (IFTS) forecasting model using variations of
data to effectively forecast the approximate numerical forecast values of historical data.
Moreover, IFTS has shown better accurate predictions than other fuzzy SVRs [30]. Our
objective is to achieve an accurate grasp of international airport freight volumes using fuzzy-
based SVR (FSVR). Our FSVR used IFTS as the primary mechanism for our forecasting
system, which employed SVR with an improved fuzzy set to approximate fuzzy upper
and lower bounds and then approximate numerical forecast values. The parameters in the
models were investigated to find the optimal values for each data set because no model was
considered to be optimal in all situations. All parameters were investigated and determined
by appropriate methods. Performed on many datasets with different characteristics, the
proposed model was compared with the existing models. Freight volume period data for
membership functions are fuzzy values that can be used to simulate processes that require
economic expertise and knowledge. Our forecasting system is suitable for seasonal time
series that can interpolate historical data and predict the future. Furthermore, FSVR can
efficiently handle time series/non-linear problems, resulting in a better performance. The
contributions of this study are as follows: (1) development and optimization of an FSVR
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model for forecasting international airport freight volumes; (2) validation of the ability of
FSVR model to generate forecasts under multiple forecast parameters; (3) by using robust
statistical indicators, the international airport association’s forecast and observational data
are compared with data published on the airport authority’s official website to assess the
model’s accuracy over 1 period and 12 periods.

2. Methods
2.1. Dataset Description

The object of this study was a time series of air traffic data. The selected airports
were the 10 airports with the highest global airport passenger traffic in 2018 according to
the statistics of Airports Council International; these 10 airports were Hartsfield–Jackson
Atlanta International Airport (ATL), Beijing Capital International Airport (PEK), Dubai
International Airport (DXB), Los Angeles International Airport (LAX), Tokyo International
Airport (HND), Chicago O’Hare International Airport (ORD), London Heathrow Airport
(LHR), Hong Kong International Airport (HKG), Shanghai Pudong International Airport
(PVG), and Paris Charles de Gaulle International Airport (CDG) [31]. Data were collected
for the period from August 2014 to December 2019. Data were obtained from the statistical
reports of the International Airports Association and data published on the official websites
of the airports’ management authorities [32]. For the training data set, 1590 observations
among 10 airports were extracted from August 2014 to December 2018. The data used
the original values of freight volume and the data unit was 10,000 tons for freight volume.
For the test data set, 360 observations among 10 airports were extracted from January
to December 2019. The time-series data used monthly intervals to sum the values of
observations within the same month in an airport. The training data set was used to
analyze and build various predictive models. The established model forecast was used
to generate forecast values for the period of January to December 2019 and to verify the
model forecast values against the test data set. The object of this study was to provide a
forecasting time series of freight volume data.

2.2. Support Vector Regression

Support vector regression (SVR) extends the conventional SVM algorithm [33]. SVR
is a supervised learning model based on regression analysis and is characterized by an
ε-insensitive loss function for the training data; SVR can handle predictions of continual
data [34]. In SVR, a hyperplane is produced and the distance from the farthest sample point
to the hyperplane is minimized. A nonlinear problem can thus be transformed into a linear
problem by mapping the training data to a high-dimensional feature space. The training
dataset is represented as {(xi, yi); I = 1, 2, . . . , N; xi ∈ Rn; yi ∈ R}, where xi is the input value
of i in the nth dimension, yi is the actual output value, and N is the dataset size. The SVR
function is as follows:

y = f (xi) = ωT ϕ(xi) + b (1)

where f (xi) is the predicted value and ϕ(xi) is the feature function of the input; ω and b are
adjustment factors, which are estimated using a penalty function as follows:

R(C) =
1
2
‖ω‖2 + C· 1

n

n

∑
i=1
‖yi − f (x)‖ε (2)

|y− f (x)|ε =
{

0, |y− f (x)| ≤ ε

|y− f (x)| − ε , otherwise
(3)

where C is the penalty coefficient and ε is the maximum tolerable error. Two slack variables,
ξi and ξ∗i , are introduced to handle the infeasible constraints of the optimization problem;
these can be expressed as follows:
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min
ωbξ(∗)

1
2‖ω‖

2 + C
n
∑

i=1

(
ξi + ξ∗i

)
,

subject to


−yi + ωT ϕ(xi) + b ≤ ε + ξi, (i = 1, . . . , m),
yi −ωT ϕ(xi)− b ≤ ε + ξ∗i , (i = 1, . . . , m),

ξ∗i ≥ 0, (i = 1, . . . , m),

(4)

where ξ(∗) ensures that the constraints are satisfied, C controls the balance between model
complexity and the training error rate, and ε is a constant that controls the error tolerance.
If ε is small, overfitting can occur; otherwise, underfitting can occur. The dual-optimization
problem-based Lagrangian equations are obtained as follows:

min
αi,α
∗
i

1
2

n
∑

i,j=1
yi
(
αi − α∗i

)(
αj − α∗j

)
k
(
xi, xj

)
+

n
∑

i=1

(
(ε− yi)αi + (ε + yi)α

∗
i
)
,

Subject to


n
∑

i=1

(
αi − α∗i

)
= 0,

0 ≤ α∗i ≤ C, (i = 1, . . . , m)

(5)

