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Abstract: In this paper, we investigate the constrained optimal control problem of nonlinear multi-
input safety-critical systems with uncertain disturbances and time-varying safety constraints. By
utilizing a barrier function transformation, together with a new disturbance-related term and a
smooth safety boundary function, a nominal system-dependent multi-input barrier transformation
architecture is developed to deal with the time-varying safety constraints and uncertain disturbances.
Based on the obtained transformation system, the coupled Hamilton–Jacobi–Bellman (HJB) function
is established to obtain the constrained Nash equilibrium solution. In addition, due to the fact that
it is difficult to solve the HJB function directly, the single critic neural network (NN) is constructed
to approximate the optimal performance index function of different control inputs, respectively. It
is proved theoretically that, under the influence of uncertain disturbances and time-varying safety
constraints, the system states and neural network parameters can be uniformly ultimately bounded
(UUB) by the proposed neural network approximation method. Finally, the effectiveness of the
proposed method is verified by two nonlinear simulation examples.

Keywords: barrier function; time-varying safety constraints; adaptive dynamic programming;
multi-input system

MSC: 93C10; 93D05; 93D21

1. Introduction

To solve the optimal control problem of any safety-critical systems (e.g., autonomous
vehicles, intelligent robots, etc.), safety should be the basic requirement. Failure to ensure
the safety of such systems may result in serious consequences, such as casualties, environ-
mental pollution, and equipment damage. The safety control design refers to the control
strategy which satisfies the safety specification stipulated by the physical or environmental
constraints of the system. The barrier function (BF) method [1,2] has been proved to be
an effective method to realize the system safety constraints or state constraints, and have
attracted a wide amount of attention in recent years. For the optimal control problem in the
modern control domain, it usually relies on solving the complex Hamilton–Jacobi–Bellman
(HJB) equation [3–5]. However, there is no effective mathematical method to solve the HJB
equation due to its own properties. When designing the controllers that are both safe and
optimal, the proper combination of safety and performance goal is an issue worth studying.

It has been proved that the dynamic programming (DP) method is a feasible and
effective method to solve the HJB equation and derive the optimal solution. However, as
the dimension of the variables increases, the dynamic programming method suffers from
the “dimension curse”. Adaptive dynamic programming (ADP) [6–10] uses the function
approximation, such as neural network (NN) approximation methods, to approximate the
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cost function in the HJB equation, which has been proved to be a valid method to solve the
dimension curse of dynamic programming method. It is an emerging method combining
the development of artificial intelligence and control field, and has become a hotspot of
international optimization research in recent years [11–15]. In [11–13], the authors studied
the optimal control problem with disturbance by using the reinforcement learning (RL)
method. Aiming at the random differential equations systems with coexisting parametric
uncertainties and severe nonlinearities, Zhang et al. [14] studied the problem of event-
triggered adaptive tracking control. Vamvoudakis et al. [15] proposed an online continuous
time learning algorithm based on policy iteration to learn the optimal control solutions of
known nonlinear systems. In [16–18], the robust control problem was transformed into
the optimal control problem of the nominal system by selecting an appropriate utility
function. On the other hand, game theory [19–24] has become a powerful tool to optimize
the coordination and cooperation of multiple controllers, and has been proved in many
practical control problems. In fact, many systems in the real world have the idea of the
non-zero-sum (NZS) game, where each controller of the system tries to minimize its cost
function. Many researchers translate the non-zero-sum game problem [25,26] into the
problem of solving the coupled HJB equation, but it is still a great difficulty to solve
the coupled HJB equation [27–29]. The development of adaptive dynamic programming
and game theory has prompted many scholars to conduct relevant research. For robust
trajectory tracking multiple input control of uncertain nonlinear systems, Qin et al. [28]
proposed a new adaptive online learning method to learn the Nash equilibrium solution.
Song et al. [29] developed a non-strategic integral reinforcement learning (IRL) method to
effectively solve the NZS game control problem with unknown system dynamics. Ming
et al. [30] proposed a single-network adaptive control method to obtain the optimal solution
of NZS differential game for autonomous nonlinear systems. All of the above methods
can effectively solve the NZS game optimal control problem. However, few studies have
been done on the NZS game with disturbance and time-varying safety constraints. This
prompted the author to study this problem.

