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Abstract: In the paper, a new method was presented using queueing theory models in order to
ensure an optimal production department size, optimized production costs and optimal provision.
Queueing/waiting mathematical models represent the development matrix for an experimental
algorithm and implicitly numerical approach, both successfully applied (and confirmed in practice) in
a production section design for a real industrial engineering unit with discussed method technological
flow and equipment schemes compatibility. The total costs for a queueing system with S servers
depend on the number of servers. The problem of minimizing cost in terms of S was the main aim
of the paper. In order to solve it, we estimated all the variables of the system that influence the cost
using the Monte Carlo method. For a Jackson queueing network, the involved linear system has good
properties such that it can be solved by iterative methods such as Jacobi and Gauss–Seidel.

Keywords: industrial optimization; computing methods; waiting theory; mathematical model; Monte
Carlo method; Jackson queueing networks

MSC: 60K30; 68M20

1. Introduction

This paper aimed to achieve a simulation in terms of technological times of the opera-
tion of a Technological Fabrication System (TFS) and, based on it, created a methodology
and an adequate optimization program, which takes into account the real behavior of the
technological system to different production tasks.

The opportunity of this approach lies in the results and findings presented in several
treaties and studies [1,2], which highlight that in the field of machine building, the share
of technological time in manufacturing processes represents most of the time required.
By starting from these observations, it can be said that there are enough resources and
motivations in this respect for the development of research in this field that can be part of
all the research regarding the optimization of manufacturing technologies.

Moreover, there is a unanimous appreciation that, unlike other time components on
which there are several ways and ways of optimization, the field of technological time is
relatively complex, and the optimization paths are insufficiently explored.

The tools used in this analysis are based on some mathematical devices provided by the
methods of operational research, namely those related to the theory of expectation, adapted
for simulating the operation in time of the TFS and thus modeled to allow the optimization
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of their dimensioning corresponding to variable production tasks. The application of
queueing theory has seen spectacular development in recent decades, especially due to
the various applications that this theory can solve. The foundations of this theory are
found in numerous works, and the various specific aspects it can address are presented in
the literature [3–7].

In Ref. [8], several queueing systems with one server are presented, namely Poisson
arrivals and exponential services, Poisson arrivals and general (including the particular
deterministic and above-mentioned exponential cases), and general arrivals and services.
The case of S = 1 or even S > 1 servers is for exponential services per server and general
(including Poisson and deterministic cases) services. In this paper, we studied the total
cost for given arrivals (distribution and parameters) and the parameter of the exponential
service time/server. Classical Jackson (with particular cases of series and parallel networks)
and Gordon and Newell queueing networks are also presented [5]. The linear system that
solves a Jackson queueing network is solved by the Gauss–Seidel method in this paper.
With our C++ program for Jackson queueing networks, we read the number of nodes from
the keyboard. We read the transition matrix (the probabilities that after finishing service in
node i go to node j/living network) and the average number of arrivals/time units for each
node from a text file. With these data, we computed the matrix and the right sides for the
involved linear system, which we solved using the mentioned Gauss–Seidel method.

Certain methods proposed by queueing theory have gained enormous popularity in
recent years. They use classic models adapted to the situations that appeared in practice.
A three-dimensional Markov stochastic model over time, with two service phases, is
presented in [9]. The matrix-geometric solution method and the Gauss–Seidel iterative
method based on observable waiting rules were used. This gives major indicators for the
system, such as the average length of stay and the expected duration of the requesting
nodes. Numerical examples prove the validity of the models used. Finally, the benefit
function offers the optimal social parameters.

At the moment, queuing has become a common phenomenon in various stages of
production systems. This reduces the time required for managers and manufacturers to
complete the desired task. As a result, the mathematical theory has become an indispensable
tool for analyzing various practical situations. Numerical methods are always basic tools
for applying these methods [9,10].

One of the possible applications of Queuing Theory is the optimization of service
capacity. It is considered a hypothetical situation in which a company operates m ma-
chines, and the intervals between failures and repair times are distributed exponentially.
Damaged cars are repaired by n repairers (n < m). A mathematical model of the problem
for optimizing the number of repairers in relation to system costs is presented in [11].
Research that aims to determine better solutions for workspaces in an enterprise with many
machines is presented in [12]. Numerous works deal with problems of optimization of
production processes [13–21].

We also noticed that the linear system involved in solving a Jackson queueing net-
work is diagonally dominant because the coefficient Aii is one and the other values are
probabilities. Therefore this linear system can be solved by the Gauss–Seidel method, as
we performed in this paper.

The classical approach for the queueing systems with general arrivals, exponential
services and S servers is first to determine [8] the ratio of the geometric distribution of the
number of units in the queue. Next, we determined the ratios between the probabilities of
having 0 < n ≤ S working servers and no working servers and, from here, the probability
of no unit in the system. Next, all elements were computed. The difficulty of computing p0
(as working time) led us to use Monte Carlo methods (presented in [22]) to estimate first
the number of units in the system/in the queue and compute all the other elements as in
this paper.

In the paper, the authors applied (in the context presented before) the theory and
mathematical models of expectation in the industry and developed a new method of
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optimizing a production section in terms of sizing in accordance with variable production
tasks. The mathematical model and the programs made by the authors based on it were
verified in practice on an existing enterprise in the machine building industry described in
the case study.

2. Simulation and Optimization of TFS Operation, Based on Waiting Theory

The study of the mathematical models of expectation is based on the methods of
probability theory and mathematical statistics, and the purpose of this study in the tech-
nological field is to determine the effective solutions for organizing a manufacturing
process—including the TFS sizing—taking into account the real elements that influence
this efficiency.

In our consideration the following definitions are used:
Unity = an element of the crowd to be “served”, e.g., the part to be processed at

a machine tool;
The station = the point where the "serving" is performed (machine tool, processing

center or by a global name, TFS);
Waiting string (thread) = the set of units waiting to be served without the unit that

is served;
Calling system = includes the set of units in the process of serving;
Input flow = characterizes the way in which the units enter the system;
The output flow = characterizes the way in which the units leave the system;
The serving time = effective duration required for serving (processing the part);
Waiting time = waiting time before serving.
We specified that the effect of mathematical modeling and of the software realized

within the work goes beyond the context/objectives related to the optimization of the
specific dimensioning/endowment of the enterprise and enters the subsidiary in an area of
interest and “fashionable” at the moment, namely, in the one related to the zero manufac-
turing defect concept (ZDM [23,24]).

The simulation was achieved by modeling the calling wires in the technological sys-
tems with one or more workstations—assimilated as “serving stations”. The optimization
of the technological systems for this case is based on the existence of two contradictory
tendencies—one of oversizing to reduce the costs of waiting, and the other of under-sizing
to reduce the costs of the systems—within this chapter being realized as a methodology,
algorithm and program adequate to the analysis of the behavior and optimization of the
respective systems.