Therefore, an SVR function can be obtained as follows:

f (x) = ∑n
i=1(αi − α∗i )k(xi , x) + b, (6)

where αi and α∗i are Lagrangian multipliers and k(xi, x) is the kernel function. A multivariate
model is built by additive decomposition of a univariate time-series model and the kernel
function class is closed under additive decomposition for the SVR model. Five kernels
(spline kernel, Gaussian radial basis function (RBF) kernel, linear kernel, polynomial
kernel, and pair Hidden Markov Model (PHMM)) are commonly used for SVR models.
Gaussian RBF kernels are widely used for nonlinear mapping between an input and a
high-dimensional space. The Gaussian-RBF kernel has good implementation with additive
decomposition, especially for consideration of interaction between the single time series [35].
The Gaussian-RBF kernel assumes full interaction between a single time series and all time
points in a window, which can be as error prone as the assumption of no interaction.
Rohmah has shown that Gaussian-RBF has better results than other common SVR kernel
functions in time-series analysis [36]. The Gaussian-RBF kernel function constructs a
nonlinear decision hyperplane in the input space. The formula is as follows:

k(xi, x) = exp
(
−σ||x− xi ||2

)
(7)

where σ is the scaling factor of the Gaussian RBF kernel.
The accuracy and stability of SVR are closely related to three parameters: the penalty

coefficient C, kernel σ, and width ε of the insensitive loss function. C is the penalty
coefficient and is used to balance the complexity of the model and training error; ε is the
width of the insensitive loss function, which controls the width of the SVR sensitive band
and affects the number of support vectors; finally, σ is the kernel parameter for the Gaussian
RBF. The kernel parameter affects the distribution and range characteristics of the training
sample data, which determine the width of the local neighborhood.

2.3. Fuzzy SVR

The FSVR model is based on the IFTS model [30]. The fuzzy system provides a
dynamic, probable, and intensive rule base for the system to overcome uncertainties in the
raw data [37,38]. The IFTS model is based on changes in data between two continual periods
and the fuzzy relationship between elements in the series. The IFTS model can be used for
fuzzy historical interpolation and prediction of the future; it can be applied to nonseasonal
time series. In the proposed model, all parameters are calculated with appropriate methods
to enable operations on data sets with different characteristics. The IFTS model is more
effective for predictions than other models. The IFTS model is included in the R program’s
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application package function execution program, facilitating its application. The steps for
the IFTS are introduced in Algorithm 1, and further details follow the algorithm [30].

Algorithm 1: Fuzzy time series using variations of data

Definition:
Universal set U contains the interval between the least and greatest variations in the dataset.
Ui = Xi+1 − Xi, i = 1, 2, . . . , n − 1
U = [Min [39], Max [39]]

Input:
Air traffic: passenger, aircraft movements, and freight data set Xi corresponds to time ti, i=1, 2, . . . , n.

Output:
Fuzzy model of air traffic volume time series with the smallest RMSE value.

1
Divided U into m equal intervals fuzzy set ui, i = 1, 2, . . . , m. Find the middle points of the intervals

(
u0

i , i = 1, . . . , m
)
,

where initial values m = 5, 6, 7, . . . , 11

2
Calculate the C value of each interval
t = 0 initial values k = 500, ε = 1× 106, a(0) = 0, b(0) = 1, ∆C(0) = 0.5, n(0) = 1

3 if (t = i && i ≥ 1)
4 Compute ∆C(t) = b(t)−a(t)

k , and C(t)
i

5 if (a = 0 && b = 1)
6 C(t)

i = a(t) + i4 C(t), i = 1, 2, . . . , k− 1
7 if (a = 0 && b 6= 1)
8 C(t)

i = a(t) + i4 C(t), i = 1, 2, . . . , k
9 if (a 6= 0 && b = 1)
10 C(t)

i = a(t) + i4 C(t), i = 0, 1, 2, . . . , k− 1
11 if (a 6= 0 && b 6= 1)
12 C(t)

i = a(t) + i4 C(t), i = 0, 1, 2, . . . , k
13 Run IFTS to find C(t)

l , 0 ≤ l ≤ k
14 Find C = C(m)

l until b(m) − a(m) < ε

15
Determine respective values of the set of the fuzzy set with C,
µAi(ui) =

1
1+[C×(Ui−u0

i )]
2 , i = 1, 2, . . . , m

16 Choose a basis w=12 (1 < w < n), corresponding to the intervals of prior time.

17
Calculate fuzzy relationship matrix Rw(t)= Ow(t) ∩ K(t) =


R11
R21

R12
R22

. . .

. . .
R1j
R2j

. . .
Ri1

. . .
Ri2

. . .

. . .
. . .
Rij

.

18

Define F(t) the fuzzy forecasting of variations at the moment t
Ft =

[
E(R11, R21, . . . , Ri1) E(R12, R22, . . . , Ri2) . . . E

(
R1j, R2j, . . . , Rij

)]
E(R1k, R2k, . . . , Rik) =

R1k+R2k+...+Rik
w−2 , k = 1, 2, . . . , j

19

Forecast 7(m(7)×w(1)) fuzzy model data for time series, forecast value, and the result is calculated for the value t = w
based on the variations in the result of prior values(t−1, . . . , t−w)
X̂(t) = X(t− 1) + V(t)

V(t) = ∑w
i=1 µt(ui)×ui

m
∑w

i=1 µt(ui)

20
Each fuzzy model data are compared with real data, using the RMSE for all the fuzzy model data calculated, and we use
the RMSE as an evaluation criterion to compare with the listed models.