For the safety constraints, the existing methods based on barrier function and adaptive
dynamic programming have received a lot of attention in recent years. Marvi et al. [31]
proposed a barrier certified method to learn the safety optimal controller and ensure the
operation of the safety-critical system within its safety zone while providing the optimal
performance. By introducing the barrier function into utility function, Xu et al. [32]
augmented the penalty mechanism to the utility function, and solved the state constraints
problem that was difficult to be dealt with by the traditional ADP method. Liu et al. [33]
proposed an adaptive control method to obtain the safety solution of nonlinear stochastic
systems. In addition, the barrier function transformation method has proved that it is
possible to transform the safety-critical system with safety constraints into a general system
without constraints in different scenarios, such as zero-sum game [34], non-zero-sum
game [35], tracking control [36], and event-triggered control [37]. However, without
exception, the above results must satisfy the implicit assumption that the safety constraints
are constant. In fact, the constant constraint is only a special case of time-varying constraints.
In practical applications, the time-varying constraints also have a wide range of application
scenarios, such as UAV or manipulator working in some more complex environments.

For the constrained optimal control problem with time-varying safety constraints
and uncertain disturbances, the constrained Nash equilibrium solutions are obtained
by introducing a novel barrier function transformation and constructing coupled HJB
equations. The novelty of this paper is reflected in the following points:

(1). A novel barrier function transformation method is proposed by introducing a
smooth safety boundary function and a barrier function with a single variable. Com-
pared to previous works [34,35], the proposed method no longer strictly requires the time-
invariance of safety constraints and can deal with both time-invariance and time-varying
safety constraints.
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(2). In order to obtain the constrained optimal Nash equilibrium solution of the
multi-input barrier transformation system with uncertain disturbances, the reasonable
performance index function and coupled HJB function are designed for the nominal system
by introducing a disturbance-related term. It is proved that the obtained constrained Nash
equilibrium solution can make the safety-critical system asymptotically stable under the
uncertain disturbances and time-varying safety constraints.

(3). The single critical neural network is used to approximate the performance index
function online to obtain the constrained control input. It is proved theoretically that the
proposed barrier function transformation and neural network approximation method can
make the system state and NN parameters uniformly ultimately bounded (UUB) under
the condition of satisfying the time-varying safety constraints. In addition, two simulation
examples also verify the feasibility and effectiveness of the proposed method.

The remainder of this article is organized as follows: Problem formulation and barrier
transformation are given in Section 2. Section 3 employs the coupled Hamilton–Jacobi–
Bellman equation to obtain the approximate optimal solution online. Section 4 shows the
efficiency of the proposed method by giving two simulation examples. Finally, conclusions
are given in Section 5.

2. Problem Formulation and Barrier Transformation

Consider the following nonlinear multi-input safety-critical system:

ẋ = f (x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + k(x(t))d(ϕ(x(t))), (1)

where x ∈ C ⊂ Rn is the system state, u1 ∈ U1 ⊂ Rm1 , u2 ∈ U2 ⊂ Rm2 are the control inputs,
d(ϕ(x(t))) ∈ Rm is the uncertain disturbance, f (x) ∈ Rn, g1(x) ∈ Rn×m1 , g2(x) ∈ Rn×m2

and k(x) ∈ Rn×m. C indicates the set of acceptable system state, and U1, U2 indicates
the set of acceptable system inputs. It is supposed that f (x), g1(x), g2(x) is Lipschitz
continuous, and f (0) = 0. It is also assumed that the system (1) is stabilizable. The
uncertain disturbance term d satisfies dTd < δTδ, where δ is a given function, δ(0) = 0 and
ϕ(·) satisfy that ϕ(0) = 0 is a fixed function denoting the uncertainty.