Due to these two contrary trends, there is the possibility of optimizing the technological
system as a whole by stimulating its functioning; the path was chosen within the subchapter,
developed on the basis of calling models. From this point of view, we considered that
the main problem of applying the theory of waiting in the mentioned field consists in
establishing and justifying the material expenses necessary to achieve a certain level of
quality of service in the waiting phenomena.

It is true that, as is known, this relatively new concept related to quality and sustainabil-
ity is the latest approach to improving quality and is based on four strategies of detection,
prediction, repair, and prevention, seemingly different from the strategy presented in
our paper.

In general, in the technique and in the technological management, the “serving”
problems (in this notion including the different requests to which the analyzed system is
subjected) are more promptly realized the higher the capacity of the system. In practice,
however, one cannot resort to the exaggerated expansion of the capacities (for the tech-
nological manufacturing systems, these being the power and the gauge of the machines),
because this would also imply the unjustified increase in their costs. If, as it happens in
the general case, the duration of “servings” is different from unit to unit, then we say that
it is random.
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The literature [2,25,26] indicates the existence of several types of queueing/waiting
systems with uses in different fields (transport, telecommunications, etc.) many of them
can also have applicability in the industrial field through adequate modeling.

A generalization of the above series and parallel queueing networks is the Jackson
queueing network. We have n nodes in the network with Poisson arrivals of parameter λi
and the service exponential with parameter µi. After finishing the service in the node i,
the customers go to the node j next, with the probability pij, or leave the network with the
probability pi0. The condition for a Jackson Network (Garzia et al., 1990, [27]) is that each
node is on a path from input flow and leaving the network. It is proven that for a Jackson
network, each node is independent, and it acts as if the arrivals are Poisson of parameter
Λi is the solution of the linear system:

Λi = λi +
n

∑
j=1

pji ∗Λj (1)

The above system cannot changed because it is the formula for Jacobi/Gauss–Seidel
method. A series network is a particular Jackson queueing network with pij = 1 for each
node except the last, with pi0 = 1. The parallel network is the particular Jackson queueing
network with pi0 = 1 or pij =

1
Ni

, where Ni is the number of successors of the node i. There

is a possibility of having pij =
1

Ni+1 , making possible living the network from each node.
In [6,7], a method to solve the system was presented (1) by simulation of the corresponding
Jackson queueing network, with µi large enough to avoid locking node i. The average

number of units in the node i is estimated as Λi
Λ+µi

.

The waiting models are analyzed in specialized papers in the field of mathematics,
e.g., [2], but other specialized treatises with applications in the technical field [2,26,28] are
also classified according to the input flows as follows:

(a) Models with determined input flow (D), at which the units arrive at regular intervals
t0. The function of allocating the number of units that enter the system is:

P(t) =
{

1 f or t ≥ t0
0 f or t < t0

; (2)

(b) Models with random input flow or (poissonian) P,—if the units arrive after the Poisson
distribution of parameter a where a is the average of inputs in a range ∆t reference.

The number of units entered in the range [0, t] has the Poisson distribution:

Pn(t) =
(at)ne−at

n!
. (3)

(c) Models with Erlang input flow (EK), to which the function of distribution of the
number of units entering the system is:

PK(t) =
(K/m)K

(K− 1)!
tK−1 · e−Kt

m
. (4)

(d) Models with general independent input flow (GI) are used if there is no hypothesis
on the F distribution function except for the existence of the average value m > 0.

In [8], the following classification of waiting models is provided:

(a) The models with Poisson input flow and exponential service, one server/S server,
finite population/infinite population. The model with a finite waiting room is also
treated, where if a customer finds on arrival K other customers in the system, they
survive the system. In this way, most K units are in the system;
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(b) The models with Poisson arrivals, general services and one server. The expected
number of units arrived in the system (the parameter of Poisson distribution), a, and
the probability distribution of services, b(t) are given. The queue is not bordered. All
the elements are computed in terms of the parameter a and the moments’ generating
function of services (Laplace transform of b) as follows ([8]);

(c) Models with general input flow, exponential services and S servers. The parameters
of the model are the number of servers, the parameter of exponential service u, and
the probability distribution function a of inter-arrival times, a;

(d) Models with general input, general service and one server are also treated in [8].
There are considered the moments’ generating function for both arrivals and services
and the decomposition in simple fractions of A∗ and B∗, and all the elements are
determined by using the pairs of terms.

The model with Poisson arrivals, general service and S servers is the generalization of
the above model (b) from the Kleinrock classification.

In [22,29], such model in the particular case pf PH(α,T) inter-arrival time was consid-
ered. A PH distribution is the distribution of the time that a continuous absorbing Markov
chain is absorbed. α is the initial probability vector, and T is the transition probability (it
becomes zero when the Markov Chain (see [28]) is absorbed).

A matrix Q is computed, and from equation QT∗x = 0, we determined xi in terms of x1.
After this, we estimated the vector x as the vector of probability. The methodology is similar
to the birth and death process in the case of Poisson arrivals and exponential services.

The discipline with an impatient customer is also considered. It is the classical FCFS
discipline, but the customer waits in a waiting string for his impatient timer X, which is
exponential of parameter ξ.

Another model with Poisson arrivals, general services and S servers was simulated
in [25], considering the disciplines FCFS and RA = Random Assignment and previous
process. Two models with switching to FCFS were also considered, one after a specific non-
random time and the second after a random time is greater than a specific non-random time.

An algorithm in four steps is as follows: generating a model with only one server
during a given period; simulating a process of making a queue empty; the third model
with RA discipline; finally, combining the first and the third model. Therefore there were
simulated three models: two forward and one (the second) backward.

In the above-considered models, the arrivals are independent and identically dis-
tributed, and the same for services. In [8], the PP∞ : (∞/FCFS) is the limit case for
arbitrary arrivals, exponential services and S servers when S→ ∞ was presented.

In [30,31], for the above model, the arrivals were considered Hawkes processes. In
fact, only the first arrival was Poisson, and the other arrivals were modified according to
the history of inter-arrival moments ti:

Λ(t) = λ∞ +
n−1

∑
i=1

Bi ∗ h(t− ti). (5)

where Λ(t) is the conditional intensity of the Poisson process, λ∞ is a constant, Bi are
independent random variables and h : [0,∞)→ [0,∞) is the excitation function.

A model with only one server when the services depend on arrivals through some
types of copulas was presented in [6,9]. For comparison with the independence case,
a model with Poisson arrivals and exponential services was considered as a case study.

In [22,32], multiple types of customers were considered, with Poisson arrivals of
parameter pi∗a, S servers and exp(ui) service time for customers of type i. Constraints for the
s servers were also considered. For instance, one server can use the classical FCFS discipline,
while another server can use priorities. The GRAND = Gready RANDom discipline was
used. It means that each arriving customer is randomly assigned to a server that can
serve them uniformly. In another algorithm, GRAND(aZ), some occupied servers are also
considered. For instance, between two servers with priority, sometimes an occupied server
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where the customer has higher priority is preferable to a free server where the customer
has lower priority.

