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1. Introduction and Motivation

The Pell and Lucas polynomials were introduced by Horadam and Mahon [1]. They
can equivalently be defined by the recurrence relations

Pn(x) = 2xPn−1(x) + Pn−2(x),

Qn(x) = 2xQn−1(x) + Qn−2(x);

with different initial conditions

P0(x) = 0 and P1(x) = 1,

Q0(x) = 2 and Q1(x) = 2x.

The corresponding ordinary generating functions read as

Φ(x, y) =
∞

∑
k=0

Pk(x)yk =
y

1− 2xy− y2 =
1

(α− β)(1− yα)
− 1

(α− β)(1− yβ)
,

Ψ(x, y) =
∞

∑
k=0

Qk(x)yk =
2− 2xy

1− 2xy− y2 =
1

1− yα
+

1
1− yβ

;

leading us to the explicit formulae with Binet forms

Pn(x) =
αn − βn

α− β
and Qn(x) = αn + βn,

where, for brevity, we employ the following two notations:

α = α(x) = x +
√

x2 + 1 and β = β(x) = x−
√

x2 + 1.

These polynomials have constantly been continuing to amaze the mathematical world
for their fascinating properties and wide applications in intertwining various topics of math-
ematics, such as combinatorics, discrete mathematics and number theory. Some basic prop-
erties and power sums are examined by Chu–Li [2,3] and Horadam–Mahon [1]. A compre-
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hensive coverage about more properties and known results can be found in the monographs
by Grimaldi [4] and Koshy [5].

In particular, they can be considered as polynomial extensions of the Fibonacci number
Pn(1/2) = Fn and the Lucas number Qn(1/2) = Ln that satisfy the recurrence relations

Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2

and the initial conditions

F1 = F2 = 1 and L1 = 1, L2 = 3.

A quarter of a century ago, Seiffert [6] proposed, as a problem, an identity that can be
equivalently expressed as the following reciprocity:

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
P2k+1(x) = (2x)nPn+1(x−1). (1)

This problem was forgotten until very recently when Abel and Kushnirevych [6] found
a solution by employing generating functions and the Lagrange inversion formula. When
searching for an alternative approach to solve this problem, we found three further re-
ciprocal relations with similar forms. Their particular cases result in several remarkable
identities for Fibonacci and Lucas numbers. Eight representatives of them are highlighted:

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
F2k+1 =

F3n+3

2
, (see Corollary 1)

b n
2 c

∑
k=0

(
2n

n− 2k

)
L2k =

L3n

2
+

(
2n
n

)
, (see Corollary 3)

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F2k =

F3n−3

4
, (see Corollary 5)

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
L2k+1 =

L3n

2
, (see Corollary 7)

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
F6k+3 = 22n+1Fn+1, (see Corollary 1)

b n
2 c

∑
k=0

(
2n

n− 2k

)
L6k = 22n−1Ln +

(
2n
n

)
, (see Corollary 3)

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F6k = 22n−2Fn−1, (see Corollary 5)

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
L6k+3 = 22n+1Ln. (see Corollary 7)

Therefore, the objective of this paper is to systematically examine reciprocal formulae
for the Pell and Lucas polynomials as well their applications to the counterparts of Fibonacci
and Lucas numbers. Even though we failed to locate them in the encyclopedic monographs
of Grimaldi [4] and Koshy [5], it cannot be excluded that some of them may have appeared
previously in the vast literature on the related topics.
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Throughout the paper, we make use of Lambert’s binomial series (see Riordan [7]
Section 4.5 and [8,9]), which are well-known in classical analysis. Let y and τ be the two
variables related by the equation y = τ/(1 + τ)b. Then,

∞

∑
n=0

a
a + bn

(
a + bn

n

)
yn = (1 + τ)a, (2)

∞

∑
n=0

(
a + bn

n

)
yn =

(1 + τ)a+1

1 + τ − bτ
. (3)

The rest of the paper is divided into four sections with each section being dedicated to
a binomial sum, like (1). By combining Lambert’s series with the bisectional series method,
we derive, for each binomial sum, its ordinary generating function and the closed reciprocal
formula in terms of Pn(x) or Qn(x). Then eight summation formulae for the Fibonacci and
Lucas numbers follow as consequences.

