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Abstract: In this paper, we would like to propose a (2+1)-dimensional fractional-order epidemic
model with pulse jumps to describe the spread of the Omicron variant of COVID-19. The problem of
identifying the involved parameters in the proposed model is reduced to a minimization problem of a
quadratic objective function, based on the reported data. Moreover, we perform numerical simulation
to study the effect of the parameters in diverse fractional-order cases. The number of undiscovered
cases can be calculated precisely to assess the severity of the outbreak. The results by numerical
simulation show that the degree of accuracy is higher than the classical epidemic models. The regular
testing protocol is very important to find the undiscovered cases in the beginning of the outbreak.
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1. Introduction

Many mathematical models are proposed to describe the spread of infectious diseases,
and the following classical SEIR model is commonly used for disease modeling, which is
shown in the following form [1].

S′ = −αS− βS + γR,
I′ = αS + ηE−ωI,
E′ = βS− ηE,
R′ = ωI − γR.

(1)

In this model, the symbol ′ represents the derivative with respect to the time variable
t. We denote S ≡ S(t), I ≡ I(t), E ≡ E(t), and R ≡ R(t) by the number of each group at
time t. In the above model (1), all the population is divided into four groups: susceptible
individuals in the free environment (S), undiagnosed and non-isolated infectious indi-
viduals (I), free exposed individuals (E), and recovered individuals (R). Considering that
the COVID-19 has more complex characteristics than common epidemics, scientists have
proposed various generalized SEIR models for describing the spread of COVID-19 (see,
e.g., [2–6]). For example, stability analysis and numerical simulation of a generalized SEIR
model on the spread of COVID-19 were conducted [2,3]. For another example, the SEIRD
model is proposed, in which the total population is divided into five groups, consisting of
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susceptible, exposed, infected, recovered, and dead. A machine learning algorithm has also
been introduced to solve the inverse problem of the SEIRD model [4].

Recently, the highly infectious Omicron variant of COVID-19 has upended many
aspects of our lives. However, when the reported data are applied in the above integer-
order model to predict the spread of the Omicron variant, the model does not meet the
requirements of accuracy, and so, it is invalid. Therefore, the use of a fractional-order model
to simulate the Omicron variant of COVID-19 has attracted more and more attention of
researchers [7–13]. Though the degree of accuracy of fraction-order epidemic models is
higher than integer-order epidemic models, the birth pulses and pulse treatments dealing
with the analysis for the Omicron variant of COVID-19 are not extensive, but these tech-
nologies are wildly used in epidemic models [14–22]. Therefore, we would like to propose
a new (2+1)-dimensional fractional-order epidemic model with pulse jumps to describe the
spread of the Omicron variant of COVID-19 in several districts in this paper.

The rest of the paper is organized as follows. In the next section, a new (2+1)-
dimensional fractional-order epidemic model with pulse jumps is proposed. In Section 3,
the inverse problem is proposed to determine the characteristic parameters in the proposed
model, which are used to analyze the spread of the Omicron variant of COVID-19. Nu-
merical simulations are performed in Section 4. At the end of the paper, a few concluding
remarks are presented in Section 5.

2. Fractional-Order Model with Pulse Jumps

In our model, the total population is divided into six distinct epidemiological sub-
classes of individuals, which are susceptible (S), asymptomatic (A), infectious (I), recovered
(R), dead (D), and unexposed (U). The relationship among the subclasses in the same
location is shown in Figure 1.

Figure 1. Flow chart of the relationship between each subclasses.

