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Abstract: We prove a general theorem, which provides a broad collection of univalent functions with
equal Grunsky and Teichmüller norms and thereby the Fredholm eigenvalues and the reflection
coefficients of associated quasicircles. It concerns an important problem to establish the exact
or approximate values of basic quasiinvariant functionals of Jordan curves, which is crucial in
applications and in the numerical aspect of quasiconformal analysis.
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1. Preliminaries
1.1. The Teichmüller and Grunsky Norms of Univalent Functions

Consider the class SQ of univalent functions f (z) = a1 + azz2 + . . . in the unit disk
D = {|z| < 1} admitting quasiconformal extensions across the boundary unit circle S1,
hence to the whole Riemann sphere Ĉ = C∪ {∞}. To have compactness in the topology
of locally uniform convergence on C, one must add the third normalization condition, for
example, f (∞) = ∞.

The Beltrami coefficients of extensions are supported in the complementary disk

D∗ = Ĉ \D = {z ∈ Ĉ : |z| > 1}

and run over the unit ball

Belt(D∗)1 = {µ ∈ L∞(C) : µ(z)|D = 0, ‖µ‖∞ < 1}.

Each µ ∈ Belt(D∗)1 determines a unique homeomorphic solution to the Beltrami
equation ∂w = µ∂w on C (quasiconformal automorphism of Ĉ) normalized by wµ(0) =
0, (wµ)′(0) = 1, wµ(∞) = ∞, whose restriction to D belongs to SQ(∞).

The Schwarzian derivatives of these functions

S f (z) =
( f ′′(z)

f ′(z)

)′
− 1

2

( f ′′(z)
f ′(z)

)2
, f (z) = wµ(z)|D,

belong to the complex Banach space B = B(D) of hyperbolically bounded holomorphic
functions in the disk D with norm

‖ϕ‖B = sup
D

(1− |z|2)2|ϕ(z)|

and run over a bounded domain in B modeling the universal Teichmüller space T. The
space B is dual to the Bergman space A1(D), a subspace of L1(D) formed by integrable
holomorphic functions (quadratic differentials ϕ(z)dz2) on D. On Teichmüller space theory
and its deep applications to various fields of Mathematics see, e.g., [1–5].
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One defines for any f ∈ SQ(∞) its Grunsky coefficients αmn from the expansion

log
f (z)− f (ζ)

z− ζ
=

∞

∑
m,n=1

αmnzmζn, (z, ζ) ∈ D2, (1)

where the principal branch of the logarithmic function is chosen. These coefficients satisfy
the inequality ∣∣∣ ∞

∑
m,n=1

√
mn αmn( f )xmxn

∣∣∣ ≤ 1 (2)

for any sequence x = (xn) from the unit sphere S(l2) of the Hilbert space l2 with norm

‖x‖ =
(∞
∑
1
|xn|2

)1/2; conversely, the inequality (2) also is sufficient for univalence of a locally

univalent function in D (cf. [6]).
The minimum k( f ) of dilatations k(wµ) = ‖µ‖∞ among all quasiconformal extensions

wµ(z) of f onto the whole plane Ĉ (forming the equivalence class of f ) is called the
Teichmüller norm of this function. Hence,

k( f ) = tanh dT(0, S f ),

where dT denotes the Teichmüller-Kobayashi metric on T. This quantity dominates the
Grunsky norm

κ( f ) = sup
{∣∣∣ ∞

∑
m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

by κ( f ) ≤ k( f ). These norms coincide only when any extremal Beltrami coefficient µ0 for
f (i.e., with ‖µ0‖∞ = k( f )) satisfies

‖µ0‖∞ = sup
{∣∣∣ ∫∫

D∗
µ(z)ψ(z)dxdy

∣∣∣ : ψ ∈ A2
1(D∗), ‖ψ‖A1 = 1

}
= κ( f ) (z = x + iy).

