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Abstract: For a connected graph G on n vertices, recall that the reciprocal distance signless Laplacian
matrix of G is defined to be RQ(G) = RT(G)+RD(G), where RD(G) is the reciprocal distance matrix,
RT(G) = diag(RT1, RT2, . . . , RTn) and RTi is the reciprocal distance degree of vertex vi. In 2022,
generalized reciprocal distance matrix, which is defined by RDα(G) = αRT(G) + (1− α)RD(G), α ∈
[0, 1], was introduced. In this paper, we give some bounds on the spectral radius of RDα(G) and
characterize its extremal graph. In addition, we also give the generalized reciprocal distance spectral
radius of line graph L(G).

Keywords: graph; generalized reciprocal distance matrix; reciprocal distance signless Laplacian
matrix; spectral radius
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1. Introduction

In this paper, all graphs considered are finite, simple, and connected. Let G be such
a graph with vertex set V(G) = {v1, v2, . . . , vn} and edge set E(G), where |V(G)| = n
and |E(G)| = m. Let dvi denote the degree of vertex vi, which is simply written as di.
N(vi) denote the neighbor set of vi. The distance between vertices vi and vj in G is the
length of the shortest path connecting vi to vj, which is denoted as d(vi, vj). We use the
notation dij instead of d(vi, vj). The diameter of G, denoted by diam(G), is the maximum
distance between any pair of vertices of G. The Harary matrix of G, which is also called the
reciprocal distance matrix, is an n× n matrix defined as [1]

RDi,j =

{
1

d(vi ,vj)
, if i 6= j,

0, if i = j.

Henceforth, we consider i 6= j for d(vi, vj).
The transmission of vertex vi, denoted by TrG(vi) or Tri, is defined to be the sum of

the distances from vi to all vertices in G , that is, TrG(vi) = Tri = ∑
u∈V(G)

d(u, vi). A graph

G is said to be k-transmission regular graph if TrG(v) = k for each v ∈ V(G). Transmission
of a vertex v is also called the distance degree or the first distance degree of v.

Definition 1. Let G be a graph with V(G) = {v1, v2, . . . , vn}. The reciprocal distance degree of
a vertex v, denoted by RTrG(v), is given by

RTrG(v) = ∑
u∈V(G),u 6=v

1
d(u, v)

.
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Let RT(G) be the n× n diagonal matrix defined by RTi,i = RTrG(vi).

Sometimes we use the notation RTi instead of RTrG(vi) for i = 1, . . . , n.

Definition 2. A graph G is called a k-reciprocal distance degree regular graph if RTi = k for all
i ∈ {1, 2, . . . , n}.

The Harary index of a graph G, denoted by H(G), is defined in [1] as

H(G) =
1
2

n

∑
i=1

n

∑
j=1

RDi,j =
1
2 ∑

u,v∈V(G),u 6=v

1
d(u, v)

.

Clearly,

H(G) =
1
2

n

∑
i=1

RTi.

In [2], Bapat and Panda defined the reciprocal distance Laplacian matrix as RL(G) =
RT(G)− RD(G). It was proved that, given a connected graph G of order n, the spectral ra-
dius of its reciprocal distance Laplacian matrix ρ(RL(G)) ≤ n if and only if its complement
graph, denoted by G, is disconnected. In [3], Alhevaz et al. defined the reciprocal distance
signless Laplacian matrix as RQ(G) = RT(G) + RD(G). Recently, the lower and upper
bounds of the spectral radius of the reciprocal distance matrices and reciprocal distance
signless Laplacian matrices of graphs were given in [3–6], respectively.

In [7], the author, using the convex linear combinations of the matrices RT(G) and
RD(G), introduces a new matrix, that is generalized reciprocal distance matrix, denoted by
RDα(G), which is defined by

RDα(G) = αRT(G) + (1− α)RD(G), 0 ≤ α ≤ 1.