Given the initial system state x0, the purpose of this article is to find the constrained
control inputs u1, u2 to make the system state x converge to the ideal value under the
impact of the uncertain disturbances and time-varying safety constraints.

Remark 1. In some papers, for example [31,35], the system state is constrained by the constant,
that is, x ∈ (ζa, ζA), where (ζa, ζA) represent the upper and lower bounds of system state. We
consider a more complex and interesting case where the system safety constraints are time-varying
and can be mathematically expressed as x ∈ (ζa(t), ζA(t)), where (ζa(t), ζA(t)) represent the
bounded smooth time-varying functions.

In order to satisfy the time-varying safety constraints, we define the following barrier
function with a single independent variable τ,

b(z(τ); ξa(τ), ξA(τ)) = log
ξA(τ)(ξa(τ)− z(τ))
ξa(τ)(ξA(τ)− z(τ))

, (2)

b−1(y(τ); ξa(τ), ξA(τ)) = ξa(τ)ξA(τ)
e

y(τ)
2 − e−

y(τ)
2

ξa(τ)e
y(τ)

2 − ξA(τ)e−
y(τ)

2

, (3)

where ξa(·) : R → R, ξA(·) : R → R, z(·) : R → R, y(·) : R → R. The defined barrier
function should satisfy the following assumption.

Assumption 1. The proposed barrier function b(·) has the following characteristics:
(1) ξa(τ), ξA(τ) are two smooth functions and satisfy ξa(τ) < 0 < ξA(τ) for any τ > 0;
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(2) For any τ > 0, the barrier function takes finite value when z(τ) ∈ (ξa(τ), ξA(τ))
is satisfied;

(3) For any τ > 0, as the function z(τ) tends to the prescribed region (ξa(τ), ξA(τ)), b(·) ap-
proaches infinity, i.e., lim

z(τ)→ξa(τ)+
b(z(τ); ξa(τ), ξA(τ))=−∞, lim

z(τ)→ξA(τ)−
b(z(τ); ξa(τ), ξA(τ))

=+∞;
(4) For any τ > 0, the barrier function b(·) also converges when the function z(τ) converges.

It is worth noting that the constraints given by (ζa(t), ζA(t)) can be many common
trajectories, including sinusoidal waveforms, damping sinusoids, ramp, and so on. In our
study, we will discuss a more useful form. We design the constraints (ζa(t), ζA(t)) as the
following smooth transformation functions, and satisfy the following conditions:

ζa(t) =

ζa1(t)
...

ζan(t)

, ζai(t) =


l1, t < t1

l1 − ϑ1 − ϑ1cos(π
t2 − t
t2 − t1

), t1 ≤ t ≤ t2

l2, t > t2

(4)

ζA(t) =

ζA1(t)
...

ζAn(t)

, ζAi(t) =


l3, t < t3

l3 − ϑ2 − ϑ2cos(π
t4 − t
t4 − t3

), t3 ≤ t ≤ t4

l4, t > t4

(5)

where i = 1, · · · , n, l1 < 0, l2 < 0, l3 > 0, l4 > 0, and l1 − 2ϑ1 = l2, l3 − 2ϑ2 = l4. We
can find many similar practical applications where the similar constraints are imposed
(e.g., vehicle entering a narrow road from a wide road, drone entering a tunnel, robotic arm
working in a narrow space, etc.).

Remark 2. A reasonable choice of parameters can be such that l1 = l2, l3 = l4 when designing a
smooth transformation function. In other words, the proposed method can also impose time-invariant
safety constraints on the system state when some parameters are selected properly. In addition,
according to the defined smooth transformation function, it can be extended to scenarios with more
complex safety requirements, such as more frequent transformation of constraints and different types
of constraints.