Definition 1. Let U be the whole object to be discussed, called the universe, U = {u1, u2, . . . , um}.
U represents each element in the universe. The fuzzy set of U is defined as follows

A = {µA(u1)/ u1, µA(u2)/ u2, . . . , µA(um)/ um} (8)

where µA(ui) is the membership function, µA(ui):U→[0, 1], µA(ui) indicates that the ui is in the
collection. The degree of membership in A, µA(ui)∈[0, 1], and 1 ≤ i ≤ m.
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Definition 2. Let X(t), (t = 1, 2, . . . ), for any X∈ U, if a real number fi(t)∈ [0, 1] is specified, fi(t)
is defined as a fuzzy subset. If F(t) is the set of f1(t), f2(t) . . . fi(t), then F(t) is called the fuzzy time
series of X(t).

Definition 3. Evaluate the difference between the original forecast and estimated data, {X̂i},
i = 1, 2, . . . , n, using MSE, MAE, MAPE, symmetric MAPE (SMAPE), and MASE. The smaller
difference indicates the better the predictive ability of the model.

Suppose the data set Xi corresponds to time ti, i = 1, 2, . . . , n. Based on the fuzzy set
between Xi+1 and Xi, the five steps of establishing an improved fuzzy time-series model [30]
are as follows:

Step 1: calculate the data change between two consecutive periods and find the
minimum value Min [39] and maximum value Max [39] between domains U.

Ui = Xi + 1−X i , i = 1, 2, . . . , n−1 (9)

Step 2: divide the universe U into m equal length intervals ui, i = 1, 2, . . . , m. Each
interval ui contains different growth rate values for different data. The midpoint of each
interval (u0

i , i = 1, 2, . . . , m) can be obtained.
Step 3: determine the corresponding value of the fuzzy set Ai of F(t). Fuzzy sets A1,

A2, . . . , Am is defined as

Ai = {µAi(ui)/ ui}, ui∈U, µAi ∈ [0, 1] (10)

µAi(ui) =
1

1 +
[
C×

(
Ui − u0

i
)]2 , i = 1, 2, . . . , m (11)

where C is a constant C ∈ (0,1), Ui is the data change between two consecutive periods
determined in Step 1, and u0

i is the midpoint of each interval determined in Step 2.
Step 4: Select the corresponding interval base w value (1 < w < n). In accordance with

the value of w, the fuzzy relation matrix Rw(t) is calculated. Once w has been selected,
an i × j operation matrix Ow (t) is obtained, where i is the number of rows and j is the
number of columns. The operation matrix conforms to the data t − 2, t − 3, . . . , t − w
and is consistent with the number of change intervals. A 1 × j matrix K(t) (row matrix
corresponding to the fuzzy change in data from year t − 1) is obtained. The relation matrix
R(t) is represented as follows:

R(t) = Ow(t) ∩ K(t) =


R11
R21

R12
R22

. . .

. . .
R1j
R2j

. . .
Ri1

. . .
Ri2

. . .

. . .
. . .
Rij

 (12)

The formula of fuzzy time series F (T) is represented

Ft =
[
E(R11, R21, . . . , Ri1) E(R12, R22, . . . , Ri2) . . . E

(
R1j, R2j, . . . , Rij

)]
(13)

where
E(R1k, R2k, . . . , Rik) =

R1k + R2k + . . . + Rik
w− 2

, k = 1, 2, . . . , j (14)

Step 5: use the following formula to predict the data of time t:

X̂(t) = X(t− 1) + V(t) (15)

V(t) = ∑w
i=1 µt(ui)× ui

m

∑w
i=1 µt(ui)

(16)
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where µt(ui) is an element of F(t), X(t− 1) is the value at time t− 1, and X̂(t) is the predicted
value at time t. The predicted value X̂(t) depends on the actual real value of X(t − 1) and
the value of V(t). The value of V(t) is determined in accordance with the change in data in
the entire time series and its previous values. The algorithm is described as follows:

Data changes between two consecutive periods are divided into appropriate groups;
larger data changes represent a greater number of clusters. A fuzzy relationship between
the universe and the fuzzy set can be established. In accordance with the result of t = w
based on the previous value (the results of the changes of t− 1, t− 2, . . . , t− w), a previous
value (t = w) is selected as the predicted value. The obtained results are compared with the
actual values and the error is estimated to evaluate the model’s validity. The constant C
affects the result of µAi(ui). The criterion for evaluating the forecasting model (CEF model)
is used to select the optimal C value; this is achieved through the following five steps:

Step 1: import k and ε values, where k is the number of times each iteration is divided
and ε is the error of C. The smaller the value of ε, the longer the computation time required.

Step 2: when t = 0, allocate the initial value: a(0) = 0, b(0) = 1.
Step 3: when t = i, i ≥ 1, calculate the following values.

a(t) = a(t−1) +
[
n(t−1) − 1

]
4 C(t−1), (17)

b(t) = a(t−1) +
[
n(t−1) + 1

]
4 C(t−1), (18)

4 C(t) =
b(t) − a(t)

k
, and C(t)

i , (19)

where
if a = 0 and b = 1, then C(t)

i = a(t) + i4 C(t), i = 1, 2, . . . , k− 1,

if a = 0 and b 6= 1, then C(t)
i = a(t) + i4 C(t), i = 1, 2, . . . , k,

if a 6= 0 and b = 1, then C(t)
i = a(t) + i4 C(t), i = 0, 1, . . . , k− 1,

if a 6= 0 and b 6= 1, then C(t)
i = a(t) + i4 C(t), i = 0, 1, . . . , k.

Step 4: calculate IFTS using C(t)
i . Find C(t)

l to optimize CEF model.