Since RD0(G) = RD(G), RD 1
2
(G) = 1

2 RQ(G) and RD1(G) = RT(G), then RD 1
2
(G)

and RQ(G) have the same spectral properties. To this extent these matrices RD(G), RT(G),
and RQ(G) may be understood from a completely new perspective, and some interesting
topics arise. For the these matrices RD(G), RT(G), and RQ(G), some spectral extremal
graphs with fixed structure parameters have been characterized in [8,9]. It is natural to ask
whether these results can be generalized to RDα(G).

Since RDα(G) is real symmetric matrics, we can denoted λ1(RDα(G)) ≥ λ2(RDα(G))
≥ · · · ≥ λn(RDα(G)) to the eigenvalues of RDα(G). The maximum eigenvalue
λ1(RDα(G)) is called the spectral radius of the matrix RDα(G), denoted by ρ(RDα(G)).

This paper is organized as follows. In Section 2, we give some definitions, notations,
and lemmas of generalized reciprocal distance matrix. In Section 3, we give the upper and
lower bounds of the spectral radius of the generalized reciprocal distance matrix RDα(G)
by using the reciprocal distance degree and the second reciprocal distance degree. In
Section 4, we give the bounds of the spectral radius of the generalized reciprocal distance
matrix of L(G), where L(G) is the line graph of graph G.

2. Lemmas

In this section, we give some definitions, notations, and lemmas to prepare for subse-
quent proofs.

Definition 3. Let G be a graph with V(G) = {v1, v2, . . . , vn}, the reciprocal distance matrix
RD(G) and the reciprocal distance degree sequence {RT1, RT2, . . . , RTn}. Then the second recipro-
cal distance degree of a vertex vi, denoted by Ti, is given by

Ti =
n

∑
j=1,j 6=i

1
di,j

RTj.
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Definition 4. A graph G is called a pseudo k-reciprocal distance degree regular graph if Ti
RTi

= k
for all i ∈ {1, 2, . . . , n}.

Definition 5. The Frobenius norm of an n× n matrix M = (mi,j) is

‖M‖F =

√√√√ n

∑
i=1

n

∑
j=1
|mi,j|2.

We recall that, if M is a normal matrix then ‖M‖2
F =

n
∑

i=1
|λi(M)|2 where λ1(M), . . . , λn(M)

are the eigenvalues of M. In particular, ‖RDα(G)‖2
F =

n
∑

i=1
| λi(RDα(G)) |2 .

Lemma 1 ([6]). Let G be a graph of order n with reciprocal distance degree sequence
{RT1, RT2, . . . , RTn} and second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

T1 + T2 + · · ·+ Tn = RT2
1 + RT2

2 + · · ·+ RT2
n .

Lemma 2 (Perron–Frobenius theorem [10]). If A is a non-negative matrix of order n, then
its spectral radius ρ(A) is an eigenvalue of A and it has an associated non-negative eigenvector.
Furthermore, if A is irreducible, then ρ(G) is a simple eigenvalue of A with an associated positive
eigenvector.

Lemma 3 ([7]). Let G be a graph with n ≥ 2 vertices and Harary index H(G). Then

ρ(RDα(G)) ≥ 2H(G)

n
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Lemma 4 ([11]). Let A = (ai,j) be an n× n nonnegative matrix with spectral radius ρ(A) and
row sums S1(A), S2(A), . . . , Sn(A). Then,

min
1≤i≤n

Si(A) ≤ ρ(A) ≤ max
1≤i≤n

Si(A).

Moreover, if A is an irreducible matrix, then equality holds on either side (and hence both
sides) of the equality if and only if all row sums of A are all equal.

Lemma 5 ([6]). Let G be a graph on n vertices. Let RTmax and RTmin be the maximum and the
minimum reciprocal distance degree of G, respectively. Then, for any vi ∈ V(G),

2H(G) + (RTmax − 1)RTi − (n− 1)RTmax ≤ Ti ≤ 2H(G) + (RTmin − 1)RTi − (n− 1)RTmin.