Classical Jackson (with particular cases of series and parallel networks) and Gordon
and Newell queueing networks are also presented [27]. The linear system that solves
a Jackson queueing network was solved by the Gauss–Seidel method in this paper.

By taking into account the findings resulting from several treatises, studies and ex-
perimental research were carried out on the analysis of the development of technological
processes for different production tasks [26,27], i.e., it was estimated that in this field, the
most appropriate waiting model to characterize, as faithfully as possible, the behavior
in the time of the technological system of manufacturing at variable production tasks
is the PPS model, with arrivals and servicing in the random system (Poissonian) and
stationary waiting.

3. Method and Model

In this section, we considered an industrial PPS queueing system, and we solved the
system as follows. First, we determined the formulae for the classical S = 1 model, Poisson
arrivals and exponential services. Next, we optimized the total cost of the PPS queueing
system, and we noticed (our contribution) that the cost increases for S greater than an upper
limit. Our C++ program computed this limit, and for S lower, we simulated each system
on a given period using the Monte Carlo method (the sum of generated times is greater
than or equal to the period, and we stopped when this condition was fulfilled). We first
estimated the expected number of units in the system/in the queue, and from there, the
other elements and the total cost for each S.

By taking into account the behavior over time of a technological manufacturing
system subjected to variable production loads, it was experimentally found [33] that the
models that most accurately approximate the operation of the TFS are the Poissonian
models. For mathematical modeling, in order to achieve an algorithm and an optimization
methodology appropriate to the objectives presented within this chapter, we chose the
model PP1:(∞/FCFS) as the basis.

It assumes the following hypotheses:

• Arrivals are random (Poissonian);
• The servings are all random, exponential;
• The system is with a single station;
• The size of the string is indeterminate;
• Serving discipline: first come, first served.

For the study of the behavior of this waiting system (understanding by this the system
formed by the machine tool, landmarks in process, pending landmarks), the following
notations were made (Table 1):

Table 1. The list and significance of notations used.

Symbol Significance Unit Measure

Pn(t) the probability of there being n units in the system at time t; -

P0(t) the probability that there is no waiting in the system at the time t; -

P(t) probability of being waiting at time t; -

ns the average number of units (parts) present in the system; -

nf the average number of units present in the sequence of units; -

ts the average waiting time in the system; min.

tf the average waiting time in the row (thread); min.

a the average number of entries-arrivals-in the system in the unit of time; pieces/min

u the average number of servings per unit of time; pieces/min

r the average inactivity rate of the stations in the system; -
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Studying the waiting model proposed in order to achieve an optimization methodol-
ogy involves completing the following steps:

(a) Determining the law of distribution of the number of arrivals for the classical PPS
queueing systems using the birth and death processes [34];

(b) Determining the distribution of time between two successive arrivals.

Let us be the random variable X = the time between two arrivals. We considered the
moment of arrival of the first unit as an initial moment. The following sizes were defined:

• P(X > t) = P0(t) = e−at—the probability that the time interval X between two arrivals
is greater than t;

• F(t) = 1− e−at = the distribution of time between two arrivals;
• f (t) = F′(t) = ae−at = probability density. (Obviously t ≥ 0).

If the average interval between two arrivals is inverse to the average number of arrivals
in the time unit, the distribution of the time intervals between two consecutive arrivals is
an exponential distribution with the average 1

a .
Generalization: We took into account the waiting system as a whole (considering both

the input and output flow of the parts to a machine tool).
Assumptions:

• At time t, there are n – 1 units; the interval ∆t enters and exits a unit;
• At the time t, there are n units; ∆t does not enter or exit any units;
• At the time t, there are n units and enter and exit into ∆t, a unit;
• At the time t, there is n + 1, enter 0, and exit a unit in the same interval ∆t.

The probabilities of input and exit, respectively, of a unit in the system in the interval
∆t are: a∆t and u∆t, respectively. With these considerations, we obtained the probabilities
Pn(t) from the Kolmogorov–Feller equations for birth and death processes [35,36].

(c) Determination of auxiliary parameters—from the above-mentioned birth and death
processes and the Little theorem [35], we obtained PP1 queueing system:

ns =
r

1−r

n f =
r

1−r − r = r2

1−r

ts =
1

u−a

t f =
1

u−a −
1
u

. (6)

The following conclusions were made by taking into account the results obtained
from this analysis and the attributions made initially for adapting the theoretical model of
waiting for the concrete case of a technological manufacturing system:

1. If a > u, the arrival flow is superior to the serving one and the waiting thread
increases unlimitedly, which means that at TFS, respectively, the parts accumulate in order
to be processed continuously; the respective work becomes a “narrow point”;

2. If a = u and P = 1, the number of pieces that enter the waiting thread will also
increase continuously, as it results from the expression of nf at which the denominator
descends to zero;

3. If a < u, the waiting string has a finished length, and after a while, the manufacturing
system enters the stationary regime, where it can be coordinated and optimized and can
proceed to the realization and application of the optimization algorithm.

Note: The PP1:(∞/FCFS) studied model allows the analysis of the operation of a TFS
subjected to variable production tasks independently and in compliance with the hypothe-
ses presented regarding the character of arrivals, services, etc.

In this chapter, we aimed to study the behavior of TFSs, not only individually but also
at the level of the manufacturing line, and we also wanted to achieve a methodology of
global optimization in terms of the costs of waiting in the system. From the specialized
literature [6,8], we used the specific relationships that characterize other Poissonian tunes
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models, apart from the basic one, with frequent applicability in the field; namely, the
models PD1:(∞/FCFS), PP1:(M/FCFS) and PPS:(∞/FCFS).

In the literature, in papers [28,36], the waiting models with constant serving time for
the general case of multiserver systems were developed in detail. Therefore, the expressions
corresponding to the characteristic sizes of the PD1:(∞/FCFS) could be obtained immedi-
ately by customizing the number of stations to the unit value, and they are presented in
module 2 of the general algorithm.

The optimization process involves determining the compromise between the cost of
waiting and the cost of serving so that the expenses caused by the waiting phenomenon—
which under the given conditions is inevitable—can be minimized.

As in the other optimization processes, the identification of a value as optimal is based
on the existence of two contradictory tendencies, namely Figure 1:
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We noticed that Copt has a global minimum, and it is bimodal. After the minimum, we
also noticed that after Sopt (optimal number of servers), the cost increased almost linearly. Ii
oversizes the industrial system by increasing the number (S) of workstations—TFS—servers,
which has the effect of increasing the production capacity, thus implicitly decreasing the
waiting times for parts. Obviously, this causes a decreasing allure of the component. Cost
of waiting parts = C1 · a · t f = C1 · n f · T, where:

• C1 = the cost of waiting for the part [lei/unit. Time];
• a = number of parts entered into the system in the unit of time;
• tf = the waiting time on the wire;
• nf = number of pieces in the waiting thread;
• T = unit of measurement of time (hour, min.).