Step 5: repeat Steps 3 and 4 to find C = C(m)
l until b(m)−a(m) < ε.

In the IFTS model, dividing intervals for the universal set (DIU) algorithm includes
the following three steps:

Step 1: when t = 0, ε > 0 is a small positive number. Clustering elements of the
initialization sequence is represented as Z(0) =

(
z(0)1 , z(0)2 , . . . , z(0)n

)
= (x1, x2, . . . , xn).

Step 2: update each fuzzy data point according to the following formula.

z(t+1)
i =

∑n
i′=1 f

(
z(t)i , z(t)i′

)
· z(t)i′

∑n
i′=1 f

(
z(t)i , z(t)i′

) (20)

where f (z(t)i , z(t)i′ ) is a truncated Gaussian kernel and the formula is

f
(

z(t)i , z(t)i′

)
=

{
exp

(
− d

λ

)
i f d = d

(
z(t)i , z

′(t)
i

)
≤ ds,

0 i f d > ds,
(21)

where d
(

z(t)i , z
′(t)
i

)
is the Euclidean distance between z(t)i and z

′(t)
i and ds is the average

value of the distance between all data element pairs, and the formula is

ds =
2

n(n− 1) ∑
i<i′

d
(

xi, x
′
i

)
(22)
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where n is the number of data points, λ depends on ds. When λ→0, the data have n intervals
and when λ→∞, the data have one interval.

Step 3: repeat Step 2 until maxi

{
d
(

z(t)i , z(t+1)
i

)}
< ε are met. Each element in the data

set can converge to the representative element z(t)i , i = 1, 2, . . . , m. When the calculation
is finished, we have a sequence of m representative elements and m is the interval value
dividing the universe.

In this study, the fuzzy time series of the aforementioned model was used to fuzzify an
original air traffic time series. A set of corresponding fuzzy data was output through fuzzy
reasoning and the fuzzy time-series data were taken as the independent regression variable
for SVR. The independent regression variable extracted the base number corresponding
to a 12-period interval (due to the seasonal cycle) combined with the results from the
machine-learning SVR model. Thus, an FSVR model was developed for predicting air traffic
volume. In the process of fuzzification, the factors affecting the fuzzy set segmentation
were as follows:

1. The schedule in winter and summer in accordance with the time zone of each airport;
2. The role of each airport in the global air transport network in terms of its unique

function due to its geographical location;
3. The continuous holidays of countries in each region;
4. Demand for tourism in the low and peak seasons or the impact of significant activities,

such as the Olympic Games or World Expo.

Two seasonal flight schedules were adopted. Winter flights were defined as those from
November 1 to March 31 of the following year and summer flights were those from April
1 to October 31. The fuzzy set was established in accordance with the air traffic domain data
based on the shift table factor and could be divided into the winter peak, summer peak,
low peaks, and an intermediate conversion value. The basic fuzzy set segmentation was
m = 5 (summer peak, winter peak, intermediate transformation, summer low peak, and low
winter peak) in addition to other factors affecting traffic, such as local tourism demand in
light and peak seasons, national holidays, and demand for goods or trade. The membership
function of the fuzzy features could be adjusted to obtain additional fuzzy sets. In this
study, the fuzzy set of air traffic was divided into at least 5 fuzzy sets and at most 11 fuzzy
sets; the number of fuzzy sets was thus 5 ≤ m ≤ 11. The previous time interval was set
to w = 12 and the seasonal factor was 12 months. By using the IFTS model, a fuzzy data
model with seven sets of fuzzy sets (m = 7) for w = 12 was generated. For each group of
fuzzy data sets, the RMSE was calculated and the group of fuzzy data sets with the smallest
RMSE was selected as the input data for the autoregressive independent variables in the
next step. The fuzzy extraction parameter w was the interval cardinality corresponding
to the 12 cycles and the fuzzy relationship matrix was calculated prior to these 12 cycles.
Therefore, the amount of data in each group was divided by 12. The original data were
the dependent variable for the SVR regression calculation; the independent variable was
fuzzy. The data were then divided into training and testing sets to identify the optimal
parameters for SVR and to establish the prediction model.

2.4. Evaluation Criteria

In this study, the MA percentage error (MAPE), MA error (MAE), and RMSE were
selected as the measurement indexes to evaluate which models had high predictive perfor-
mance. The MAPE, RMSE, and MAE are calculated as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100 (23)

RMSE =

√
1
n
×

n

∑
i=1

(
Ŷi −Yi

)2 (24)
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MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (25)

where Yi represents the actual value, Ŷi represents a predicted value, and n represents the
number of prediction periods. The MAPE is a relative index and unaffected by units or
the magnitude of the actual and predicted values. The MAPE can be used to evaluate the
relative size of the difference between predicted and actual values. The RMSE is the square
root of the ratio of the deviation between observed values and the true value to the number
of observations. The RMSE is thus a measurement of the deviation between observed
and true values. The standard error, MAE, indicates the precision of measurements. The
MAE is the absolute residual value between the average predicted value and actual value
for each observation; thus, it can be used to evaluate differences between predicted and
actual values.

3. Results and Discussion

The FSVR model predictions were compared with those of five models, namely the
Holt–Winters, ETS, ARIMA, SARIMA, and SVR models. The training data set was extracted
from August 2014 to December 2018; the test data set was extracted from January to
December 2019. The training set was used to train each predictive model; the established
models were then used to predict values from January to December 2019; these predicted
values for 2019 were verified with the test set values. Tables 1 and 2 provide data on the
freight volume of each airport.