Lemma 6 (Cauchy alternating theorem [12]). Let A be a real symmetric matrix of order n and
B be a principal submatrix of order m of A. Suppose A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, and
B has eigenvalues β1 ≥ β2 ≥ · · · ≥ βm. Then, for all k = 1, 2, . . . , m, λn−m+k ≤ βk ≤ λk.

Lemma 7. Let G be a graph on n ≥ 2 vertices with 0 ≤ α < 1. The G has exactly two distinct
generalized reciprocal distance eigenvalues if and only if G is a complete graph. In particular,
ρ(RDα(Kn)) = n− 1 and λi(RDα(Kn)) = αn− 1 for i = 2, 3, . . . , n.

Proof. Let n ≥ 2. Clearly, the spectrum of the generalized reciprocal distance matrix of the
complete graph Kn is {n− 1, (αn− 1)[n−1]}.

Let G be a graph with generalized reciprocal distance matrix RDα(G). If G has
exactly two distinct RDα-eigenvalues, then λ1(RDα(G)) > λ2(RDα(G)). Since G is a con-
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nected graph and RDα(G) is an irreducible matrix. Then, from Lemma 2, λ1(RDα(G)) =
ρ(RDα(G)) is the greatest and simple eigenvalue of RDα(G). Thus, the algebraic multiplic-
ity of λ2(RDα(G)) is n− 1, i.e.,

λ2(RDα(G)) = λ3(RDα(G)) = · · · = λn(RDα(G)). (1)

Now, to prove that G = Kn, we show that the diameter of G is 1. That is, we prove
that G does not contain an shortest path Pk, for k ≥ 3.

We suppose that G contains an induced shortest path Pk, k ≥ 3. Let B be the principal
submatrix of RDα(G) indexed by the vertices in Pk. Then by Lemma 6, we have

λi(RDα(G)) ≥ λi(B) ≥ λi+n−k(RDα(G)), i = 1, 2, . . . , k.

Using the equalities given in (1), we obtain λ2(RDα(G)) ≥ λ2(B) ≥ λ3(B) ≥ · · · ≥
λk(B) ≥ λp(RDα(G)) = λ2(RDα(G)). Thus, for k ≥ 3, the matrix B = (RDα(Pk)) has
at most two different eigenvalues. By definition, we can get the generalized reciprocal
distance matrix of P3, that is

RDα(P3) =

 3
2 α 1− α 1

2 (1− α)
1− α 2(1− α) 1− α

1
2 (1− α) 1− α 3

2 α

.

Using the software Maple 18, it is easy to calculate that the generalized recipro-
cal distance spectrum of the path of order 3 is { 3

2 α + 1
4 + 1

4

√
36α2 − 68α + 33, 3

2 α + 1
4 −

1
4

√
36α2 − 68α + 33, 2α− 1

2}, this is false.
Therefore, G does not have two vertices at distance two or more. Then, G = Kn.

Lemma 8 ([13]). If x1 ≥ x2 ≥ · · · ≥ xm are real numbers such that
m
∑

i=1
xi = 0, then

x1 ≤
√

m− 1
m

m

∑
i=1

x2
i .

The equality holds if and only if x2 = x3 = · · · = xm = − x1
m−1 .

Lemma 9 (Rayleigh quotient theorem [14]). let M be a real symmetric matrix of order n whose
eigenvalues are λ1 ≥ λ2 ≥ . . . ≥ λn. Then, for any n-dimensional nonzero column vector x,

λ1 ≥
xT Mx

xTx
≥ λn.

Lemma 10 ([15]). If diam(G) ≤ 2 and if none of the three graphs F1, F2, and F3 depicted in
Figure 1 are induced subgraphs of G, then diam(L(G)) ≤ 2.

• • • • •

F1

• • •@
@

�
�•

•

F2

@
@

�
�

•
•

•
�
�

@
@•

•

F3

Figure 1. Graphs F1, F2, T3 in Lemma 10.