At the same time, the increase in the number of servers causes an increase in the
investment in fixed assets, which leads to an increase in costs that refer to—the stationing
of the TFS, so an increasing allure of the component:

Cost of waiting TFS= C2 · S · (1− r), where:

• C2 = the cost of stationary the TFS [lei/unit.time];
• S = number of TFS;
• r = the rate of use of the TFS.

Similarly, it was demonstrated that the undersizing of the system leads to an increase
in the costs related to waiting for the parts and, respectively, a decrease in the costs of
stationary/waiting for the TFS.

From the composition of the two contradictory tendencies, it results—as is represented
in Figure 1—that for a certain structural sizing of the system (Sopt), the total costs of waiting,
Cs(i), are minimal.

Cs(i) = C1 · a · t f + C2 · i · (1− r) (7)
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where: i = 1 . . . S = number of workstations, stations, servers, TFS.
In order to facilitate the analysis of the waiting in the system, based on the following

algorithm, a simulation program that would allow both the knowledge of the behavior
of the industrial and technological system at different production tasks was developed
within the work, as well as providing solutions regarding its optimal sizing—presented
in the following. We first chose the model PP1, PPS or PD1, with the option of the finite
population for PP1. For the PPS model, we optimized the cost as in this paper, using the
Monte Carlo methods. The calculation algorithms are presented in Appendix A.

4. Case Study Regarding the Simulation and Optimization of TFS Operation Based on
Waiting/Queueing Models
4.1. Case Study and Methodology for Manual Calculation of Parameters and Optimization of
Waiting Systems

In carrying out these researches, we started from the assumptions and premises
imposed on the waiting models adapted to the technological manufacturing systems
presented, to which we added an attribute necessary to achieve an analogy in real time of
the behavior of the industrial system as a waiting system, namely the one regarding the
serial character of the waiting models used.

Two specifications must be made: If we analyze the behavior of a technological system
as a waiting system for the realization of a single operation that can be performed at any
of the TFS pending, then the analysis is made based on the presented methodology. If the
behavior of the industrial system of waiting for a succession of operations corresponding
to a certain technological process is analyzed, then the chosen waiting model must be
imposed a specific attribute related to the serial character of the system.

This feature takes into account the fact that, at flow-based processing, the outputs of
a waiting process from a certain server (workstation TFS) are inputs for the next server
(Figure 2), and it has relevance for the study of each waiting model in terms of the interaction
between workstations and their influence on the behavior in time of the system.
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In the following analyses, the approach was made in both ways in order to observe
the behavior in terms of technological times of the industrial systems subjected to variable
production tasks in a more faithful manner.

First, in the “manual” calculation, we took into account—for reasons related to space—
a singular and significant example of a waiting system formed when processing a landmark
in a production section, aiming that based on the parameters of the model, in the end,
optimization of the system structure in terms of costs caused by waiting for parts, on the
one hand, and waiting/stationing of servers, on the other hand, would be achieved. This
involves determining the trade-off between the cost of waiting and serving. We proceeded
through the following steps:
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1. Determining the period of time during which the system can be considered stationary;
2. Timing of parameters a and u;
3. Verification of the consistency test (χ2);
4. Calculation of waiting parametres— r,Pn(t), P0(t), ns, n f , t f , ts, r;
5. Optimizing the total cost of waiting by taking into account the costs caused by waiting

for the parts and servers in the system.

The objective was to identify the number of servers Sopt that minimizes the costs of
waiting in the system Cs.

In the version of the “manual” calculation, it is necessary to individually calculate Cs
(i) for different values i and values of S until the value i = Sopt corresponding to is found:

Cs(i)optim = min
i∈N

{ [
C1a t f + C2 · i · (1− r)

]
T
}

(8)

As a characterization, the “manual” calculation method is somewhat laborious due to
the modification of all the parameters of the waiting with the varying of i and the calculation
based on the combinatorial analysis for i > 1, which is why, moreover, we also realized the
methodology and the calculation program of assisted optimization of the parameters of the
waiting system.

By returning (considered a server or serving station, such as the TFS used, whether it is
a processing center or another machine tool, and the units under waiting) the semi-finished
products (parts) to be processed, in order to decide if a second machine tool is needed to
improve the serving or if its introduction into manufacture is uneconomic in the given
situation, the waiting phenomenon and the overall costs related to it are studied.

It analyzes the waiting phenomena that occur in a concrete processing case, such as
the gears from the component of a horizontal machine for milling and boring, which are
small series manufactured at a real factory along automatic lines (Figure 3a,b).

The fluctuation of orders, depending on the market requirements and implicitly
the production load, from one period to another justifies the application of the waiting
analysis. Observations are made on the process, and the stages I–V presented, necessary
for optimization, were taken.

Stage I. involves establishing the assumed stationary periods in terms of waiting in
the system. Then, it is assumed stationary the periods when the presence of the blank(s)
pending is relatively high, and the waiting system relatively balanced. From observations
made in time on the technological process of processing the analyzed group of gears, it
was experimentally found that, except for a “weemble” interval of about 30 min, from the
beginning of each exchange in which the number of pending parts is insignificant and varies
according to indeterminate laws, in the rest of the working interval, the waiting process can
be considered stationary. Generally, in most of the analyzed intervals, there is a super unit
number of pending parts, another number of parts under processing, the volume of both
categories influenced by the rate of entries, the service capacity of the industrial system,
etc. We, therefore, considered that the period T for which the process becomes stationary is
about 7.5 h or 450 min, and we then used the same unit of measurement in the analysis of
waiting on the parameters.

Stage II. involves the determination based on the timing of the parameters a and u
(where a is the average rate of inputs and u = the average rate of servings in the unit of time).
It should be mentioned that, in order to respect the statistical character of the study v. [2], it
is necessary that when the signification test is performed χ2,the number of elements of the
crowd is greater than or equal to 50.

In our case, in order to cover the reference period, we formed the set of analysis from
75 intervals of 6 minutes for the study of arrivals, whether the intervals are consecutive
or not.
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With these experimental data, it is possible to calculate the average of the distribution
of the arrival M(x), which is 1.17. Of the seven intervals, the last three of them had less
than five values; thus, we only considered four intervals. The χ2 statistics is 0.508, while
the χ2

2;0.1 = 4.60517. Therefore we accepted the hypothesis of Poisson distribution of 1.17
for 6 minutes, hence 0.19/min.
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In parallel with this, for the study of the services, observations and timings were made
on the actual duration of the services. Respecting the condition of choosing a large number
of observed cases, at least 50, we choose a number of 75 serving cases—machined parts.

Because the servings were made in several intervals of the form [t1, t2], we considered
each range concentrated in its average value t2−t1

2 = ∆t.
We obtained the expected service time of 7.847, and the estimated parameter was

u = 0.127. Because all the last five intervals out of nine had less than five values, we
grouped them, obtaining five intervals. The χ2 statistic was 4.42818, while the quantile was
χ2

3;0.1 = 6.25139. Therefore we accepted that the service are exponential with u = 0.127.
Stage III. According to the initial presentation, this consists in verifying the hypothesis

that arrivals and services are Poissonian. The test was used for this purpose χ2 (see
Appendix B, Tables A1–A8).