Table 1. Statistics on the freight volume of the top ten airports.

Airport Min Max Mean Q1 Q3 IQR SD CV

Atlanta 4.76 6.39 5.46 5.16 5.71 0.56 0.38 6.92
Beijing 10.371 18.87 16.49 16.10 17.52 1.43 1.74 10.54
Dubai 18.62 24.10 21.45 20.32 22.21 1.89 1.39 6.47

Los Angeles 15.16 21.66 19.01 18.06 20.42 2.36 1.64 8.63
Haneda, Tokyo 8.43 13.19 10.64 9.89 11.46 1.57 1.13 10.66

O’Hare 11.49 18.33 15.20 14.16 16.46 2.31 1.57 10.29
Heathrow, London 12.33 16.31 14.09 13.32 14.72 1.40 0.94 6.70

Hongkong 26.40 47.50 39.87 37.10 43.10 6.00 4.35 10.91
Pudong, Shanghai 19.43 36.39 29.82 27.87 32.06 4.19 3.36 11.28

Charles de Gaulle, Paris 14.01 20.10 16.24 15.32 16.91 1.59 1.19 7.30
Total 141.00 222.82 188.27 177.29 200.57 23.29 17.69 89.71

Unit—10,000 tons; Min—minimum value; Max—maximum value; Mean—average value; Q1—first quartile;
Q3—third quartile; IQR—Interquartile range; SD—standard deviation; CV—coefficient of variation.

Based on the study by Zhang (2021) [40], we assumed that additive decomposition
decomposes the time series into three components as,

yt = Tt + St + Rt (26)

where Tt is the trend item, St is the seasonal item, and Rt is the residual item.
The trends and seasonality of the three air traffic time series (with 3-, 6-, or 12-month

time horizons) were decomposed; the trend strength is defined as in Formula (27) and is
between 0 and 1. The seasonal intensity is defined as in Formula (28), which is computed
using detrended data and is also between 0 and 1. Seasonal intensity close to 0 indicates
that the series has little seasonality [15].

FT = max
(

0, 1− Var(Rt)

Var(Tt + Rt)

)
(27)

Fs = max
(

0, 1− Var(Rt)

Var(St + Rt)

)
(28)
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Table 2. Seasonality and trend strength of three major categories of air freight traffic at the top
ten airports.

Airport
Freight Volume

Seasonal Trend

Atlanta (ATL) 0.74 0.80
Dubai (PEK) 0.96 0.77
Dubai (DXB) 0.69 0.48

Los Angeles (LAX) 0.86 0.87
Haneda (HND) 0.92 0.87
O’Hare (ORD) 0.73 0.71

Heathrow, London (LHR) 0.88 0.90
Hongkong (HKG) 0.94 0.87

Pudong (PVG) 0.93 0.89
Charles de Gaulle (CDG) 0.79 0.53

The seasonality and trend strength of the three air traffic time series are presented
in Table 2. In terms of freight volume, the airports with seasonality exceeding 0.9 were
PEK, HND, HKG, and PVG, which had values ranging from 0.92 to 0.96; DXB had weaker
minimum seasonality of 0.69. ATL, ORD, and CDG had seasonal intensity of 0.73–0.79,
and LAX and LHR had seasonal intensity of 0.86–0.88. However, most airports had low
seasonality for freight traffic. The trend strength for freight volume was lowest for DXB
at 0.48; CDG also had a weak trend, with a strength of 0.53. LHR has the strongest trend,
with a strength of 0.90. The other seven airports had trends of strength 0.71–0.89, indicating
weak trends. The trend in freight volume at each airport was weak.

Among the five forecasting models, the SVR model resulted in the lowest MAE value
for five airports, namely ATL, LAX, ORD, DXB, and CDG (Table 3). The Holt–Winters
additive model yielded the smallest MAE for LHR and HKG. ETS had the lowest MAE
for PEK and HND; SARIMA had the lowest MAE for only PVG. However, the MAE and
accuracy of the FSVR model were superior to those of the other models for all airports. The
average MAE of the FSVR model (0.209) was 82% smaller than the next best MAE, that of
the SVR model (1.215).

The MAPEs of the five prediction models (Table 3) were >10% for only two airports:
ATL (8.601%) and PEK (9.925%). The Holt–Winters additive model had MAPE >10%
for ORD and PVG (good predictions) and <10% for all other airports (highly accurate
predictions). However, the FSVR model yielded a lower MAPE (<1.6) than the other
models for all airports, indicating that its predictions were highly accurate. The overall
average MAPE of the FSVR model (1.019%) was approximately 84% lower than that of
SVR, the next best model (6.625%).

The FSVR model was thus the best model for forecasting freight volumes in interna-
tional airports according to all three of the indicators. The relevant parameters of each
prediction model are listed in Table 3. Figure 1 presents the actual and predicted freight
volumes for 2019. The RMSEs of the five prediction models are also presented in Table 4.
The ARIMA model resulted in the highest RMSE and was thus the least accurate prediction
model. The Holt–Winters additive model yielded the smallest RMSE for LAX, LHR, and
HKG, the ETS model had the lowest RMSE for PEK and HND, and the SARIMA model had
the lowest value for PVG. The SVR model returned the lowest RMSE for three airports: ATL,
DXB, and CDG. However, the FSVR model had a smaller RMSE than the other five models
for all airports. The mean RMSE for the FSVR model was 0.304, approximately 81% lower
than that for the next-best model (SVR), which was 1.681. The hyperparameters of the SVR
algorithm, the penalty coefficient C, and the kernel parameter of the Gaussian RBF σ should
be optimized to find the optimal values for each data set, because no model is considered
to be optimal in all situations. For most of the models, the width of the insensitive loss
function ε set to 0.1; however, the ε is the allowable error of “ε-tube”, which represents the
approximation accuracy of the training data points. Many studies have demonstrated that
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adjusted ε can improve the SVR accuracy [41–43]. In our results, the ε was also found to
influence the SVR accuracy in hyperparameters of both SVR and FSVR algorithms.