Considering the system (1) with the uncertain disturbances and time-varying safety
constraints, we use the proposed barrier function and smooth transformation function
to convert the multi-input safety-critical system x with the uncertain disturbances and
time-varying safety constraints into the transformation system with uncertain disturbances
only. We define

si = b(xi(t); ζai(t), ζAi(t)), (6)

xi = b−1(si(t); ζai(t), ζAi(t)). (7)

According to the chain rule and Equations (6) and (7), the transformed system dynam-
ics ṡ can be defined as

ṡi =
ẋi

db−1(si(t);ζai(t),ζAi(t))
dsi

,

=
fi(x(t)) + g1i(x(t))u1(t) + g2i(x(t))u2(t) + ki(x(t))d(ϕ(x(t)))

ζAi(t)ζ2
ai(t)−ζai(t)ζ2

Ai(t)
ζ2

ai(t)e
si−2ζai(t)ζAi(t)+ζ2

Ai(t)e
−si

, (8)

= Fi(s(t)) + G1i(s(t))u1(t) + G2i(s(t))u2(t) + Ki(s(t))d(ϕ(b−1(s(t)))),
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where

Fi(s(t)) =
ζ2

ai(t)e
si − 2ζai(t)ζAi(t) + ζ2

Ai(t)e
−si

ζAi(t)ζ2
ai(t)− ζai(t)ζ2

Ai(t)
× fi([b−1(s1), · · · , b−1(sn)]),

G1i(s(t)) =
ζ2

ai(t)e
si − 2ζai(t)ζAi(t) + ζ2

Ai(t)e
−si

ζAi(t)ζ2
ai(t)− ζai(t)ζ2

Ai(t)
× g1i([b−1(s1), · · · , b−1(sn)]),

G2i(s(t)) =
ζ2

ai(t)e
si − 2ζai(t)ζAi(t) + ζ2

Ai(t)e
−si

ζAi(t)ζ2
ai(t)− ζai(t)ζ2

Ai(t)
× g2i([b−1(s1), · · · , b−1(sn)]),

Ki(s(t)) =
ζ2

ai(t)e
si − 2ζai(t)ζAi(t) + ζ2

Ai(t)e
−si

ζAi(t)ζ2
ai(t)− ζai(t)ζ2

Ai(t)
× ki([b−1(s1), · · · , b−1(sn)]).

Based on Formula (8), the transformation system s = [s1; · · · ; sn] can be written as

ṡ = F(s(t)) + G1(s(t))u1(t) + G2(s(t))u2(t) + K(s(t))d(ϕ(b−1(s(t)))) (9)

where F(s) = [F1(s); · · · ; Fn(s)], G1(s) = [G11(s); · · · ; G1n(s)], G2(s) = [G21(s); · · · ; G2n(s)],
K(s) = [K1(s); · · · ; Kn(s)]. For convenience, we use d to represent d(ϕ(b−1(s(t)))) and use
s to represent s(t) in the following description.

After the proposed barrier transformation, we have transformed the problem from
the constrained optimal control problem for the safety-critical system (1) with uncertain
disturbances and time-varying safety constraints to the constrained optimal control problem
for the transformation system (9) with uncertain disturbances only. Before proceeding, we
need to make the following proof about the transformation system (9).

Theorem 1. Based on the proposed barrier transformation (6) and (7), the transformation system (9)
obtained from the system (1) satisfies the following properties:

(1) F(s) is Lipschitz with F(0) = 0, and satisfies ‖F(s)‖ ≤ λ f ‖s‖, where λ f is a constant;
(2) G1(s), G2(s) are bounded, and there exists constants λ1g, λ2g, makes ‖G1(s)‖ ≤ λ1g,

‖G2(s)‖ ≤ λ2g. The transformation system (9) has zero state observability.