Stage IV. Calculation of parameters of the waiting system: we obtained, as above,
a = 0.19 and u = 0.127.

Because u < a to immediately shows that the use of a single serving station would
be insufficient for the full realization of the production task, it automatically leads to
the realization of an assimilated narrow point, at which the parts would accumulate
constantly, and the length of the waiting string would increase indefinitely, a situation that
is unacceptable from a technical point of view. This makes it mandatory in the analysis and
optimization process to resort for this case to a supra unit number of processing stations.

From the values a and u, it was noticed that Smin, for u > a is: Smin = 2. Therefore,
we calculated, in turn, the parameters of the calling system for S = 2 using the specific
relationships of multiserver systems.

r =
a

S · u = 0.74

ri = 1− a
uS

= 0.26

ns =
a
u
+

a · u · (a/u)S

(S− 1)! · (u · S− a)
· ri = 3.39

ts =
ns

a
= 17.87

n f= ns −
a
u
= 1.90

t f = ts −
1
u
= 10.01 (9)

Stage V. Optimize the total cost of waiting according to the costs caused by waiting
for parts and servers in the system.

In the current version of the “manual” calculation, complications occur in the opti-
mization process due to the specific way of searching for the optimal. This involves the
varying of S = i in the ascending direction, starting with the Smin value, known, and the
calculation for each S of the parameters of the calling system and of the expression, with
the known notations, of the cost of waiting:

Cs = C1 · a · t f + C2 · S · (1− r) · T (10)

The optimal cost, as well as the identification of the optimal number of Sopt servers
that minimizes the waiting costs in the system, is found through a process of comparing
the Cs values:

Cs(i)optim = min
i∈N

{ [
C1a t f + C2 · i · (1− r)

]
T
}

(11)

In these conditions, two significant disadvantages appeared, which also led to the im-
position in order to effectively solve the second method of optimization, the assisted method.
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The calculation was generally laborious because, for each modification of S, the param-
eters of the calling system must be recalculated with the complex relationships presented.

In the initial phase of optimization, the number of attempts—replays—of the compar-
ison calculation necessary to find the optimal is not known, which increases the degree
of uncertainty in assessing the opportunity of effective application of the method and
difficulties in assessing the duration of the optimization process.

However, for queueing networks, the manual computation was easier because we had
to solve a linear system. We used the Gauss–Seidel method because the system (1) did not
have to be modified: it gave the iteration formulae directly.

Example: consider the Jackson queueing network. The results are presented in Appendix C.

4.2. Case Study on Computer-Assisted Simulation and Optimization of TFS Operation Based on
Standby Models

The study was performed using the same experimental data taken in 1.2.1 in order to
finalize the analysis and achieve the proper optimization in terms of expectation theory, as
well as other values collected experimentally in different procedures to illustrate the use of
the algorithm and of the corresponding program for different concrete processing situations.

This finally allowed interpretations of the results and drew conclusions on the appro-
priateness of implementing such optimization methods in the industrial field, highlighting
the facilities offered in the process of supervision and preparation of manufacturing, but
also any malfunctions observed during application in concrete cases.

We, therefore, resumed the analysis of the expectation for processing in small series
conditions and with variable production loads within the gear workshop of Figure 3 with
the group of wheels (including the percentage of spare parts) from the composition of
a machine (tools for real drilling and milling A.F 85).

At the launch of the program, the initial choice must be made regarding the type of
waiting model and whether or not only the analysis of the model is desired, as it results
from the first communication screen shown in Figure 4.
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Figure 4. The first communication screen.

Considering that for the process of processing cylindrical teeth in the endowment of
the workshop, there are, and can be used, a maximum of seven machine tools (four gear
milling machines with snail milling module and three gear milling machines with a wheel
knife, the rest of the machines have other destinations), we chose from block options 4 and
5. These led to the data entry stage with the options in Figure 5 and following the results
in Figure 6.
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Figure 6. The results for the PP7 queueing system.

In the initial option, it was specified that in addition to the analysis of the expectations,
it is desired to achieve the optimization of the waiting system in order to determine the opti-
mal number of servers si that the expenses caused by waiting/parking machines—tools, on
the one hand, and parts to be worked on, on the other hand—to be minimal, then the input
data must be completed with the additional elements according to Figure 7 this resulting in
the completion of the output data with the elements related to optimization, Figure 8.
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In the C++ program, we simulated, during a maximum simulation period,
m
∑

i=1
ti the

arrivals and services. Therefore we used the variable simulation clock.
We first estimated the average number of units in the system and the average number

of units in the queue as:

Ns =

M
∑

i=1
Ni∗ti

M
∑

i=1
ti

N f =

M
∑

i=1
(Ni−S)∗ti

M
∑

i=1
ti

(12)

The other elements were computed as follows. First, we took into account that the
number of units in the queue conditioned by the existence of the queue (Kleinrock, 1975)
geometric distributed with parameter r. We then obtain the formula

pw[S] = N f [S] ∗ 1− r
r

(13)

The time spent in a queue conditioned by the existence of a queue is exponential of
parameter S∗u∗(1 − r). Therefore:
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T f =
pw[S]

S ∗ u ∗ (1− r)
(14)

With the C++ simulation program with the same costs, C1 = 150 and C2 = 250, we first
run for a maximum of seven servers in a system with one station. The first application was
with a = 0.6 and u = 1. The next application was, in fact, with what we considered from the
industry: a = 0.19 and u = 0.127. However, by changing the unit time, we can consider u = 1
and by proportion a = 1.5. The results are presented in Appendix B.

We finalized the analysis with comparative graphics of the costs with the comparative
graphics of costs (Figure 9).
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We noticed that the deterministic case is isolated. This can be explained by the fact
that in this case, optimal S is 2, while in the other cases, optimal S is 3. In the following
graphics (Figure 10), we represented only the non-deterministic cases.
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For the costs in non-deterministic cases, the increasing order is Erlang of order 5,
Erlang of order 3, and exponential. The costs in the hyper-exponential case are greater than
the two Erlang cases for all S between 2 and 7. Compared with exponential, the costs are
greater for S = 3, 4 or 6 and are smaller in the other cases. In the deterministic case, the cost
is minimal (comparing the other distribution) only for S = 2. For S > 2, the corresponding
costs are greater than the exponential case, even if we add one server in the last case. They
are also greater than that of the hyper-exponential case. The same property can be noticed
in the exponential case, starting from S = 4.