Here A1(D∗) denotes the subspace in L1(D∗) formed by integrable holomorphic
functions (quadratic differentials) on D∗ (hence, ψ(z) = c4z−4 + c5z−5 + . . . ), so ψ(z) =
O(z−4) as z→ ∞, and A2

1(D∗) is its subset consisting of ψ with zeros even order in D∗, i.e.,
of the squares of holomorphic functions (see, e.g., [7–9]). Note that every ψ ∈ A2

1(D∗) has
the form

ψ(z) =
1
π

∞

∑
m+n=4

√
mn xmxnz−(m+n)

and ‖ψ‖A1(D∗) = ‖x‖l2 = 1, x = (xn).
The method of Grunsky inequalities was generalized in several directions, even to

bordered Riemann surfaces X with a finite number of boundary components. In particular,
for any unbounded simply connected domain, D∗ 3 ∞, the expansion (1) assumes the form

− log
f (z)− f (ζ)

z− ζ
=

∞

∑
m,n=1

βmn√
mn χ(z)m χ(ζ)n ,

where χ denotes a conformal map of D∗ onto the disk D∗ so that χ(∞) = ∞, χ′(∞) > 0
(cf. [10]).

Accordingly, the generalized Grunsky norm is defined by

κD∗( f ) = sup
{∣∣∣ ∞

∑
m,n=1

βmn xmxn

∣∣∣ : x = (xn) ∈ S(l2)
}

.
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1.2. Extremality and Substantial Points

In the general case, µ0 ∈ Belt(D∗)1 is extremal in its class if and only if

‖µ0‖∞ = sup
{∣∣∣ ∫∫

D∗
µ(z)ψ(z)dxdy

∣∣∣ : ψ ∈ A1(D∗), ‖ψ‖A1 = 1
}

.

Moreover, if κ( f ) = k( f ) and the equivalence class of f is a Strebel point of T,
which means that this class contains the Teichmüller extremal extension f k|ψ0|/ψ0 with
ψ0 ∈ A1(D), then necessarily ψ0 = ω2 ∈ A2

1 (cf. [7,11–13]). The Strebel points are dense in
any Teichmüller space (see [3]).

Assume that µ ∈ Belt(D∗)1 is extremal in its class but not of Teichmüller type. A point
z0 ∈ S1 is called substantial (or essential) for µ0 if for any ε > 0 there exists a neighborhood
U0 of z0 such that

sup
D∗\U0

|µ0(z)| < ‖µ0‖∞ − ε;

the maximal dilatation k(wµ0) = ‖µ0‖∞ is attained on D∗ only by approaching this point.
In addition, there exists a sequence {ψn} ⊂ A1(|D∗) such that ψm(z) → 0 locally

uniformly on D∗ but ‖ψn‖ = 1 for any n, and

lim
n→∞

∫∫
D∗

µ0(z)ψn(z)dxdy = ‖µ0‖∞.

Such sequences are called degenerated.
The image of a substantial point is a common point of two quasiconformal arcs, which

can be of spiral type.

1.3. Fredholm Eigenvalues and Quasireflections

The Teichmüller and Grunsky norms are intrinsically connected with quasiconformal
reflections, Fredholm eigenvalues and other quasiinvariants of quasiconformal curves. We
outline briefly the main notions; the details see, e.g., in [1,14–16].

The quasiconformal reflections (or quasireflections) are the orientation reversing qua-
siconformal homeomorphisms of the sphere Ĉ which preserve point-wise some (oriented)
quasicircle L ⊂ Ĉ and interchange its interior and exterior domains. One defines for L its
reflection coefficient

qL = inf k( f ) = inf ‖∂z f /∂z f ‖∞,

taking the infimum over all quasireflections across L. Due to [1,14], the dilatation

QL = (1 + qL)/(1− qL) ≥ 1

is equal to the quantity QL = (1 + kL)
2/(1 − kL)

2, where kL is the minimal dilatation
among all orientation preserving quasiconformal automorphisms f∗ of Ĉ carrying the unit
circle onto L, and k( f∗) = ‖∂z f∗/∂z f∗‖∞.

The Fredholm eigenvalues ρn of an oriented smooth closed Jordan curve L ⊂ Ĉ are
the eigenvalues of its double-layer potential. These values are crucial in many applications.