3. Bounds of ρ(RDα(G)) of Graphs

In this section, we find bounds of the spectral radius of generalizes reciprocal distance
matrix in terms of parameters associated with the structure of the graph.

Let e be the n-dimensional vector of ones.
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Theorem 1. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn}. Then

ρ(RDα(G)) ≥

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. Let x = [x1, x2, . . . , xn]T be the unit positive Perron eigenvector of RDα(G) corre-
sponding to ρ(RDα(G)). We take the unit vector y = 1√

n e. Then, we have

ρ(RDα(G)) =
√

ρ2(RDα(G)) =
√

xT(RDα(G))2x ≥
√

yT(RDα(G))2y. (2)

Since (RDα(G))y = 1√
n [RT1, RT2, . . . , RTn]T , we obtain

yT(RDα(G))2y =
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

Therefore,

ρ(RDα(G)) ≥

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

Now, assume that the equality holds. By Equation (2), we have that y is the positive
eigenvector corresponding to ρ(RDα(G)). From RDα(G)y = ρ(RDα(G))y, we obtain that
RTi = ρ(RDα(G)), for i = 1, 2, . . . , n. Therefore, graph G is a reciprocal distance degree
regular graph.

Conversely, if G is a reciprocal distance degree regular graph, then RT1 = RT2 = · · · =
RTn = k. From Lemma 2, k = ρ(RDα(G)). So

ρ(RDα(G)) = k =

√
nk2

n
=

√
RT2

1 + RT2
2 + · · ·+ RT2

n
n

.

The equality holds.

Theorem 2. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≥

√√√√√ (αRT2
1 + (1− α)T1)2 + (αRT2

2 + (1− α)T2)2 + · · ·+ (αRT2
n + (1− α)Tn)2

n
∑

i=1
RT2

i

.

The equality holds if and only if G is a pseudo reciprocal distance degree regular graph.

Proof. Using y = 1√
n
∑

i=1
RT2

i

[RT1, RT2, . . . , RTn]T , the proof is similar to Theorem 1.

Remark 1. The lower bound given in Theorem 2 improves the bound given in Theorem 1, and the
bound given in Theorem 1 improves the bound given in Lemma 3.



Mathematics 2022, 10, 2683 6 of 12

In fact, from Lemma 1, we have
n
∑

i=1
Ti =

n
∑

i=1
RT2

i . By Cauchy–Schwarz inequality

n
n

∑
i=1

(αRT2
i + (1− α)Ti)

2 ≥ (
n

∑
i=1

(αRT2
i + (1− α)Ti))

2

= (α
n

∑
i=1

RT2
i + (1− α)

n

∑
i=1

Ti)
2

= (α
n

∑
i=1

RT2
i + (1− α)

n

∑
i=1

RT2
i )

2

= (
n

∑
i=1

RT2
i )

2.

Moreover, we recall that, n
n
∑

i=1
RT2

i ≥ (
n
∑

i=1
RTi)

2. Thus

√√√√√√√
n
∑

i=1
(αRT2

i + (1− α)Ti)2

n
∑

i=1
RT2

i

≥

√√√√√√√
(

n
∑

i=1
RT2

i )
2

n
n
∑

i=1
RT2

i

=

√√√√√ n
∑

i=1
RT2

i

n

and √√√√√ n
∑

i=1
RT2

i

n
≥

√√√√√ (
n
∑

i=1
RTi)2

n2 =
2H(G)

n
.

Theorem 3. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

min
1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
≤ ρ(RDα(G)) ≤ max

1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
.

Proof. Let RDα(G) = (bi,j). Then (RDα(G))2
i,j =

n
∑

k=1
bi,kbk,j, and the row sum of (RDα(G))2

should be

Si((RDα(G))2) =
n

∑
j=1

n

∑
k=1

bi,kbk,j =
n

∑
k=1

(bi,k

n

∑
j=1

bk,j) =
n

∑
k=1

(bi,kRTk).