Proof of Theorem 1. (1) Based on Equation (8), we can obtain

Fi(s) = fi(x)Ti(s), (10)

where Ti(s) =
ζ2

ai(t)e
si−2ζai(t)ζAi(t)+ζ2

Ai(t)e
−si

ζAi(t)ζ2
ai(t)−ζai(t)ζ2

Ai(t)
, Fi(0) = fi(0) = 0. Based on Assumption 1, we

know that, as long as x ∈ C, then the transformation system state s is bounded, that is, Ti(s)
is bounded. We can derive

‖Fi(s)‖ ≤ ‖ fi(x)‖‖Ti(s)‖ ≤ ‖ fi(x)‖λζ , (11)

where λζ represents the upper bound of Ti(s). Based on the assumptions about the sys-
tem (1), we can obtain

‖Fi(s1)− Fi(s2)‖ = ‖( fi(x1)− fi(x2))Ti(s)‖ ≤ ‖x1 − x2‖kL1λζ , (12)

where x1, x2 ∈ C, kL1 is the Lipschitz constant of fi(x). Based on the property of the barrier
function, we can deduce that s1 and s2 are bounded as long as x1, x2 ∈ C. For any x1, x2 ∈ C,
there is always a constant kL2 that makes ‖Fi(s1)− Fi(s2)‖ ≤ ‖s1 − s2‖kL2. Considering the
fact that F(s) = [F1(s); · · · ; Fn(s)], we can deduce that

‖F(s1)− F(s2)‖ ≤ ‖s1 − s2‖kL3. (13)

where kL3 is the Lipschitz constant of F(s). Based on the Lipschitz condition [38], F(s)
is Lipschitz continuous. Based on the boundedness of Ti(s) and the assumptions about
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system (1), we can obtain that every term in Fi(s) is bounded with x ∈ C. Therefore, we
can say that F(s) is also bounded, and there is a constant λ f such that ‖F(s)‖ ≤ λ f ‖s‖.

(2) Based on the boundedness of Ti(s) and Equation (8), we can obtain that G1i(s), G2i(s)
are bounded with x ∈ C. Considering the fact that G1(s) = [G11(s); · · · ; G1n(s)], G2(s) =
[G21(s); · · · ; G2n(s)], there are constants λ1g and λ2g, such that ‖G1(s)‖ ≤ λ1g, ‖G2(s)‖ ≤ λ2g.
Given the initial system state x0, the initial state of transformed system (9) can be obtained
from Equation (6), which proves the zero state observability of transformed system (9).

This completes the proof.

Based on the transformation system, the nominal system of (9) can be defined as

ṡ = F(s) + G1(s)u1 + G2(s)u2. (14)

The performance index function related to the design of u1 can be defined as

V1(s, u1, u2) =
∫ ∞

0
sTQ1s + Φ1(u1, λ1) + Φ2(u2, λ2) + Γ1(s,∇V1)dt, (15)

where Q1, R11, R12 are positive definite matrices, R̄11 = [r1, · · · , rm1 ] ∈ R1×m1 , R̄12 =
[r1, · · · , rm2 ] ∈ R1×m2 , ∇V1 represents the partial derivative of the performance index func-

tion V1 with respect to s, Φ1(u1, λ1) = 2λ1(tanh−1( u1
λ1
))T R11u1 + λ2

1R̄11 ln(1− u2
1

λ2
1
) is the

nonquadratic penalty function of u1, Φ2(u2, λ2) = 2λ2(tanh−1( u2
λ2
))T R12u2 + λ2

2R̄12 ln(1−
u2

2
λ2

2
) is the nonquadratic penalty function of u2, Γ1(s,∇V1(s)) = δTδ + 1

4∇V1(s)TK(s)KT(s)

∇V1(s) represents the disturbance-related term.
The performance index function related to the design of u2 is defined as