The least positive eigenvalue ρL = ρ1 plays is naturally connected with conformal and
quasiconformal maps and can be defined for any oriented closed Jordan curve L by

1
ρL

= sup
|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

,

where G and G∗ are, respectively, the interior and exterior of L; D denotes the Dirichlet
integral, and the supremum is taken over all functions u continuous on Ĉ and harmonic on
G ∪ G∗.
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A rough upper bound for ρL is given by Ahlfors’ inequality

1
ρL
≤ qL,

where qL denotes the minimal dilatation of quasireflections across L [17].
One of the basic tools in quantitative estimating the Freholm eigenvalues ρL of qua-

sicircles is given by the Kühnau-Schiffer theorem [9,18], which states that the value ρL is
reciprocal to the Grunsky norm κ( f ) of the Riemann mapping function of the exterior domain of L.

For all functions f ∈ SQ with k( f ) = κ( f ), we have the exact explicit values

q f (S1) = 1/ρ f (S1) = κ( f ).

1.4. Harmonic Beltrami Coefficients

By the Ahlfors-Weill theorem strengthening the classical Nehari’s result on univalence
in terms of the Schwarzians, every ϕ ∈ B with ‖ϕ‖B < 2 is the Schwarzian derivative of a
univalent function f in D∗, and this function has quasiconformal extension onto the disk
D∗ with Beltrami coefficient

νϕ(z) = −
1
2
(|z|2 − 1)2 ϕ(1/z)(1/z4), z ∈ D∗; (3)

see [2,3,19]. The Beltrami coefficients of such form are called harmonic.

2. A Global Theorem for the Disk

The aim of this paper is to prove the following theorem which provides a broad
collection of univalent functions with equal Grunsky and Teichmüller norms and thereby
the Fredholm eigenvalues ρL and the reflection coefficients of associated quasicircles. It
concerns the important problem to establish the exact or approximate values of basic
qiasiinvariant functionals of Jordan curves, which is crucial in both applications and in
numerical aspect of quasiconformal analysis.

This problem has different aspects: analytic, geometric, potential. It still remains open
and far from its complete solving. The known results in this direction are presented, for
example, in [14,16,20].

Theorem 1. Suppose that a function f (z) ∈ SQ is C3 smooth on some open arc γ0 ⊂ S1\{z1, . . . , zn},
and let its Schwarzian S f satisfy: ‖S f ‖B < 2, and there exists a point z0 ∈ S1 at which the function
|νS f (z)| given by (3) attains its maximum on D (hence, |νS f (z0)| = 1

2‖S f ‖B). Then

k( f ) = κ( f ) = ‖νS f ‖∞. (4)

It will be seen from the proof of the theorem that z0 must be a substantial point for the
extremal extension of f onto D∗.

We mention two important consequences.

Corollary 1. Every harmonic Beltrami coefficient rνS f with 0 < r ≤ 1 and S f satisfying that
assumptions of Theorem 1 is extremal in its equivalence class (and also obeys (4) for the corresponding
maps fr). Hence, this class does not contain the extremal coefficient µ of Teichmüller type.

Corollary 2. For any function f ∈ SQ satisfying the assumptions of Theorem 1, we have the exact
explicit values

q f (S1) = 1/ρ f (S1) =
1
2
‖(|z|2 − 1)2 ϕ(1/z)/z4‖∞.

Special results of such type related to phenomenon of extremality of harmonic coeffi-
cients have been established in [21]. These results involve the Schwarz-Christoffel integral
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representation of conformal map onto polygons and provide an important consequence for
the problem of starlikness of Teichmüller spaces.

The classical examples (Strebel’s chimney domain [22] and horizontal stretching of
a strip by Belinskii, presented in [23]) yield that the functions with a finite number of
substantial points exist for any quasiconformal dilatation k. The assumption ‖S f ‖B < 2 is
crucial for the proof of Theorem 1.

Proof of Theorem 1. To establish that the Beltrami coefficient νS f is extremal in its equiva-
lence class, we show that

sup
‖ψ‖A1(D∗)

=1

∣∣∣ ∫∫
D∗

νS f (z)ψ(z)dxdy
∣∣∣ = sup

‖ψ‖A2
1
=1

∣∣∣ ∫∫
D∗

νS f (z)ψ(z)dxdy
∣∣∣, (5)

where
A1(D∗) = { f ∈ L1(D∗) : f is holomorphic in D∗},

A2
1 = { f ∈ A1(D∗) : f = ω2, ω is holomorphic in D∗}.