From S = 6, the cost is greater than all the other costs from other distributions.
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5. Discussion

The following conclusions regarding the analysis and optimization of the waiting for
the considered production system can be deduced both from the listing with results and
from the representation of the afferent graph:

For a number of stations below the digit 2, a production overload situation occurs.
This is caused by the fact that if a single serving station were used—in our case, a machine
tool with a workstation—the arrival rate in the system (0.19 parts/min) would be higher
than the service rate (0.127 pieces/min.), which would lead to the accumulation and
continuous increase in the number of parts in the waiting string. In fact, the overload
situation occurs [35] when a

S∗u > 1. Therefore the minimum S is the minimum value such
the mentioned fraction is less than one. In our paper, we changed the time unit such that
u = 1 (proportionally multiplying a and obtaining 1.5 instead of 0.127), and the minimum
S > 1.5 is two.

Theoretically, starting from a number of two machine tools upwards (the minimum
value of S such that we have no overload), we can cover the given production task, but the
expenses caused by waiting/parking the parts on the one hand and the machine tools, on
the other hand, have opposite influences, which leads to the existence of an optimum [36,37].

This observation is natural because the more machine tools we have with a higher
processing capacity, the lower the costs of waiting for parts, the more prompt the service,
and the costs of stationary machines increase due to the immobilized superior means.

The listing shows that the optimal number of machine tools that are needed to take
over the given task is 3; the rest can be assigned to other production tasks. In fact, the
allocation of all cars for this task would lead, as shown in the schedule, to a significant and
unjustified increase in costs due to insufficient load.

Once the SOPT is known and adopted, if the analysis of the corresponding wait is
desired, the data corresponding to S = 3 can be called directly from the program, as is
shown in Figure 11.

Mathematics 2022, 10, x FOR PEER REVIEW 20 of 35 
 

 

For the costs in non-deterministic cases, the increasing order is Erlang of order 5, 
Erlang of order 3, and exponential. The costs in the hyper-exponential case are greater 
than the two Erlang cases for all S between 2 and 7. Compared with exponential, the costs 
are greater for S = 3, 4 or 6 and are smaller in the other cases. In the deterministic case, the 
cost is minimal (comparing the other distribution) only for S = 2. For S > 2, the corre-
sponding costs are greater than the exponential case, even if we add one server in the last 
case. They are also greater than that of the hyper-exponential case. The same property 
can be noticed in the exponential case, starting from S = 4. 

From S = 6, the cost is greater than all the other costs from other distributions. 

5. Discussion 
The following conclusions regarding the analysis and optimization of the waiting 

for the considered production system can be deduced both from the listing with results 
and from the representation of the afferent graph: 

For a number of stations below the digit 2, a production overload situation occurs. 
This is caused by the fact that if a single serving station were used—in our case, a ma-
chine tool with a workstation—the arrival rate in the system (0.19 parts/min) would be 
higher than the service rate (0.127 pieces/min.), which would lead to the accumulation 
and continuous increase in the number of parts in the waiting string. In fact, the overload 

situation occurs [35] when 1
*

>
uS

a . Therefore the minimum S is the minimum value 

such the mentioned fraction is less than one. In our paper, we changed the time unit such 
that u = 1 (proportionally multiplying a and obtaining 1.5 instead of 0.127), and the 
minimum S > 1.5 is two. 

Theoretically, starting from a number of two machine tools upwards (the minimum 
value of S such that we have no overload), we can cover the given production task, but 
the expenses caused by waiting/parking the parts on the one hand and the machine tools, 
on the other hand, have opposite influences, which leads to the existence of an optimum 
[36,37]. 

This observation is natural because the more machine tools we have with a higher 
processing capacity, the lower the costs of waiting for parts, the more prompt the service, 
and the costs of stationary machines increase due to the immobilized superior means. 

The listing shows that the optimal number of machine tools that are needed to take 
over the given task is 3; the rest can be assigned to other production tasks. In fact, the 
allocation of all cars for this task would lead, as shown in the schedule, to a significant 
and unjustified increase in costs due to insufficient load. 

Once the SOPT is known and adopted, if the analysis of the corresponding wait is 
desired, the data corresponding to S = 3 can be called directly from the program, as is 
shown in Figure 11. 

 
Figure 11. The optimal results for SOPT.

These new values lead to a better loading of the technological system compared to the
situation of the preliminary study when, without adopting a correctly studied technological
decision, we allocated the entire production capacity to the given task.

It should be noted that in technological systems working with variable production
loads and in the assumptions initially presented, much lower loads are usual than in the
case of those working in large series and mass production, which are not the subject of
this study.

The minimum number of machines, which would ensure the maximum load of the
system, does not necessarily lead to the optimal solution in terms of waiting costs, as is
shown in the example given.
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By changing the values of costs C1 and C2 regarding the waiting of parts and machine
tools in the reference time unit and taking into account the general expression of the waiting
cost function, we noticed that we could be in one of the following situations (Figure 12a–c).
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The case in Figure 12a is, in fact, the most general case, which also corresponds to the
analyzed example, and it is encountered when the influences of the waiting costs C1 and C2
are comparable, and the number of servers is large enough for both to be able to manifest.
There is a first decreasing portion—corresponding to the small number of servers—where
the costs of waiting for parts are predominant, an optimal level followed by an increasing
slope, corresponding to the area with a large number of servers, where the costs of waiting
are predominant.

The second case (Figure 12b) occurs when we have a small number of servers. It
actually corresponds to the first part of the general chart and has the disadvantage that we
cannot know if the minimum is reached for the maximum number of servers we have or if
it is only to be reached.

This situation is also encountered when the high share is the cost of waiting for the
C1 part; for example, for an urgent production task whose delay in completion can lead
to significant penalties. In these cases, either an additional capacity is sought (if this is
possible) by increasing S and identifying Sopt, as recommended in the calculation of the
calculation program, or directly choose the value Sopt = Smax as a value that ensures the
minimum losses under the given conditions.

Finally, the third case (Figure 12) corresponds to the situation when the maximum
share of losses comes from the parking of the machine tools in a system with a low load, in
which the waiting phenomenon of the parts is less important.

This situation is most common in complex, high-capacity industrial systems, where
large initial investments and potential loans lead to significant losses caused by downtime.
Obviously, in this situation, the optimal decision is made, as it results from the listing in
Figure 11 at the values Sopt = Smin, seeking to release as much of the production capacity as
possible in order to focus on other tasks.
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We also made a comparison of the distribution of the inter-arrival times. The optimum
S was 3, except in the case of deterministic arrivals, which is minimum plus one. In the
deterministic case, the minimum S such that a/(S∗u) < 1 is also optimal.

We also found an increasing order of the cost for the same S for exponential distribution
and Erlang distributions: E5, E2 and exponential. The same order is for Nf, except S = 6
between E5 and E2 and S = 3 or S = 7 between E2 and exp, as we can see in the following
picture (Figure 13).
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The rule of having greater cost (in the case of the above picture, the waiting cost) for
hyper-exponential than for exponential has the same three exceptions as in the case of total
costs: S = 2, S = 5 and S = 7.