2. Reciprocity for An(x)

As a warm up, we begin by examining the first binomial sum of Seiffert [6] given by

An(x) =
b n

2 c

∑
k=0

(
2n + 2
n− 2k

)
P2k+1(x). (4)

Lemma 1. Let y and T be the two variables related by T = y(1 + T)2. Then, we have the closed
form generating function:

A(x, y) =
∞

∑
n=0
An(x)yn =

(1 + T)4

(1− T2)2 − 4T2x2 .

Proof. By interchanging the summation order and then making the replacement n→ 2k+ i
on the summation index, we can manipulate its generating function, as follows:

A(x, y) =
∞

∑
n=0
An(x)yn =

∞

∑
n=0

yn
b n

2 c

∑
k=0

(
2n + 2
n− 2k

)
P2k+1(x)

=
∞

∑
k=0

y2kP2k+1(x)
∞

∑
n=2k

(
2n + 2
n− 2k

)
yn−2k.

The inner sum can be evaluated by (3)

∞

∑
n=2k

(
2n + 2
n− 2k

)
yn−2k =

∞

∑
i=0

(
4k + 2i + 2

i

)
yi =

(1 + T)3+4k

1− T
,

where T is an implicit function of y determined by T = y(1 + T)2. By substitution, we have

A(x, y) =
∞

∑
k=0

y2kP2k+1(x)
(1 + T)3+4k

1− T

=
1 + T

(1− T)y

∞

∑
k=0

P2k+1(x)T2k+1.

The last sum results in the bisectional series

∞

∑
k=0

P2k+1(x)T2k+1 =
Φ(x, T)−Φ(x,−T)

2
=

T(1− T2)

(1− T2)2 − 4T2x2 .
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By simplifying

A(x, y) =
(1 + T)3

(1− T)T
× T(1− T2)

(1− T2)2 − 4T2x2 ,

we find the generating function stated in Lemma 1.

Theorem 1 (n ∈ N0: Seiffert [6]).

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
P2k+1(x) = (2x)nPn+1(x−1).

Proof. Observe that the generating function in Lemma 1 almost coincides with

Φ(x−1, 2xy) =
∞

∑
n=0

Pn(x−1)(2xy)n =
2xy

1− 4y− 4x2y2 =
2xy(1 + T)4

(1− T2)2 − 4T2x2 (5)

since y→ T/(1+ T)2. By comparing the coefficients of yn in the two equations, we confirm
Seiffert’s reciprocal Formula (1) in the theorem.

Let λ be a natural number. It is routine to check the following relations:

Pn

( L2λ−1

2

)
=

F2λn−n
F2λ−1

, Pn

(√5
2

F2λ

)
=


F2λn
L2λ

√
5, n ≡2 0;

L2λn
L2λ

, n ≡2 1;
(6)

Qn

( L2λ−1

2

)
= L2λn−n, Qn

(√5
2

F2λ

)
=

L2λn, n ≡2 0;

F2λn
√

5, n ≡2 1.
(7)

As applications, we present four identities for Fibonacci and Lucas numbers.

Corollary 1 (n ∈ N0).

x =
1
2
=

L1

2

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
F2k+1 =

1
2

F3n+3,

x =

√
5

2
=

√
5

2
F2

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
L4k+2 =

5n+1 − (−1)n+1

2
,

x = 2 =
L3

2

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
F6k+3 = 22n+1Fn+1,

x =
3
√

5
2

=

√
5

2
F4

b n
2 c

∑
k=0

(
2n + 2
n− 2k

)
L8k+4 =

9n+1 − (−5)n+1

2
.

We remark further that the expressions corresponding to the second and the fourth
sums have the following simple rational generating functions:

3
1− 4x− 5x2 and

7
1− 4x− 45x2 .