Such sets of holomorphic functions on the planar regions (more generally, holomorphic
quadratic differentials on the Riemann surfaces) are intrinsically connected with extremal
quasiconformal maps. Note that the space B is dual to A1(D) and that elements of A2

1
naturally arising in quasiconforaml theory of the Grunsky coefficients are the squares of
abelian differentials on D.

To prove (5), we choose a substantial point zj0 and map conformally the half-strip

Π+ = {ζ = ξ + iη : ξ > 0, 0 < η < 1}

onto D∗ by the function g = σ ◦ g0, where g(ζ) = − cosh πζ (so g(Π+) is the upper half-
plane U and g(∞) = ∞) and σ is the additional Moebius map of U onto D∗ chosen so that
the images of the points ζ = 0, i, ∞ under g are, respectively, the endpoints of the arc g0
and zj0 . Thereby, the coefficient νS f is pulled back to Beltrami coefficient

ν∗(ζ) := g∗νS f (ζ) = (νS f ◦ g)(ζ) g′(ζ)/g′(ζ)

on Π+. Noting that the map g0 carries the horizontal lines

lη = {ζ = ξ + iη : −∞ < ξ < ∞}, 0 < η < 2π,

into hyperbolae Γ with foci ±1 in U moving then to the curves σ(G) ⊂ D∗, one derives
from the assumption that zj0 (and hence, its inverse image ζ0 = g−1(zj0) on ∂Π+) is a
substantial point for f ,

lim
ξ→∞
|ν∗(ξ + iη)| = ‖ν∗‖∞ = ‖νS f ‖∞.

In view of the smoothness of g on ∂Π+\{0, i, ∞}, there exists the limit function

ν∗(ζ0) = lim
ζ→ζ0∈∂Π+

ν∗(ζ),

at least for all ζ ∈ ∂Π+ different from the points 0, i, ∞, g−1(z1), . . . , g−1(zn).
The smoothness of f on the arc γ0 implies that S f is bounded on γ0, and therefore,

ν∗(iη) = 0. (6)
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Let us take the sequence

ωm(ζ) =
1
m

e−ζ/m, ζ ∈ Π+ (m = 1, 2, ...);

all these ωm belong to A2
1(Π+) and ωm(ζ) → 0 uniformly on Π+ ∩ {|ζ| < M} for any

M < ∞. Furthermore, ‖ωm‖A1(Π+) = 1 (moreover,
∣∣ ∫∫

Π+
ωmdξdη

∣∣ = 1−O(1/m)), which
shows that {ωm} is a degenerating sequence for the affine horizontal stretching of Π+.

We prove that this sequence is degenerating also for ν∗. Indeed,

∫∫
Π+

ν∗(ζ)ωm(ζ)dξdη =

1∫
0

e−iη/mdη
( 1

m

∞∫
0

ν∗(ξ + iη)e−ξ/mdξ
)

, (7)

and integrating the inner integral by parts, one obtains applying (6),

∞∫
0

∂ν∗(ξ + iη)
∂ξ

e−ξ/mdξ =
1
m

∞∫
0

ν∗(ξ + iη)e−ξ/mdξ.

Now applying Abels’s theorem for Laplace transform in ξ, one obtains that nontan-
gential limit

lim
s→0

∞∫
0

∂ν∗(ξ + iη)
∂ξ

e−sξ dξ =

∞∫
0

∂ν∗(ξ + iη)
∂ξ

dξ = ν∗(∞)− ν∗(iη).

Hence

lim
m→∞

1
m

∞∫
0

ν∗(ξ + iη)e−ξ/mdξ = ν∗(∞).

By Lebesgue’s theorem on dominated convergence, the iterated integral in (7) is
estimated as follows:

lim
m→∞

∣∣∣ ∫∫
Π+

ν∗(ζ)ωm(ζ)dξdη
∣∣∣ = ∣∣∣ 1∫

0

dη lim
m→∞

1
m

∞∫
0

ν∗(ξ + iη)e−ξ/mdξ
∣∣∣ = 1. (8)

Using the inverse conformal map ζ = g−1
0 (z): U∗ → Π+, i.e., a suitable branch

of 1
π cosh−1(−z), one obtains the sequence {ψm = (ωm ◦ g−1)(g′)−2} ⊂ A2

1, which is a
degenerating sequence for the initial Beltrami coefficient νS f on D∗, and by (8),

lim
m→∞

∣∣∣ ∫∫
D∗

νS f (z)ψm(z)dxdy
∣∣∣ = lim

m→∞

∣∣∣ ∫∫
Π+

ν∗(ζ)ωm(ζ)dξdη
∣∣∣ = |ν∗(∞)|. (9)

In view of the assumption |νS f (z0)| = 1
2‖S f ‖B, all terms in (9) are equal to ‖ν∗‖∞,

which proves (5).
Then, by the criterion of extremality, mentioned in Section 1.1, the equality (5) implies

that the Beltrami coefficient νS f must be extremal in the class of maps with the boundary
values f |S1.