In the deterministic case, Nf is very small comparing the non-deterministic case: for
S = 2, it is smaller than all other cases for S = 6. The reason for not having the smallest cost
in the deterministic case is that r is also the smallest, as we can see in the picture (Figure 14).
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We noticed the same isolation in minimum for r of the determinist case as the total
maximum cost in Figure 14.

The increasing order of r is determinist, hyper-exponential and exponential for E2, E5
and even S (2, 4 or 6), with a switch between exponential and hyper-exponential for odd S.

6. Conclusions

Generally, we noticed smaller costs and Nf for Erlang cases compared with exponential
and hyper-exponential cases (with the mentioned exceptions) and higher values of r.
Between exponential and hyper-exponential cases, the smallest cost and the smallest Nf are
the hyper-exponential for S = 2, S = 5 or S = 7. When comparing the values of r for these
distributions, they are higher in the hyper-exponential case for S odd. Therefore, none of
these distributions are better. We also notice that the highest costs in the deterministic case
are due to the lowest values of r (Figure 14).
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With our C++ program for Jackson queueing networks, we read the number of nodes
from the keyboard. We read the transition matrix (the probabilities that after finishing
service in node i go to node j/living network) and the average number of arrivals/time unit
for each node from a text file. With these data, we computed the matrix and the right sides
for the involved linear system, which we solved using the mentioned Gauss–Seidel method.

Based on these observations and considerations, it can be concluded that the proposed
method, algorithm and program can contribute to the optimization in terms of technological
times of the operation of technological manufacturing systems, taking into account from
the stage of manufacturing preparation the global influences that they have the waiting
phenomena in the system on the efficiency of the technological process. However, as has
been mentioned before, after applying the optimization strategy presented in the paper,
a correctly and optimally sized enterprise was obtained. This aspect is likely to help (even
if indirectly) the ZDM concept of the fact that a correctly and optimally sized enterprise can
also lead to optimal results in manufacturing and through the prism of the ZDM concept.
It will not have overloaded STF or used artificially/inappropriately in certain technologies
but will have the optimal endowment (in terms of type and capacity), which also favors
the ZDF standard, implicitly ensuring increased sustainability both from a technological
and logistical point of view.

In addition, through the method presented and exemplified in the case study, a quick
and easy-to-use working tool was created, through which the waiting phenomena in
industrial systems can be studied and coordinated in real time, creating the conditions
elimination of arbitrariness in the process of adopting the technological decision in the
analyzed field.

Classical software such as Management Scientist has implemented only the classical
S servers queueing system with Poisson arrivals (and, of course, exponential services in
the literature). The optim “economic analysis” performs the computation of the total cost
as in this paper. We proved the observed bimodal monotony (first decreasing and next
increasing) of this cost in terms of S. In this paper, we found a condition for S in which,
from that point, the cost increases. Therefore, we obtained an upper limit for optimal S, and
the real optimal S is obtained by comparison of all costs until the upper limit. Initially, the
total cost depends on three elements: the expected number of units in the queue, activity
rate and the number of servers, S. However, all the other two depend on S; hence the
optimization problem is to minimize one variable function.

In large series and mass manufacturing, the design of the enterprise is based on the
specifics of this type of production, the repeatability/constant in a time of the operations
and processing provided in the technology of the parts from the manufacturing series. Thus,
there are precise rules according to which the sizing of the enterprise can be performed
exactly and adequately to the respective flow/production.

However, things become complicated when the manufacture is differentiated, and
it varies from month to month, often from one week to the next or even from one day
to the next. It was found that in order to have optimal results in production, the siz-
ing/endowment of enterprises subject to variable tasks must be performed by taking into
account the specifics of input flows of parts (aspects analyzed in our paper) and not by
other random criteria.
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Appendix A

Calculation algorithm of the TFS operation simulation model based on the queueing/
waiting theory.
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Results for the C++ program for optimization of costs by Monte Carlo methods
For the first application with a = 0.6 and u = 1, which can have only one server, we

obtain the results according to Table A1.
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Table A1. The results for S = 1.

r Ns Nf Cost p0 pS pw

0.6 1.5 0.9 235 0.4 0.24 0.6

0.59319 1.63988 1.04669 258.706 0.40681 0.24132 0.59319

For a maximum of 7 servers, we obtained Table A2:

Table A2. The results for a maximum of 7 servers.

S r[S] Ns[S] Nf[S] Cost[S] p0[S] ps[S] pw[S]

1 0.59114 1.54969 0.95856 291.569 0.40886 0.2417 0.5911

2 0.39915 0.95767 0.15937 298.3205 0.45117 0.1499 0.2495

3 0.28556 0.92647 0.06979 402.0285 0.47792 0.0687 0.0962

4 0.19698 0.79418 0.00625 496.4375 0.5045 0.0118 0.0147

5 0.167 0.83901 0.00401 633.3515 0.4938 0.0067 0.0081

6 0.14194 0.85683 0.00521 733.4115 0.51158 0.0036 0.0042

7 0.12805 0.89663 0.00025 922.305 0.47299 0.0007 0.0008

The limit of Nf[S] is 250
250+150 = 0.625, and S from which the obtained increasing cost is

S = 2. Therefore, the optimum S is such that 1 ≤ S ≤ 2; hence, optimum S is S = 1.
For a = 0.19 (1.17 for 6 min) and u = 0.127 (0.762 for 6 min), we considered u = 1, and

a = a
u = 1.5. This is because we can change the unit time from 1’ to 6’, and the system is

the same. We obtained the following results (Table A3).

Table A3. The particular results.

S ro[S] Nrmed[S] Nrfmed[S] Cost[S] p0[S] ps[S] pa[S]

2 0.83044 4.42036 2.75948 498.69932 0.09901 0.09553 0.56342

3 0.64545 2.55445 0.6181 358.62862 0.14195 0.12038 0.33953

4 0.54237 2.48424 0.31474 504.83692 0.14125 0.12153 0.26556

5 0.45558 2.47544 0.19753 710.15153 0.14518 0.12851 0.23604

6 0.39852 2.46884 0.07774 913.88877 0.14154 0.07058 0.11734

7 0.34532 2.46989 0.05266 1153.58915 0.14166 0.06536 0.09983

The S from which Nf < 0.625 is S = 3, and the minimum for cost is indeed S = 3. If we
compare the estimated costs and the theoretical costs, we obtain (Table A4) the comparison.

Table A4. The comparison between the estimated costs and the theoretical costs.

Cost[S] Cost

498.69932 414.2857143

358.62862 410.5263158

504.83692 631.7127072

710.15153 876.2946651

913.88877 1125.235274

1153.58915 1375.039383

The comparative graphics is as follows (Figure A1):
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Our C++ Monte Carlo program obtained the same values as the theoretical ones for
one server service system.

When we optimized the cost, we obtained the same linear increase in cost after
optimum S: even if the coefficient of determination (the ratio between the variance in the
cost estimated with linear regression and the variance in the cost as it is) is around 0.8 for
all S, after optimum S it is over 0.9.