Proof. By assigning four specific values to x in Theorem 1 and then applying (6) and (7), we
recover the four summation formulae for the Fibonacci and Lucas numbers in Corollary 1,
where the first three were given explicitly by Seiffert [6].
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Furthermore, denoting the imaginary unit by “i”, we also have, for λ ∈ N, four
similar relations:

Pn

( i
2

L2λ

)
= in−1 F2λn

F2λ
, Pn

( i
√

5
2

F2λ−1

)
= in−1


F2λn−n
L2λ−1

√
5, n ≡2 0;

L2λn−n
L2λ−1

, n ≡2 1;
(8)

Qn

( i
2

L2λ

)
= inL2λn, Qn

( i
√

5
2

F2λ−1

)
= in

L2λn−n, n ≡2 0;

F2λn−n
√

5, n ≡2 1.
(9)

Then, we have the following four formulae of alternating sums.

Corollary 2 (n ∈ N0).

x = i
√

5
2 = i

√
5

2 F1

ω = 2 + i

b n
2 c

∑
k=0

(−1)k
(

2n + 2
n− 2k

)
L2k+1 =

ωn+1 − ω̄n+1

ω− ω̄
,

x = 3i
2 = i

2 L2

ω = 2 + i
√

5

b n
2 c

∑
k=0

(−1)k
(

2n + 2
n− 2k

)
F4k+2 =

ωn+1 − ω̄n+1

ω− ω̄
,

x = i
√

5 = i
√

5
2 F3

ω = 2 + 4i

b n
2 c

∑
k=0

(−1)k
(

2n + 2
n− 2k

)
L6k+3 = 4

ωn+1 − ω̄n+1

ω− ω̄
,

x = 7i
2 = i

2 L4

ω = 2 + 3i
√

5

b n
2 c

∑
k=0

(−1)k
(

2n + 2
n− 2k

)
F8k+4 = 3

ωn+1 − ω̄n+1

ω− ω̄
.

Among the above four closed expressions displayed on the right, the former two cor-
respond to the integer sequences [A099456] and [A190967] recorded in [10] and generated,
respectively, by

1
1− 4x + 5x2 and

1
1− 4x + 9x2 ;

while the latter two are the integer sequences generated, respectively, by

4
1− 4x + 20x2 and

3
1− 4x + 49x2 .

Proof. These identities may serve as counterparts to those in Corollary 1. They can be
verified by applying (8) and (9) in conjunction with Theorem 1.

3. Reciprocity for Bn(x)

This section is devoted to the second binomial sum defined by

Bn(x) =
b n

2 c

∑
k=0

(
2n

n− 2k

)
Q2k(x). (10)

Lemma 2. Let y and T be the two variables related by T = y(1 + T)2. Then, we have the closed
form generating function

B(x, y) =
∞

∑
n=0
Bn(x)yn =

1 + T
1− T

+
(1 + T2)(1 + T)2

(1− T2)2 − 4T2x2 .
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Proof. The generating function can similarly be computed as follows:

B(x, y) =
∞

∑
n=1
Bn(x)yn =

∞

∑
n=1

yn
b n

2 c

∑
k=0

(
2n

n− 2k

)
Q2k(x)

=
∞

∑
k=0

y2kQ2k(x)
∞

∑
n=2k

(
2n

n− 2k

)
yn−2k

=
∞

∑
k=0

y2kQ2k(x)
(1 + T)1+4k

1− T

=
1 + T
1− T

∞

∑
k=0

Q2k(x)T2k.

Since the last sum results in the bisectional series

∞

∑
k=0

Q2k(x)T2k =
Ψ(x, T) + Ψ(x,−T)

2
= 1 +

1− T4

(1− T2)2 − 4T2x2 ,

we get the expression

B(x, y) =
1 + T
1− T

×
{

1 +
1− T4

(1− T2)2 − 4T2x2

}
,

which is equivalent to that in Lemma 2.

From Lemma 2, we can prove the second reciprocal formula.