There are several areas to be considered in this paper, which are denoted as i = 1, 2, . . . .
We denote S ≡ S(i, t), A ≡ A(i, t), I ≡ I(i, t), R ≡ R(i, t), D ≡ D(i, t), U ≡ U(i, t) as the
number of each group at time t and area i with the location of (xi, yi). Suspected cases might
be infected to become infectious cases, and the number of infected individuals entering the
I class is γ3S(I +U + A). Suspected cases might be infected to become asymptomatic cases,
and the number of infected individuals entering the A class is γ4S(I + U + A). Suspected
cases might be misdiagnosed, and the number of misdiagnosed individuals entering the U
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class is γ5S(I + U + A). Therefore, the transfer relationships between class S and the other
classes can be expressed as follows:

cDα
t S = γ1(

∂2S
∂x2 +

∂2S
∂y2 )− (γ3 + γ4 + γ5)S(I + U + A). (2)

Here, we adopted the Caputo definition of a fractional-order derivative operator, which is
defined in the following form with m ∈ N+:

cDα
t S(t) =

1
Γ(m− α)

∫ t

0
(t− τ)−α−1+m dm

dτm S(τ)dτ, m− 1 < α < m. (3)

In many senses, the order of a fractional-order derivative is always less than 1. It is impor-
tant to point out that there are many definitions of fractional-order derivative operators such
as the Grünwald–Letnikov, the Riemann–Liouville, and the Caputo definitions [23–25].

When the asymptomatic cases and undiscovered cases are confirmed, the number of
infected cases will increase at a rate of γ6 and γ7, respectively. The infectious individuals
might recover at a rate of γ8. We denote by γ9 the death rate of the Omicron variant of
COVID-19. Therefore, the transfer relationships between class I and the other classes can
be expressed as follows:

cDα
t I = γ3S(I + U + A) + γ6 A + γ7U − γ8 I − γ9 I +

m

∑
i=1

h(1)i δ(t− ti). (4)

We denote by γ10 and γ11 the recovery rate of the untreated asymptomatic cases and
the rate of the undiscovered cases transferring into class A, respectively. A large number
of asymptomatic cases might be reported. We use the following pulse function and delta
function to describe such a situation.

δη(x− x0) =

{
1

2η , x0 − η < x < x0 + η,

0, otherwise,

δ(x− x0) = lim
η→0

δη(x− x0). (5)

We also denote by hi the number of pulse cases at time ti. Therefore, the transfer relation-
ships between class A and the other classes can be expressed as follows:

cDα
t A = γ4S(I + U + A)− γ6 A− γ10 A + γ11U +

m

∑
i=1

h(2)i δ(t− ti). (6)

Based on the analysis above, the transfer relationships between class U, class R, class
D, and the other classes can be expressed as follows:

cDα
t U = γ5S(I + U + A)− γ11U − γ7U + γ2(

∂2U
∂x2 +

∂2U
∂y2 ),

cDα
t R = γ8 I + γ10 A,

cDα
t D = γ9 I.
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Thus, we have structured a new model for Omicron COVID-19 infection within the frame-
work of the Caputo fractional-order derivative as follows:

cDα
t S = γ1(

∂2S
∂x2 +

∂2S
∂y2 )− (γ3 + γ4 + γ5)S(I + U + A),

cDα
t I = γ3S(I + U + A) + γ6 A + γ7U − γ8 I − γ9 I + ∑m

i=1 h(1)i δ(t− ti),
cDα

t A = γ4S(I + U + A)− γ6 A− γ10 A + γ11U + ∑m
i=1 h(2)i δ(t− ti),

cDα
t U = γ5S(I + U + A)− γ11U − γ7U + γ2(

∂2U
∂x2 + ∂2U

∂y2 ),
cDα

t R = γ8 I + γ10 A,
cDα

t D = γ9 I.

(7)

The definitions of the parameters are listed in Table 1. The initial data are denoted by
I(i, 0), A(i, 0), R(i, 0), and D(i, 0). γ1 is the transmission rate from the S group in location
(xj, yj) to the S group in location (xi, yi), i 6= j. γ2 is the transmission rate from the U
group in location (xj, yj) to the U group in location (xi, yi), i 6= j. We assume γ1 and γ2 are
constants in this paper.