Table 3. Parameters related to each forecasting model of freight volume.

Airport
Holt–Winters

(ADD)
(α, β, γ)

ETS
(α, β, γ)

ARIMA
(p, d, q)

SARIMA
(p, d, q)(P, D, Q)S

SVR
(ε, C, σ)

FSVR
(ε, C, σ)

ATL (0.404, 0.000, 0.194) (0.462, N, 0.001) (1, 0, 1)
with non-zero mean

(2, 0, 2) (1, 0, 0)
with non-zero mean (0.536, 1.000, 0.125) (0.010, 91.000, 0.125)

LAX (0.731, 0.000, 1.000) (0.772, 0.001, 0.001) (4, 1, 1) (2, 0, 0) (1, 0, 0)
with non-zero mean (0.59, 0.020, 0.04) (0.010, 0.500, 0.100)

ORD (0.438, 0.026, 1.000) (0.589, N, 0.001) (0, 1, 2) (1, 0, 0) (1, 0, 0)
with non-zero mean (0.616, 0.010, 0.758) (0.044, 0.794, 0.054)

DXB (0.797, 0.000, 1.000) (0.718, N, 0.002) (0, 1, 2)
with drift (0, 1, 0) (0, 1, 0) (0.435, 1.000, 0.189) (0.088, 90.510, 0.088)

LHR (0.046, 0.661, 0.432) (0.001, 0.001, 0.003)
ϕ = 0.973 (0, 1, 0) (0, 1, 1)(0, 1, 1) (0.354, 0.316, 0.074) (0.010, 5.000, 0.016)

CDG (0.273, 0.000, 0.560) (0.365, N, 0.001) (0, 1, 0) (0, 1, 1) (0, 1, 1) (0.500, 0.562, 0.063) (0.100, 256.000, 0.100)

PEK (0.327, 0.006, 0.612) (0.424, N, 0.001) (0, 1, 2) (1, 0, 1) (1, 0, 0)
with non-zero mean (0.650, 8.000, 0.101) (0.100, 64.000, 1.000)

PVG (0.333, 0.000, 0.479) (0.373, N, 0.001) (0, 1, 1) (0, 0, 2) (1, 0, 1)
with non-zero mean (0.287, 0.251, 0.574) (0.032, 512.000, 0.001)

HND (0.208, 0.569, 0.724) (0.188, 0.133, 0.001) (0, 1, 1) (0, 1, 2) (0, 1, 1) (0.100, 1.000, 0.300) (0.100, 128.000, 0.001)

HKG (0.204, 0.317, 0.749) (0.515, N, 0.001) (0, 1, 0) (1, 1, 0) (0, 1, 1) (0.650, 1.00, 0.790) (0.100, 512.000, 0.001)

Historical air traffic data were used as the autoregressive term in the regression item of
the SVR model. The function correlation characteristics between the current data dependent
variables and the historical traffic data independent variables were used to calculate the
results. Global air transport is primarily passenger transport and airlines estimate passenger
travel demand for each season. Annual applications for allocations are divided into two
fixed seasons, winter and summer, as determined by an international conference. Airline
transportation operates in accordance with these winter and summer schedules; thus, the
schedule has a 1-year (12-month) cycle. According to the seasonal analysis of various
types of air traffic volume presented in Table 5, the air freight volume at each airport was
inconsistent due to the relatively small volume of all-freight aircraft service traffic, and the
seasonal intensity varied from strong to weak. Therefore, the current traffic volume was
assumed to be related to the χ value of the independent variable either 1 or 12 periods
behind the original traffic data. Through SVR fitting of data from 1 or 12 periods in the
past, the functional relationships of the data were calculated. The number of autoregressive
lag periods that produced the optimal dependent variable y could be determined using
the RMSE and MAPE values. For example, the traffic volume at ATL was determined
through the following procedure. The analysis table of the SVR autoregressive lag period
of ATL air traffic volume is presented in Table 5. The one period behind indicates that the
predicted variable is modeled with the first lagged observation in a form of yt = f (yt − 1).
The independent variable in the freight volume item was superior for the SVR model when
using traffic data that were one period behind. Therefore, SVR model predictions of the
freight volume for each airport in this paper are based on data from one period behind.

For the SVM function in the R software, the three key parameters of SVR were set to
their default values: penalty coefficient C = 1, kernel parameter of the Gaussian RBF σ = 1,
and width of the insensitive loss function ε = 0.1. The three parameter adjustment stages
were for C, σ, and ε; the adjustments were performed using the grid search method in R.
The default values of three parameters were starting value in the optimization algorithm. A
corresponding model was trained for each parameter combination, the model performance
was determined and the model with the highest performance was selected. During the
training process, the built-in tune function in the R e1071 package was used to adjust the
parameters and automatically cross-validate the model to ensure that it was reliable with
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the adjusted parameters. The following parameter settings were investigated: C = [20, 20.1,
20.2, . . . , 214], σ = [2–10, 2–9.9, 2–9.8, . . . , 20], and ε = [2–10, 2–9.9, 2–9.8, . . . , 20].
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Figure 1. The forecast results of the freight volume of each airport from January to December 2019:
(A) ATL Atlanta; (B) LAX Los Angeles; (C) ORD O’Hare; (D) DXB Dubai; (E) LHR London Heathrow;
(F) CDG Paris Charles de Gaulle; (G) PEK Beijing Capital; (H) PVG Shanghai Pudong; (I) HND Tokyo
Haneda; (J) HKG Hong Kong.