Theorem 2 (n ∈ N0).

b n
2 c

∑
k=0

(
2n

n− 2k

)
Q2k(x) =

(
2n
n

)
+ 2n−1xnQn(x−1).

Proof. Keeping in mind that y→ T/(1+T)2, comparing the generating function in Lemma 2
with the function

Ψ(x−1, 2xy) =
∞

∑
n=0

Qn(x−1)(2xy)n =
2− 4y

1− 4y− 4x2y2 =
2(1 + T2)(1 + T)2

(1− T2)2 − 4T2x2 (11)

and then extracting the coefficients of yn, we find the formula presented in Theorem 2.

Theorem 2 contains four summation formulae for Lucas numbers.

Corollary 3 (n ∈ N0).

x =
1
2
=

L1

2

b n
2 c

∑
k=0

(
2n

n− 2k

)
L2k =

(
2n
n

)
+

1
2

L3n,

x =

√
5

2
=

√
5

2
F2

b n
2 c

∑
k=0

(
2n

n− 2k

)
L4k =

(
2n
n

)
+

5n + (−1)n

2
,

x = 2 =
L3

2

b n
2 c

∑
k=0

(
2n

n− 2k

)
L6k =

(
2n
n

)
+ 22n−1Ln,

x =
3
√

5
2

=

√
5

2
F4

b n
2 c

∑
k=0

(
2n

n− 2k

)
L8k =

(
2n
n

)
+

9n + (−5)n

2
.

Proof. These identities were derived from Theorem 2 by applying (6) and (7).
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The corresponding alternating sums are as follows.

Corollary 4 (n ∈ N0).

x = i
√

5
2 = i

√
5

2 F1

ω = 2 + i

b n
2 c

∑
k=0

(−1)k
(

2n
n− 2k

)
L2k =

(
2n
n

)
+

1
2

{
ωn + ω̄n

}
,

x = 3i
2 = i

2 L2

ω = 2 + i
√

5

b n
2 c

∑
k=0

(−1)k
(

2n
n− 2k

)
L4k =

(
2n
n

)
+

1
2

{
ωn + ω̄n

}
,

x = i
√

5 = i
√

5
2 F3

ω = 2 + 4i

b n
2 c

∑
k=0

(−1)k
(

2n
n− 2k

)
L6k =

(
2n
n

)
+

1
2

{
ωn + ω̄n

}
,

x = 7i
2 = i

2 L4

ω = 2 + 3i
√

5

b n
2 c

∑
k=0

(−1)k
(

2n
n− 2k

)
L8k =

(
2n
n

)
+

1
2

{
ωn + ω̄n

}
.

Proof. They were similarly obtained from Theorem 2 by applying (8) and (9).

4. Reciprocity for Cn(x)

Furthermore, the third binomial sum is defined by

Cn(x) =
b n

2 c

∑
k=1

2k
n

(
2n

n− 2k

)
P2k(x). (12)

Its generating function can also be determined explicitly.

Lemma 3. Let y and T be the two variables related by T = y(1 + T)2. Then, we have the closed
form generating function:

C(x, y) =
∞

∑
n=1
Cn(x)yn =

(1− T)2(1 + T)2

2x
{
(1− T2)2 − 4T2x2

} − 1
2x

.

Proof. In fact, we have

C(x, y) =
∞

∑
n=1
Cn(x)yn =

∞

∑
n=1

yn
b n

2 c

∑
k=1

2k
n

(
2n

n− 2k

)
P2k(x)

=
∞

∑
k=1

y2kP2k(x)
∞

∑
n=2k

2k
n

(
2n

n− 2k

)
yn−2k

=
∞

∑
k=1

y2kP2k(x)
∞

∑
i=0

2k
2k + i

(
4k + 2i

i

)
yi.

Then, we can evaluate the inner sum by (2)

∞

∑
n=2k

2k
n

(
2n

n− 2k

)
yn−2k =

∞

∑
i=0

4k
4k + 2i

(
4k + 2i

i

)
yi = (1 + T)4k.