Table 1. Definition of the parameters.

Symbols Description

γ1 Transmission rate from S group in other considered locations
γ2 Transmission rate from U group in other considered locations
γ3 Transmission rate from S to I group
γ4 Transmission rate from S to A group
γ5 Transmission rate from S to U group
γ6 Transmission rate from A to I group
γ7 Transmission rate from U to I group
γ8 Recovery rate of I group
γ9 Omicron COVID-19 death rate
γ10 Recovery rate of A group
γ11 Transmission rate from U to A group

3. Inverse Problem

In this section, the discrete-time model is built and the least-squares algorithm is
used to solve the inverse problem and estimate the unknown parameters in the model.
The reported active cases, recovered cases, death cases, and asymptomatic cases at time
t = nτ, n ∈ N∗ are denoted by I[n], R[n], D[n], and A[n]. Denote τ as the constant time
step, τ = 1 usually.

The discrete-time fractional-order Caputo operator ∆α with numerical approximation
is defined in the following form [26].

∆αX[n] =
τ−α

Γ(2− α)

n

∑
j=0

bnj

=
τ−α

Γ(2− α)

n

∑
j=0

(X[n− j + 1]− X[n− j])((j + 1)1−α − j1−α). (8)

Then, X[n + 1] can be calculated based on ∆αX[n] and X[i](i ≤ n),

X[n + 1] = ∆αX[n]Γ(2− α)τα + X[n]−
n

∑
j=1

bnj

= ∆αX[n]Γ(2− α)τα + X[n]

−
n

∑
j=1

(X[n− j + 1]− X[n− j])((j + 1)1−α − j1−α). (9)
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The discrete form of the spatial dimension can be expressed as

∂2S
∂x2 +

∂2S
∂y2 ≈ ∑

j 6=i

S(xj, yj, t)− S(xi, yi, t)
dij

, (10)

∂2U
∂x2 +

∂2U
∂y2 ≈ ∑

j 6=i

U(xj, yj, t)−U(xi, yi, t)
dij

. (11)

Here, dij is the distance between two districts, whose positions are (xi, yi) and (xj, yj). Thus,
the discrete-time fractional-order epidemic model has the following form:

∆αS[i, n] = γ1 ×∑j 6=i
S[j,n]−S[i,n]

dij
− (γ3 + γ4 + γ5)S[i, n](I[i, n] + U[i, n] + A[i, n]),

∆α I[i, n] = γ3S[i, n](I[i, n] + U[i, n] + A[i, n]) + γ6 A[i, n] + γ7U[i, n]− (γ8 + γ9)I[i, n] + h(1)[n],
∆α A[i, n] = γ4S[i, n](I[i, n] + U[i, n] + A[i, n])− (γ6 + γ10)A[i, n] + γ11U[i, n] + h(2)[n],
∆αU[i, n] = γ5S[i, n](I[i, n] + U[i, n] + A[i, n])− (γ11 + γ7)U[i, n] + γ2 ×∑j 6=i

U[i,n]−U[i,n]
dij

,

∆αR[i, n] = γ8 I[i, n] + γ10 A[i, n],
∆αD[i, n] = γ9 I[i, n].

(12)

To consider further, by substituting (9) into (12), the number of each subgroup at time

t = (n + 1)τ can be estimated. The estimated active cases Î[i, n], the death cases D̂[i, n],
and the recovered cases R̂[i, n] can be obtained at position i and t = nτ, based on the initial
condition S[i, 0],I[i, 0], A[i, 0], R[i, 0], D[i, 0]. The misfit between model predictions and the
target values is computed by the following functions:

m1 = ∑
i

∑
n
|I[i, n]− Î[i, n]|2, (13)

m3 = ∑
i

∑
n
|A[i, n]− Â[i, n]|2, (14)

m3 = ∑
i

∑
n
|R[i, n]− R̂[i, n]|2, (15)

m4 = ∑
i

∑
n
|D[i, n]− D̂[i, n]|2. (16)

This inverse problem is a multi-objective optimization problem. The final function
is the sum of the above three functions, each of which considers one of the reference
quantities:

Err(γi, α) = m1 + m2 + m3 + m4. (17)

The parameters γi (i = 1, 2, . . . , 11), α and the unknown initial undiscovered cases U[i, 0]
of different districts can be estimated by minimizing the above function (17).