The fuzzification of different airports and traffic categories form different universes of
discourse. In fuzzy theory, each universe of discourse is divided into different numbers of
fuzzy sets in accordance with the universe’s characteristics, and membership functions are
calculated. The FSVR model used the IFTS model combined with SVR to fuzzify air traffic
volume; fuzzy traffic volume was then used as the AR independent variable for SVR. In the
fuzzification process, the universe of data for the time series of traffic volume was defined
and divided into appropriate fuzzy sets with different increments of change; this process
produced fuzzy data with a lower RMSE. As described near the end of the Methods section,
seven fuzzy groups defined as m = 5, 6, 7, 8, 9, 10, or 11 were selected, and w was 12. By
using the fuzzified data from these 12 periods, the seven groups were further fuzzified by
these seven groups. The fuzzified data resulting in the smallest RMSE error were used as
the input for the optimal FSVR AR term in the model data.

The top ten airports were divided into three regions in accordance with their geo-
graphic location: (1) North America; (2) the Middle East and Europe; and (3) Asia. Table 6
presents the optimal number of fuzzy sets for each airport, with these numbers obtained
through experimentation. The fuzzy segmentations for airports in the North American
region—such as passenger traffic, aircraft takeoffs and landings, and freight volume—were
divided into five to seven sets. In the Middle East and Europe, the segmentations for freight
volume differed substantially between airports, at 6 to 10 sets. In the Asian region, the
segmentations also varied substantially between airports, at six to nine sets.
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Table 4. The experimental results of the freight volume forecast model MAPE, MAE, and MAPE values.

Airport Criteria Holt–Winters (ADD) ETS ARIMA SARIMA SVR FSVR

ATL
MAPE(%) 6.120 6.036 8.601 6.915 5.381 0.300

MAE 0.316 0.313 0.449 0.359 0.286 0.016
RMSE 0.412 0.385 0.485 0.419 0.349 0.020

LAX
MAPE(%) 5.304 7.961 10.782 5.418 4.937 1.431

MAE 1.002 1.521 1.988 1.024 0.914 0.268
RMSE 1.115 1.577 2.304 1.139 1.223 0.321

ORD
MAPE(%) 14.430 9.957 13.146 9.957 6.835 1.590

MAE 2.125 1.441 1.830 1.406 0.933 0.232
RMSE 2.176 1.536 2.204 1.628 1.334 0.297

DXB
MAPE(%) 9.781 7.356 11.845 7.376 6.708 1.071

MAE 1.997 1.490 2.404 1.512 1.410 0.230
RMSE 2.425 1.931 2.735 1.835 1.574 0.266

LHR
MAPE(%) 2.154 3.287 11.952 3.703 3.793 0.816

MAE 0.303 0.465 1.641 0.520 0.546 0.115
RMSE 0.374 0.535 1.740 0.610 0.778 0.154

CDG
MAPE(%) 6.454 7.916 11.585 5.697 5.753 0.176

MAE 1.019 1.243 1.779 0.900 0.887 0.026
RMSE 1.211 1.424 1.979 1.053 1.050 0.047

PEK
MAPE(%) 5.566 4.688 9.925 6.649 7.125 1.197

MAE 0.840 0.705 1.311 0.952 0.854 0.190
RMSE 0.998 0.865 2.195 1.229 2.040 0.373

PVG
MAPE(%) 10.544 9.353 10.497 4.180 9.011 1.243

MAE 3.385 2.927 2.704 1.263 2.377 0.384
RMSE 4.190 3.713 4.114 1.827 3.264 0.598

HND
MAPE(%) 8.492 6.867 12.366 6.994 7.930 1.114

MAE 0.900 0.720 1.254 0.729 0.843 0.117
RMSE 0.948 0.780 1.475 0.811 0.977 0.170

HKG
MAPE(%) 3.688 5.615 13.717 6.100 8.777 1.254

MAE 1.347 2.061 4.808 2.292 3.099 0.510
RMSE 1.648 2.431 6.454 2.578 4.220 0.797

Ave. of MAPE(%) 7.253 6.904 11.442 6.299 6.625 1.019
Ave. of MAE 1.323 1.288 2.017 1.096 1.215 0.209
Ave. of RMSE 1.550 1.518 2.568 1.313 1.681 0.304

Bold means the lowest value. Underline means the value >10.

Table 5. Analysis of SVR autoregressive lag periods for air traffic at Atlanta International Airport.

Order
Freight Volume

RMSE MAPE No. of Support Vectors

12 periods behind 0.586 10.555 51
1 period behind 0.368 5.523 46

Bold means the lowest RMSE and MAPE values.

Table 6. The optimal number of fuzzy sets for the time series of fuzzy air traffic.

Area North America Middle East and Europe Asia

Airport ATL LAX ORD DXB LHR CDG PEK PVG HND HKG
Freight volume 5 6 7 10 7 6 6 7 9 6

Bold indicates that the fuzzy segmentation has more fuzzy sets.