Hence, Si((RDα(G))2) = (1− α)Ti + αRT2
i .

Now, let x be the unit Perron vector corresponding to ρ(RDα(G)). Clearly, RDα(G)x =
ρ(RDα(G))x and (RDα(G))2x = (ρ(RDα(G)))2x. By Lemma 4, we have

min
1≤i≤n

{
(1− α)Ti + α(RTi)

2
}
≤ (ρ(RDα(G)))2 ≤ max

1≤i≤n

{
(1− α)Ti + α(RTi)

2
}

.

Thus

min
1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
≤ ρ(RDα(G)) ≤ max

1≤i≤n

{√
(1− α)Ti + α(RTi)2

}
.
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Theorem 4. Let G be a graph with n vertices, RTmax and Tmax be the maximum reciprocal distance
degree and the maximum second reciprocal distance degree of G, respectively. Then

ρ(RDα(G)) ≤ αRTmax +
√
(αRTmax)2 + 4(1− α)Tmax

2
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. Since RDα(G) = αRT(G) + (1− α)RD(G), 0 ≤ α ≤ 1, it can be obtained by simple
calculation

Si(RDα(G)) = RTi,

Si((RT(G))2) = Si(RT(G)RD(G)) = RT2
i ,

Si((RD(G))2) = Si(RD(G)RT(G)) = Ti.

Then

Si((RDα(G))2) =Si(α
2(RT(G))2 + α(1− α)RT(G)RD(G)

+ α(1− α)RD(G)RT(G) + (1− α)2RD(G)2)

=Si(αRT(G)(αRT(G) + (1− α)RD(G)))

+ α(1− α)Si(RD(G)RT(G)) + (1− α)2Si(RD(G)2)

=αRTiSi(RDα(G)) + (1− α)Ti

≤αRTmaxSi(RDα(G)) + (1− α)Tmax,

that is,
Si((RDα(G))2 − αRTmaxRDα(G)) ≤ (1− α)Tmax.

By Lemma 4,

ρ2(RDα(G))− αRTmaxρ(RDα(G))− (1− α)Tmax ≤ 0.

For any vertex vi, when the inequality is equal, RTi = RTmax, Ti = Tmax. That is, G is a
reciprocal distance degree regular graph.

On the contrary, when G is a reciprocal distance degree regular graph, the inequality
is equal.

Theorem 5. Let G be a graph with n vertices, RTmin and Tmin be the minimum reciprocal distance
degree and the minmum second reciprocal distance degree of G, respectively. Then

ρ(RDα(G)) ≥ αRTmin +
√
(αRTmin)2 + 4(1− α)Tmin

2
.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. The method is the same as Theorem 4.

Theorem 6. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≤ max
1≤i,j≤n


α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

. (3)

The equality holds if and only if G is a reciprocal distance degree regular graph.
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Proof. Let x = (x1, x2, . . . , xn) be the eigenvector corresponding to the eigenvalue ρ(G) of
the matrix RT(G)−1RDα(G)RT(G), xs = max{xi|i = 1, 2, . . . , n}, xt = max{xi|xi 6= xs, i =
1, 2, . . . , n}.

Through simple calculation, the value of the (i, j)-th element of RT(G)−1RDα(G)RT(G) isαRTi, if i = j,

(1− α)
RTj
RTi

1
dij

, if i 6= j.

Because
RT(G)−1RDα(G)RT(G)x = ρ(RDα(G))x, (4)

row s and t in Equation (4) are

ρ(RDα(G))xs = αRTsxs + (1− α)
n

∑
i=1

RTi
RTs

xi
dsi

, (5)

ρ(RDα(G))xt = αRTtxt + (1− α)
n

∑
i=1

RTi
RTt

xi
dti

. (6)

After shifting the item of Equations (5) and (6), we can get

(ρ(RDα(G)− αRTs))xs = (1− α)
n

∑
i=1

RTi
RTs

xi
dsi

≤ (1− α)
xt

RTs

n

∑
i=1

RTi
1

dsi

= (1− α)
Ts

RTs
xt,

(7)

(ρ(RDα(G)− αRTt))xt = (1− α)
n

∑
i=1

RTi
RTt

xi
dti

≤ (1− α)
xs

RTt

n

∑
i=1

RTi
1

dti

= (1− α)
Tt

RTt
xs.