By substitution, we have

C(x, y) =
∞

∑
k=1

y2kP2k(x)(1 + T)4k =
∞

∑
k=1

P2k(x)T2k.
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Rewriting the bisectional series

∞

∑
k=1

P2k(x)T2k =
Φ(x, T) + Φ(x,−T)

2
=

T(1− T2)

(1− T2)2 − 4T2x2

=
(1− T)2(1 + T)2

2x
{
(1− T2)2 − 4T2x2

} − 1
2x

,

we get the generating function for Cn(x, y).

Now, we have the following third reciprocal formula.

Theorem 3 (n ∈ N).

Cn(x) =
b n

2 c

∑
k=1

k
n

(
2n

n− 2k

)
P2k(x) = 2n−2xn−1Pn−1(x−1).

Proof. Under the setting of P−1(x) = 1, the generating function Φ(x−1, 2xy) in (5) can be
slightly modified as follows:

1 + 2xyΦ(x−1, 2xy) =
∞

∑
n=0

Pn−1(x−1)(2xy)n =
1− 4y

1− 4y− 4x2y2

=
(1− T)2(1 + T)2

(1− T2)2 − 4T2x2 where y→ T/(1 + T)2.

Taking into account Lemma 3 and then comparing the coefficients of yn in the two
equations displayed above, we find the formula stated in Theorem 3.

As applications, we give four summation formulae for Fibonacci numbers.

Corollary 5 (n ∈ N).

x =
1
2
=

L1

2

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F2k =

F3n−3

4
,

x =

√
5

2
=

√
5

2
F2

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F4k =

5n−1 − (−1)n−1

4
,

x = 2 =
L3

2

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F6k = 22n−2Fn−1,

x =
3
√

5
2

=

√
5

2
F4

b n
2 c

∑
k=1

k
n

(
2n

n− 2k

)
F8k =

3
4

{
9n−1 − (−5)n−1

}
.

Proof. These identities follow directly by applying (6) and (7) to Theorem 3.

Analogously, the counterparts of the alternating sums are stated below.
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Corollary 6 (n ∈ N).

x = i
√

5
2 = i

√
5

2 F1

ω = 2 + i

b n
2 c

∑
k=1

(−1)k k
n

(
2n

n− 2k

)
F2k =

1
2

{
ωn−1 − ω̄n−1

}
ω̄−ω

,

x = 3i
2 = i

2 L2

ω = 2 + i
√

5

b n
2 c

∑
k=1

(−1)k k
n

(
2n

n− 2k

)
F4k =

3
2

{
ωn−1 − ω̄n−1

}
ω̄−ω

,

x = i
√

5 = i
√

5
2 F3

ω = 2 + 4i

b n
2 c

∑
k=1

(−1)k k
n

(
2n

n− 2k

)
F6k = 4

{
ωn−1 − ω̄n−1

}
ω̄−ω

,

x = 7i
2 = i

2 L4

ω = 2 + 3i
√

5

b n
2 c

∑
k=1

(−1)k k
n

(
2n

n− 2k

)
F8k =

21
2

{
ωn−1 − ω̄n−1

}
ω̄−ω

.

Proof. They are confirmed by Theorem 3 under parameter settings (8) and (9).

5. Reciprocity for Dn(x)

Finally, we examine the fourth binomial sum defined by

Dn(x) =
b n

2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
Q2k+1(x). (13)

The corresponding generating function is given as in the lemma below.

Lemma 4. Let y and T be the two variables related by T = y(1 + T)2. Then, we have the closed
form generating function:

D(x, y) =
∞

∑
n=0
Dn(x)yn =

2x(1 + T2)(1 + T)2

(1− T2)2 − 4T2x2 .

Proof. This can be treated in a similar manner:

D(x, y) =
∞

∑
n=0
Dn(x)yn =

∞

∑
n=0

yn
b n

2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
Q2k+1(x)

=
∞

∑
k=0

y2kQ2k+1(x)
∞

∑
n=2k

4k + 2
2n + 2

(
2n + 2
n− 2k

)
yn−2k

=
∞

∑
k=0

y2kQ2k+1(x)
(1 + T)2+4k

1− T

= y−1
∞

∑
k=0

Q2k+1(x)T2k+1.