The results presented in Table 6 reveal that most of the fuzzy sets of the air traffic IFTS
were divided into five to seven sets; for some airports, a greater division into 8–11 sets
was required to minimize the RMSE. In the IFTS model, the universe of discourse was
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established and fuzzy relationships were determined in accordance with changes in his-
torical data. With the fuzzy classification algorithm, the data were appropriately divided
into fuzzy sets to establish membership function values for elements of similar levels in a
time series. Corresponding fuzzy membership values were then established. The fuzzy
relationship matrix was calculated for the period before the relevant time series, facilitating
fuzzification of the fuzzy interpolation time series with fewer errors. The fuzzified data set
could achieve better predictions than the original data, as indicated by Table 7. The IFTS
fuzzification was thus advantageous.

Table 7. Fuzzy air freight traffic time series errors.

Freight Volume Lag1-RMSE Fuzzy-RMSE

ATL 0.397 0.048
LAX 1.462 0.586
ORD 1.438 0.452
LHR 0.855 0.250
CDG 1.420 0.055
DXB 1.416 0.439
PEK 2.033 0.574
PVG 3.237 0.943
HKG 4.252 1.328
HND 1.122 0.300

DXB expanded rapidly, but its rate of expansion declined. The decline in passenger
traffic at DXB in 2019 was due to temporary runway closures and the bankruptcy of India’s
Jet Airways (for which Dubai was a major destination). Moreover, the second-largest
airline at DXB after Emirates—Flydubai—was affected by non-delivery of the Boeing
737 MAX. In 2019, PEK continued to be affected by intensifying economic and trade friction
between China and the United States, geopolitical conflict, financial market turmoil, and
other problems. With the completion and operation of Beijing Daxing Airport (PKX) on
25 September 2019, some flights were transferred from PEK. Capacity at Daxing Airport has
declined under the new pattern of “one city, two games”. The freight and mail throughput
of Beijing Capital Airport in 2019 reached 1,955,326 tons, 5.7% lower than the previous year.

HKG is another airport affected by Sino, US economic and trade issues. Many vital
industries in Hong Kong, such as trade, finance, and tourism, rely on convenient and
reliable air travel. The airport’s convenient transportation has made Hong Kong an essential
gateway between the world and China. From the second half of 2019, the air traffic
volume of Hong Kong International Airport was affected by intense political turmoil lasting
several months and geopolitical tensions between China and the United States. Actions
related to the Hong Kong protests, such as the blockage of transit facilities and widespread
violence between protestors and police, affected Hong Kong’s export-oriented economy
and international image. Due to the violence and rapidly changing political situation,
HKG was closed, and approximately 40 countries issued a travel warning for Hong Kong.
The overall freight volume of HKG decreased by 6.1% year-on-year to 4.8 million tons.
International tourism in Hong Kong remained low; the decline in passenger traffic to
and from mainland China and Southeast Asia also significantly affected the operation of
the airport.

The passenger volume of DXB declined due to the temporary shocks. PEK had reduced
traffic volume due to competition from PKX. HKG was closed due to protests, violence,
and political instability, resulting in a decline in its role as a traffic hub. Thus, various
nonseasonal factors can lead to a decline in traffic at airports. The use of Tai’s IFTS model
enabled FSVR [30] to be applied to nonseasonal time series. Historical traffic changes could
be used to calculate the fuzzified traffic volume and improve fuzzy historical interpolation.
By contrast with other models, the FSVR model still accurately predicted the air traffic
volume of each airport in 2019. A comparison of the actual and predicted volumes for these
three airports is presented in Figure 2.
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4. Conclusions

Forecast transportation volumes are the primary basis for the planning of transporta-
tion capacity increases by authorities in the transportation industry. Traffic volumes and
trends must be accurately forecast as early as possible to predict bottlenecks and plan
equipment updates and capacity expansion. Several years’ or decades’ worth of air freight
volume data for airports were collected to form a time series. A reasonable and accurate
forecast model was used to predict the future traffic volume of the airports. These pre-
dictions can be used for timely reviews of airport capacity to enable early planning of
necessary construction projects.

A predictive analysis of the freight volume for the 10 international airports with the
highest global airport passenger traffic (ATL, PEK, DXB, LAX, HND, ORD, LHR, HKG,
PVG, and CDG) from August 2014 to December 2019 was performed. The input data for
the produced FSVR model were air traffic time-series data fuzzified by the IFTS model
proposed by Tai [30]. As IFTS can be applied to nonseasonal time series and historical
traffic changes were considered when fuzzifying the time series, a fuzzy classification
algorithm was used to appropriately classify traffic changes for elements of similar time
series levels. A suitable fuzzy set was formed, a membership function was generated, and
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a fuzzy relationship was established, resulting in fuzzy interpolation with minimal errors.
The fuzzy data set with the minimal RMSE was used as the input for SVR for predicting
the time-series data. However, fuzzy uncertainty treats noise on different data entries as
independent disturbances, which may limit FSVR applicability. The air freight volume
forecasts made by the FSVR model had the lowest MAE, RMSE, and MAPE of all compared
models for all airports. In particular, the MAPE of the FSVR model was <2.5% for all
airports, indicating highly accurate forecasts that are superior to those of other forecasting
models. Thus, the FSVR model is the best model for air traffic forecasting among the
models analyzed. In addition, the hybrid modeling of the FSVR model over the SVR model
provides significant improvement over the SVR model.
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