Because the following model:

(γ∗i , α∗) = arg minErr(γi, α) (18)

is a nonlinear programming model, in which several unknown model parameters need to
be optimized, the Gradient Descent Algorithm 1 is applied to minimize the least-squares
norm (18).
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Algorithm 1 Gradient descent.

Require: Starting point γi, α, U[i, 0], a function Err(γi ,α)
γi

, step size β, tolerance θ
1: repeat
2: Calculate ∂Err(γi ,α)

∂γi
, ∂Err(γi ,α)

∂α

3: Update γi = γi − β
∂Err(γi ,α)

∂γi
and α = α− β

∂Err(γi ,α)
∂α

4: until ∆X < θ for 10 iterations in sequence
Ensure: some hopefully minimizing γi, α, U[i, 0]

4. Numerical Simulation

In this section, the spread of the Omicron variant of COVID-19 in three districts with
different characteristics will be discussed. The reported confirmed cases, asymptomatic
cases, and recovered cases during a 31-day period in 2022 and the basic information of
districts were collected from the Internet. The data are shown in Figures 2–4.

Figure 2. The infections cases during 31 days.

Figure 3. The asymptomatic cases during 31 days.
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Figure 4. The reported recovered cases during 31 days.

As shown in Figures 2–4, the spread of the Omicron variant of COVID-19 in District
A and B is more serious than in District C. The numbers of the reported confirmed cases
and asymptomatic cases in District A are reducing and the cases then flatten out. The high
infection rate is a characteristic in District B during those 31 days, which means it is at the
beginning of the outbreak. The numbers of the reported confirmed cases and asymptomatic
cases are stable in District C. This means that the spread of the disease in District C was
under control and the risk of large-scale spread is low.

The gradient descent algorithm is applied to solve the inverse problem to estimate
the parameters in the model. We predict the trend of the Omicron variant of COVID-
19 in different districts, based on the estimated parameters. The results are shown in
Figures 5–16.

4.1. The Trend in District A

The trend of the Omicron variant of COVID-19 in District A, based on a different
fractional-order, is shown in Figures 5–8.

Figure 5. Model results for infected cases.
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Figure 6. Model results for asymptomatic cases.

Figure 7. Model results for undiscovered cases.

Figure 8. Model results for various orders.
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In Figure 6, we find there are two pulses in group I. The estimated parameters are
listed as α = 0.98, γ3 = 2.5× 10−9, γ6 = 0.005, γ7 = 0.05,γ8 = 0.05, γ9 = 0.1. In Figure 6,
we find there are also two pulses in group A. The estimated parameters are listed as α = 0.8,
γ4 = 2.3× 10−11, γ10 = 0.23, γ11 = 1.9. From Figures 5 and 6, one can see that the numbers
of class I and class A are reducing and the cases have flattened out. Figure 7 shows that
the number of the undiscovered cases reduces fast. The number of undiscovered cases
at the initial time is U[1, 0] = 1500. The amplitude of the oscillations becomes smaller
slowly during these days. In Figure 8, we study the effect of the parameters in the model
for various fractional orders. The results show that the fractional order of class A is more
sensitive than that of class I. The best fractional order is α = 0.78 to describe the trend of
class A, and the best fractional-order value is α = 0.98 to describe the trend of the class I.

4.2. The Trend in District B

The trend of the Omicron variant of COVID-19 in District B, based on the different
fractional order, is shown in Figures 9–12.