For deterministic arrivals constant a = 1.5 and exponential services with u = 1, we
obtained the following results (Table A5):

Table A5. Results for arrivals constant a = 1.5 and exponential services with u = 1.

S ro[S] Nrmed[S] Nrfmed[S] cost[S] p0[S] ps[S] pa[S]

2 0.41345 0.89164 0.06475 302.98948 0.37410 0.05388 0.09186

3 0.29328 0.89303 0.01318 532.01395 0.37160 0.02244 0.03175

4 0.22132 0.88667 0.00139 778.88830 0.36433 0.00381 0.00490

5 0.17669 0.88449 0.00105 1029.29734 0.37528 0.00403 0.00489

6 0.14067 0.84403 0 1288.99153 0.38935 0 0

7 0.12802 0.89613 0 1525.96638 0.36441 0 0

The value 0 means that they are too small with five decimals. We noticed that Nf
and r are both small; therefore, the cost of waiting decreases, and the cost of inactivity
increases. The cost is smaller in this case only for S = 2. However, in this case, S optim = 2,
and in the Poisson case S optim = 3; thus, we can compare the deterministic values with
the exponential values for S + 1. In this case, we also established that the cost for S = 2 in
the deterministic case, 303, is less than the Poisson minimum cost (S = 3), 504.

In the case of Erlang of order n and parameter λ such that a = λ
n = 1.5 (the same

expectation for inter-arrival times 1/1.5 = 2/3), we consider two cases: n = 3 and n = 5.
For n = 3, we obtained the following results (Table A6):
The number S from which we increased the cost according to the stopping condition

is S = 4, and the optimum cost is 323.75, obtained for S = 3.
For n = 5 we obtained the following results (Table A7).
We noticed that generally, Nf is small for n = 5, and r is higher. The exception is S = 7.

The costs are obviously smaller for S < 7, and it is also smaller according to the two tables
for S = 7. These decreasing costs can be explained that a service system with Erlang of
order n arrivals is equivalent to that with Poisson arrivals same a, but the servers perform
service in groups of order n. The stability condition is a/(S∗u) < 1, where a = lambda/n.
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Therefore instead of quantity improvement of production by increasing S, we can make
quality improvement by increasing n.

Table A6. Results for n = 3.

S ro[S] Nrmed[S] Nrfmed[S] cost[S] p0[S] ps[S] pa[S]

2 0.85735 3.74886 2.03415 376.44613 0.07401 0.04828 0.33844

3 0.69839 2.74543 0.65028 323.75231 0.09553 0.08470 0.28084

4 0.56436 2.57038 0.31293 482.57648 0.10152 0.10523 0.24155

5 0.47855 2.53925 0.14650 673.78909 0.10273 0.08324 0.15964

6 0.41086 2.51968 0.05449 891.87718 0.09864 0.04603 0.07814

7 0.36437 2.63795 0.08733 1125.44584 0.09982 0.09683 0.15235

Table A7. Results for n = 5.

S ro[S] Nrmed[S] Nrfmed[S] cost[S] p0[S] ps[S] pa[S]

2 0.86472 3.47503 1.74560 329.48235 0.07401 0.04828 0.33844

3 0.71059 2.61807 0.48630 290.00002 0.09553 0.08470 0.28084

4 0.60302 2.67323 0.26116 436.15766 0.10152 0.10523 0.24155

5 0.48414 2.52442 0.10374 660.39204 0.10273 0.08324 0.15964

6 0.42825 2.63464 0.06512 867.38695 0.09864 0.04603 0.07814

7 0.35200 2.50256 0.03859 1139.79457 0.09982 0.09683 0.15235

In the case of Hyper-exponential distribution, we considered the simple distribution of
1
λ 1 with expectation 1

1.5 = 0.667. For instance, we considered the values of λi = 1, λi = 2 with
the probabilities of 0.3 and 0.4, respectively. We obtained the following results (Table A8):

Table A8. Results for hyper-exponential distribution.

S ro[S] Nrmed[S] Nrfmed[S] cost[S] p0[S] ps[S] pa[S]

2 0.80507 4.19122 2.58108 484.62617 0.12351 0.12182 0.62495

3 0.65814 3.01115 1.03672 411.90143 0.15924 0.18409 0.53850

4 0.52861 2.55009 0.43563 536.73144 0.17718 0.18312 0.38847

5 0.46656 2.52846 0.19565 696.14349 0.14420 0.11932 0.22369

6 0.36219 2.27907 0.105926103 972.60309 0.19491 0.11897 0.18653

7 0.35161 2.50212 0.040840557 1140.80703 0.14903 0.04883 0.07531

Appendix C

Results for the C++ program for solving the involved linear system to determine the
total arrivals for the n nodes

The seven arrivals from the outside network were considered: 1, 3, 2.5, 4, 2, 1, 2.
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The probabilities that pij to goes to node j after finishing service in node i (pi0 is the
probability to leave the network after service in node i) was considered as follows:

0.6 0 0.2 0 0 0.1 0 0.1
0 0.6 0 0 0 0 0.4 0
0.4 0 0.3 0 0 0 0.3 0
0 0 0 0.5 0 0.5 0 0
0.7 0 0 0 0 0 0 0.3
0.5 0 0 0 0 0.3 0 0.2
1 0 0 0 0 0 0 0

This means that from node 1, we go to node 2 with a probability of 0.2, to node 5 with
a probability of 0.1, to node 7 with the probability of 0.1, or we leave the network with the
probability of 0.6.

We do not leave the network from node 2 (to node 1 with probability 0.6 and to node 6
with probability 0.4) or from node 4 (probability 0.5 to go to node 3 and same to node 5).

From node 7, we leave the network with probability 1 (as in the case of the last node
in the case of the series queueing network). We built the linear system, and we solved it
using the Gauss–Seidel method.

The computer reads the number of nodes (7) in our case and the error for the Gauss–
Seidel method from the keyboard. Next, it reads the values lambda[i]=average extern
arrivals in node i and the above matrix pij with 1 ≤ i ≤ 7 and 0 ≤ j ≤ 7 from the data
file date.txt.

The Gauss–Seidel method is an iterative method to solve linear systems. We can use
two approaches: to give the number of iterations, or to give the error (as in our case),
i.e., the maximum distance (Euclidean distance) between two successive solutions (given
by two consecutive iterations).

By using the C++ program, we obtained the following results:
Error = 0.100000 percentages; No. of iterations = 7; Values of Lambda [i]:
4.102168 5.170433 4.500000 4.000000 5.735650 4.418173 5.014546
Error = 0.001000 percentages; No. of iterations = 10; Values of Lambda [i]:
4.102272 5.170454 4.500000 4.000000 5.735681 4.418181 5.014568
Error = 0.000001 percentages; No. of iterations = 11; Values of Lambda [i]:
4.102272 5.170454 4.500000 4.000000 5.735681 4.418181 5.014568
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