(8)

Multiply Equation (7) and (8) to simplify (ρ(RDα(G) − αRTs)(ρ(RDα(G) −
αRTt)xsxt ≤ (1− α)2 TsTt

RTsRTt
xtxs. Then

(ρ(RDα(G))2 − α(RTs + RTt)ρ(RDα(G)) + α2RTsRTt − (1− α)2 TsTt

RTsRTt
≤ 0.

ρ(RDα(G)) ≤
α(RTs + RTt) +

√
α2(RTs − RTt)2 + 4(1− α)2 TsTt

RTsRTt

2
.

Hence

ρ(RDα(G)) ≤ max
1≤i,j≤n


α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

.

Suppose G is a k-reciprocal distance regular graph, RTi = k, Ti = k2, i = 1, 2, . . . , n.
According to Lemma 2, ρ(RDα(G)) = k, so Equation (3) holds. On the contrary, if inequality
(3) is equal, x1 = x2 = · · · = xn can be obtained from (7) and (8), that is, ρ(RDα(G)) =
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αRT1 + (1− α) T1
RT1

= αRT2 + (1− α) T2
RT2

= · · · = αRTn + (1− α) Tn
RTn

, which means that G
is a reciprocal distance degree regular graph.

Theorem 7. Let G be a graph with reciprocal distance degree sequence {RT1, RT2, . . . , RTn} and
second reciprocal distance degree sequence {T1, T2, . . . , Tn}. Then

ρ(RDα(G)) ≥ min
1≤i,j≤n


α(RTi + RTj) +

√
α2(RTi − RTj)2 + 4(1− α)2 TiTj

RTi RTj

2

.

The equality holds if and only if G is a reciprocal distance degree regular graph.

Proof. The method is the same as Theorem 6.

Theorem 8. Let G be a graph of order n and 0 ≤ α < 1, then

ρ(RDα(G)) ≤ 2αH(G)

n
+

√
n− 1

n
(‖RDα(G)‖2

F −
(2αH(G))2

n
).

The equality holds if and only if G = Kn.

Proof. We recall that
n
∑

i=1
λi(RDα(G)) = α

n
∑

i=1
RTi = 2αH(G), and

n
∑

i=1
λi(RDα(G))2 =

‖RDα(G)‖2
F. Clearly,

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
) = 0.

By Lemma 8,

ρ(RDα(G))− 2αH(G)

n
≤
√

n− 1
n

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
)2, (9)

with equality holds if and only if

λ2(RDα(G))− 2αH(G)

n
= · · · = λn(RDα(G))− 2αH(G)

n
= −

ρ(RDα(G))− 2αH(G)
n

n− 1
. (10)

Since

n

∑
i=1

(λi(RDα(G))− 2αH(G)

n
)2 =

n

∑
i=1

(λi(RDα(G)))2 − 4αH(G)

n

n

∑
i=1

λi(RDα(G)) + n(
2αH(G)

n
)2

= ‖RDα(G)‖2
F − 2

(2αH(G))2

n
+

(2αH(G))2

n

= ‖RDα(G)‖2
F −

(2αH(G))2

n
.

The upper bound (9) is equivalent to

ρ(RDα(G)) ≤ 2αH(G)

n
+

√
n− 1

n
(‖RDα(G)‖2

F −
(2αH(G))2

n
) (11)

with the necessary and sufficient condition for the equality given in (10).
Now, suppose that the equality holds. Therefore, the equality condition for (11) can be

given in (10), and we obtain that G has only two distinct generalized reciprocal distance
eigenvalues. Hence, from Lemma 7, G = Kn.
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Conversely, from Lemma 7 the generalized reciprocal distance eigenvalues of Kn
are ρ(RDα(Kn) = n − 1 and λi(RDα(G)) = αn − 1, for i = 2, 3, . . . , n. Then, the equal-
ity holds.