Moreover, since the limit (maximal value) in (9) is attained on the functions from A2
1

(abelian differentials), the disk of Beltrami coefficients {tνS f : |t| < 1} determines in the
space T a holomorphic disk which is simultaneously geodesic in the Teichmüller, Kobayashi
and Carathéodory metrics (see, e.g., [13]). This completes the proof of the theorem.
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3. Open Questions and Concluding Remarks
3.1. General Quasicircles

It remains an open question on the extent in which Theorem 1 can be generalized to
arbitrary quasiconformal domains (quasidisks) D ⊂ Ĉ, even in a weaker form.

Denote the complementary (unbounded) domain by D∗ and assume that the common
boundary curve L for D and D∗ contains a C1+-smooth arc L0.

Denote by λD(z)|dz| the hyperbolic metric on D of Gaussian curvature −4 and con-
sider the complex Banach space B(D) of holomorphic functions on D with finite norm

‖ϕ‖B(D) = sup
D

λD(z)−2|ϕ(z)|.

Let Belt(D)1 be the unit ball of Beltrami coefficients µ on C supported in D.
The are two natural generalizations of the Ahlfors-Weill extension. The firs one is

based on applying the Douady–Earle conformally natural extension of quasisymmetric
homeomorphisms of the unit circle and the related Earle–Nag reflection. The description of
these subjects and obtained results are presented, for example, in [3] (Ch. 14). This approach
implies the existence of a number ε0 > 0 such that for any univalent function f (z) in domain
D∗ with the expansion f (z) = z + b0 + b1z−1 + . . . near z = ∞ and ‖S f ‖B(D∗) < ε0 having
at most a finite number of substantial boundary points, we have the equalities

k( f ) = κD∗( f ) = ‖s(ϕ)‖∞,

where ϕ = S f ,

s(ϕ)(z) =
(z− j(z))2 ϕ(j(z))jz(z)

2 + ϕ(j(z))(z− j(z))2 jz(z)
∈ Belt(D)1, (10)

and j(z) means the Earle–Nag reflection across L. This reflection is Lipschitz continuous,
so the needed equality (6) is preserved. However, the coefficient (10) is not harmonic.

The second approach is given by the Bers extension theorem [24] which yields that
for some ε > 0, there exists an anti-holomorphic homeomorphism τ (with τ(0) = 0) of the
ball Vε = {ϕ ∈ B(D∗) : ‖ϕ‖ < ε} into B(D) such that every ϕ in Vε is the Schwarzian
derivative of some univalent function f which is the restriction to D∗ of a quasiconformal
automorphism f̂ of Riemann sphere Ĉ. This f̂ can be chosen in such a way that its Beltrami
coefficient is harmonic on D, i.e., of the form

µ f̂ (z) = λ−2
D (z)ψ(z), ψ = τ(ϕ).

However, this homeomorphism τ does not insure that the equality (6) remains valid.

3.2. Connection with Fredholm Eigenvalues

Another open question is how the quantity κD∗( f ) relates to Fredholm eigenvalues
of curves f (L).

3.3. Concluding Remarks

As was mentioned above, Theorem 1 provides exactly the Fredholm eigenvalues and
the reflection coefficients for a new broad collection of quasiconformal curves, and the proof
of this theorem yields an analytic algorithm for establishing these intrinsic quasiinvariants
of curves.

On the other hand, the harmonic Beltrami coefficients are intrinsically connected
with the Kodaira–Spencer deformation theory of complex structures, so Theorem 1 and its
corollaries bridge in some measure this theory with extremal quasiconformal maps, whose
role in geometric function theory is fundamental, and also open direction of research.
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