By evaluating the last sum by the bisectional series

∞

∑
k=0

Q2k+1(x)T2k+1 =
Ψ(x, T)−Ψ(x,−T)

2
=

2xT(1 + T2)

(1− T2)2 − 4T2x2 ,

we obtain the generating function in Lemma 4.

Then, we have the fourth reciprocal formula.
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Theorem 4 (n ∈ N0).

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
Q2k+1(x) = 2nxn+1Qn(x−1).

Proof. For y → T/(1 + T)2, the generating function in Lemma 4 is almost the same
as the function Ψ(x−1, 2xy) displayed in (11). By extracting the coefficients of yn, we can
obtain the formula stated exactly in Theorem 4.

The above formula contains four identities for Fibonacci and Lucas numbers.

Corollary 7 (n ∈ N0).

x =
1
2
=

L1

2

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
L2k+1 =

L3n

2
,

x =

√
5

2
=

√
5

2
F2

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
F4k+2 =

5n + (−1)n

2
,

x = 2 =
L3

2

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
L6k+3 = 22n+1Ln,

x =
3
√

5
2

=

√
5

2
F4

b n
2 c

∑
k=0

1 + 2k
1 + n

(
2n + 2
n− 2k

)
F8k+4 =

3
2

{
9n + (−5)n

}
.

Proof. These identities were obtained from Theorem 4 by applying (6) and (7).

We also have four analogous identities for the alternating sums.

Corollary 8 (n ∈ N0).

x = i
√

5
2 = i

√
5

2 F1

ω = 2 + i

b n
2 c

∑
k=0

(−1)k 1 + 2k
1 + n

(
2n + 2
n− 2k

)
F2k+1 =

1
2

{
ωn + ω̄n

}
,

x = 3i
2 = i

2 L2

ω = 2 + i
√

5

b n
2 c

∑
k=0

(−1)k 1 + 2k
1 + n

(
2n + 2
n− 2k

)
L4k+2 =

3
2

{
ωn + ω̄n

}
,

x = i
√

5 = i
√

5
2 F3

ω = 2 + 4i

b n
2 c

∑
k=0

(−1)k 1 + 2k
1 + n

(
2n + 2
n− 2k

)
F6k+3 = ωn + ω̄n,

x = 7i
2 = i

2 L4

ω = 2 + 3i
√

5

b n
2 c

∑
k=0

(−1)k 1 + 2k
1 + n

(
2n + 2
n− 2k

)
L8k+4 =

7
2

{
ωn + ω̄n

}
.

Proof. They can be analogously formed by applying (8) and (9) to Theorem 4.

Concluding Comments

By means of the generating function approach, we conducted a systematic investiga-
tion of reciprocal formulae for Pell and Lucas polynomials as well Fibonacci and Lucas
numbers. However, the findings presented in this paper are only the tip of the iceberg
with respect to numerous existing results regarding these polynomials. Here, we present
a brief summary of the status of four closely related topics that the interested reader is
enthusiastically encouraged to further explore.

• Computations of binomial sums (see Chu–Li [2,3] and Martinjak–Vrsaljko [11]), con-
volution sums (see Djordjevic [12]), and square sums (see Cerin–Gianella [13]).
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• Evaluations of reciprocal sums of Pell and Lucas polynomials as well as their exten-
sions (see Wu–Zhang [14] and Trojovský [15]).

• Combinatorial interpretations by arranging the Pell numbers on the vertices of poly-
gons (see Celik–Durukan–Özkan [16]) and by counting restricted set partitions (see Man-
sour and Shattuck [17]).

• Variants and extensions (see Trojnar-Spelina–Wloch [18], and Tasci–Yalcin [19]) as well
as connection coefficients between Pell and Lucas polynomials (see Abd-Elhameed–
Philippou–Zeyada [20]).
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