4. Bounds of ρ(RDα(G)) of Line Graph L(G)

The line graph L(G) of G is the graph whose vertices correspond to the edges of G, and
two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent.
In this section, we give the bounds of the spectral radius of the generalized reciprocal
distance matrix of L(G).

Theorem 9. Let graph G have n vertices and m edges, and the degree of vertex vi be recorded as
di. If diam(G) ≤ 2 and graphs Fi, i = 1, 2, 3 in Lemma 10 are not induced subgraphs of G, then

ρ(RDα(L(G))) ≥

1
2 (m

2 − 3m +
n
∑

i=1
d2

i )

m
.

Proof. If diam(G) ≤ 2, the i-th row element of RDα(G) is composed of { 1
2 α(n + di −

1), (1− α)di , 1
2 (1− α)[n−di−1]}, which can be obtained from Lemma 9

ρ(RDα(L(G))) ≥ eT RDα(G)e
eTe

=

n
∑

i=1

1
2 (n + di − 1)

n
=

1
2 (n

2 + 2m− n)
n

.

Hence, line graph L(G) has n1 = m vertices and m1 = 1
2

n
∑

i=1
d2

i − m edges. Because

graphs Fi, i = 1, 2, 3 are not induced subgraphs of G, from Lemma 10, diam(L(G)) ≤ 2,
then

ρ(RDα(L(G))) ≥
1
2 (n

2
1 + 2m1 − n1)

n1

=

1
2 [m

2 + 2( 1
2

n
∑

i=1
d2

i −m)−m]

m

=

1
2 (m

2 − 3m +
n
∑

i=1
d2

i )

m
.

Theorem 10. Let graph G be r-regular graph with n vertices, and graphs Fi, i = 1, 2, 3 be
not-induced subgraphs of G. Then

ρ(RDα(L(G))) ≥ nr
4

+ r− 3.

Proof. Let graph G be r-regular graph with n vertices, the number of edges in graph G is
m = nr

2 , di = deg(vi) = r. It is proved by Theorem 9.

Theorem 11. Let the vertices set and edges set of G be V(G) = {v1, v2, . . . , vn} and E(G) =
{e1, e2, . . . , em}, deg(ei) represent the number of edges adjacent to edge ei. Then,

ρ(RDα(L(G)) ≤ max
1≤i≤m

{1
2
(m− deg(ei)− 1)

}
.

Proof. Let e = uv be an edge of G. Then, the degree of vertex e ∈ V(L(G)) is degL(G)(e) =
degG(u) + degG(v)− 2.
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In graph G, if edge e = uv is adjacent to deg(u) + deg(v)− 2 = deg(e), then denoted
|Ee| = m− 1− deg(e) as the number of edges which are not adjacent to edge e. Therefore,
in the graph L(G), there are |Ee| vertices, and their distance from vertex e is greater than 1.
Thus, the maximum element of generalized reciprocal distances matrix of the corresponding
vertices should be 1

2 (1− α). We can get

Si(RDα(L(G))) ≤ 1
2
(1− α)(m− 1− deg(ei))

+ (1− α)deg(ei) + α(
1
2

m− 1
2
+

1
2

deg(ei))

=
1
2
(m− deg(ei)− 1).

By Lemma 4, ρ(RDα(L(G))) ≤ max
1≤i≤m

{ 1
2 (m− deg(ei)− 1)}.

5. Conclusions

In this paper, we find some bounds for the spectral radius of the generalized reciprocal
distance matrix of a simple undirected connected graph G, and we also give the generalized
reciprocal distance spectral radius of line graph L(G). The graphs for which those bounds
are attained are characterized.
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