V2(s, u1, u2) =
∫ ∞

0
sTQ2s + Φ3(u1, λ1) + Φ4(u2, λ2) + Γ2(s,∇V2)dt, (16)

where Q2, R21, R22 are positive definite matrices, R̄21 = [r1, · · · , rm1 ] ∈ R1×m1 , R̄22 =
[r1, · · · , rm2 ] ∈ R1×m2 , ∇V2 represents the partial derivative of the performance index

function V2, Φ3(u1, λ1) = 2λ1(tanh−1( u1
λ1
))T R21u1 + λ2

1R̄21 ln(1− u2
1

λ2
1
) is the nonquadratic

penalty function of u1, Φ4(u2, λ2) = 2λ2(tanh−1 ( u2
λ2
))T R22u2 + λ2

2R̄22 ln(1− u2
2

λ2
2
) is the non-

quadratic penalty function of u2, and Γ2(s,∇V2(s)) = δTδ + 1
4∇V2(s)T K(s)KT(s)∇V2(s)

represents the barrier-disturbance related term.

Definition 1. The control strategy set (u∗1 , u∗2) is a Nash equilibrium control strategy set if

V1(u∗1 , u∗2) ≤ V1(u1, u∗2),

V2(u∗1 , u∗2) ≤ V2(u∗1 , u2), (17)

hold for any admissible control policies u1 and u2.

Based on the performance index function (15) and (16), the Hamilton functions associ-
ated with the control input u1 and u2 are defined as

H1(s, u1, u2) = sTQ1s + Φ1(u1, λ1) + Φ2(u2, λ2) + Γ1(s,∇V1) +

∇VT
1 (F(s) + G1(s)u1 + G2(s)u2), (18)

H2(s, u1, u2) = sTQ2s + Φ3(u1, λ1) + Φ4(u2, λ2) + Γ2(s,∇V2) +

∇VT
2 (F(s) + G1(s)u1 + G2(s)u2). (19)
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We define the optimal performance index functions of u1, u2 as

V∗1 (s, u∗1 , u2) = min
u1∈U1

∫ ∞

0
sTQ1s + Φ1(u1, λ1) + Φ2(u2, λ2) + Γ1(s,∇V1)dt, (20)

V∗2 (s, u1, u∗2) = min
u2∈U2

∫ ∞

0
sTQ2s + Φ3(u1, λ1) + Φ4(u2, λ2) + Γ2(s,∇V2)dt. (21)

Considering the nominal system (14) and the Formulas (15) and (16), the constrained
optimal control strategys u∗1 and u∗2 can be obtained according to the stationarity condition
of optimization:

u∗1 = −λ1 tanh
(

1
2λ1

R−1
11 GT

1 (s)∇V∗1 (s)
)

, (22)

u∗2 = −λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇V∗2 (s)
)

, (23)

where V∗1 (s) and V∗2 (s) are obtained by solving the following coupled HJB equations:

sTQ1s + 2λ1(tanh−1(
u1

λ1
))T R11u1 + λ2

1R̄11 ln(1−
u2

1
λ2

1
) + 2λ2(tanh−1(

u2

λ2
))T R12u2 +

λ2
2R̄12 ln(1−

u2
2

λ2
2
) + Γ1(s,∇V1) +∇VT

1 (F(s)− G1(s)λ1 tanh
(

1
2λ1

R−1
11 GT

1 (s)∇V∗1 (s)
)

(24)

−G2(s)λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇V∗2 (s)
)
) = 0

sTQ2s + 2λ1(tanh−1(
u1

λ1
))T R21u1 + λ2

1R̄21 ln(1−
u2

1
λ2

1
) + 2λ2(tanh−1(

u2

λ2
))T R22u2 +

λ2
2R̄22 ln(1−

u2
2

λ2
2
) + Γ2(s,∇V1) +∇VT

2 (F(s)G1(s)λ1 tanh
(

1
2λ1

R−1
11 GT

1 (s)∇V∗1 (s)
)
− (25)

−G2(s)λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇V∗2 (s)
)
) = 0

Lemma 1. Assume that V1(s), V2(s) are the continuously differentiable function satisfying
V1(s) > 0, V2(s) > 0 for all s 6= 0 and V1(0) = V2(0) = 0, and there exist two bounded
functions Γ1(s), Γ2(s) satisfying Γ1(s) ≥ 0, Γ2(s) ≥ 0, and two control laws u1, u2, such that