Figure 9. Model results for infected cases.

Figure 10. Model results for asymptomatic cases.
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Figure 11. Model results for undiscovered cases.

Figure 12. Model results for various orders.

In Figure 9, the number of class I increases during these 31 days. The estimated param-
eters are listed as α = 0.9, γ3 = 3.5× 10−9, γ6 = 0.015, γ7 = 0.05,γ8 = 0.006, γ9 = 0.0004.
In Figure 10, we find that there is one pulse in group A. The estimated parameters are
listed as α = 0.9, γ4 = 4.3× 10−8, γ10 = 0.0009, γ11 = 1.9. From Figures 9 and 10, one can
see that the high infection rate is at the beginning of the outbreak. Compared with the
estimated parameters obtained in District A, the spread of the Omicron variant in District
B is more serious than District A. Figure 11 shows that the number of undiscovered cases is
reducing fast. The amplitude of the oscillations becomes smaller slowly during these days.
In Figure 12, we study the effect of the parameters in the model for various fractional-order
cases. The results show that the best fractional-order value is α = 0.9 to describe the trend
of class I and class A.

4.3. The Trend in District C

The trend of the Omicron variant of COVID-19 in District C, based on the different
fractional order, is shown in Figures 13–16.
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Figure 13. Model results for infected cases.

Figure 14. Model results for asymptomatic cases.

Figure 15. Model results for infected nodes.
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Figure 16. Model results for various orders.

In Figure 13, the number of class I deceases during 31 days. The estimated parameters
are listed as α = 0.8, γ3 = 2.5× 10−21, γ6 = 0.5, γ7 = 0.05,γ8 = 0.6, γ9 = 0.7. In Figure 14,
the number of class I deceases during 31 days. The estimated parameters are listed as
α = 0.6, γ4 = 2.3× 10−26, γ10 = 0.023, γ11 = 2.5. Compared with the estimated parameters
obtained in District A and District B, the spread of the disease in District C was under
control and the risk of large-scale spread was low. Figure 15 shows that the number of the
undiscovered cases is reducing fast. The number of undiscovered cases at the initial time
is U[3, 0] = 500. The amplitude of the oscillations becomes smaller slowly during these
days. In Figure 16, we study the effect of the parameters in the model for various fractional
orders. The results show that the fractional order of class A is more sensitive than that of
class I. The best fractional order is α = 0.8 to describe the trend of class A, and the best
fractional order is α = 0.6 to describe the trend of class I.

5. Conclusions

In this paper, a new (2+1)-dimensional fractional-order epidemic model with pulse
jumps was proposed to describe the spread of the Omicron variant of COVID-19. The prob-
lem of identifying the involved parameters in the proposed model was reduced to a mini-
mization problem of a quadratic objective function, based on the reported data, and the ap-
proaches for analyzing the identifiability of the inverse problems were described. The main
innovations in our study are using a fractional-order partial differential equation technology
and considering pulse jumps in the proposed model in order to describe the characteris-
tics and transmission mechanism of the Omicron variant of COVID-19 more accurately.
The results by numerical simulation show that the degree of accuracy is higher than the
corresponding classical epidemic models. By using the proposed model, the number
of undiscovered cases can be calculated precisely to assess the severity of the outbreak.
Three districts were considered in the paper, which are in different periods of the Omicron
outbreak. At the beginning of the outbreak, there were many undiscovered cases. The in-
fection rate was much higher than the other period. The number of reported infectious
cases and asymptomatic cases increased quickly. Therefore, the regular testing protocol
is very important to find the undiscovered cases. When the outbreak is under control,
the risk of large-scale spread is low. The number of undiscovered cases was reducing fast.
The amplitude of the oscillations became smaller slowly during these days. There are some
limitations: (1) relatively small data; (2) only distance is used in the model. In future work,
we will collect more data about COVID-19 to illustrate the effectiveness of our algorithm.
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