(a) ∇VT
j T̄(s, u1, u2, d) ≤ ∇VT

j T(s, u1, u2) + Γj(s),

(b) ∇VT
j T(s, u1, u2) + Γj(s) < 0, s 6= 0,

}
j = 1, 2 (26)

where T̄(s, u1, u2, d) = F(s) + G1(s)u1 + G2(s)u2 + K(s)d, T(s, u1, u2) = F(s) + G1(s)u1 +
G2(s)u2. Then, the transformation system (9) can achieve asymptotic stability under the control
laws u1 and u2.

Proof of Lemma 1. We can use the chain rule to obtain

V̇1(s(t)) =
d(V1(s(t)))

dt
= ∇VT

1 T̄(s, u1, u2, d). (27)

According to Formula (26), we can obtain V̇1(s(t)) < 0 for any s 6= 0. We can derive
that V1(·) is a Lyapunov function for the transformation system (9), which proves that the
transformation system can be asymptotic stability. As long as V1(·) satisfies the condition
of Formula (26), it is concluded that the control law u1 can realize the asymptotic stability
of the transformation system. Similarly, we can prove that the control law u2 can realize
the asymptotic stability of the transformation system.
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Lemma 2. Under Assumption 1, if the constrained optimal control problem of the transformation
system (9) can be solved by the constrained optimal control laws u1, u2, then the system (1) satisfies
the time-varying safety constraints (ζa(t), ζA(t)) provided that the initial state x0 of the system (1)
satisfies time-varying safety constraints.

Proof of Lemma 2. Based on Lemma 1, one can obtain V̇1(s(t)) ≤ 0 and V̇2(s(t)) ≤ 0,
such that

V1(s(t)) ≤ V1(s(0)), V2(s(t)) ≤ V2(s(0)), ∀t ≥ 0. (28)

According to the properties of the barrier function in Assumption 1, we can derive
that the performance index functions V1(s(0)) and V2(s(0)) are finite when the initial value
x0 of the safety-critical system (1) satisfies the time-varying safety constraints (ζa(t), ζA(t)),
and V1(·), V2(·) satisfies the condition of Formula (26). That is, the performance index
functions V1(s(t)) and V2(s(t)) are finite. Therefore, based on Assumption 1, we obtain

x(t) ∈ (ζa(t), ζA(t)), t > 0. (29)

This proof is completed.

According to Lemmas 1 and 2, the constrained optimal control laws (22) and (23)
can make the safety-critical system (1) with the uncertain disturbances and time-varying
safety constraints asymptotically stable based on the proposed barrier transformation and
disturbance-related term. Based on (22) and (23), we only need to use the proposed coupled
HJB Equations (24) and (25) to obtain the optimal performance index function, and then
obtain the constrained optimal control solution. However, Equations (24) and (25) are often
difficult or impossible to solve due to their inherently nonlinear nature. In view of this
problem, an approximate structure based on NN is proposed to learn the solutions of the
coupled HJB equations online.

3. Approximate Optimal Solution of Coupled Hamilton–Jacobi–Bellman Equations

In this section, an online approximation method is proposed by constructing a single
critic network. Based on the universal approximation property of NN, the optimal per-
formance index functions (20) and (21) and their partial derivatives can be approximated
as follows:

V∗j (s) = W∗Tj φj(s) + ε j(s),

∇V∗j (s) = ∇φT
j (s)W

∗
j +∇ε j(s),

}
j = 1, 2 (30)

where W∗j =[ωj1 ωj2 ωj3 · · · ωjL]
T ∈ RL represents the ideal weight, φj(s)= [ϕj1 ϕj2 ϕj3 · · ·

ϕjL]
T ∈ RL represents the neural network activation function, ∇φj(s) represents the partial

derivative of φj(s), L represents the number of hidden layer neurons, ε j(s) represents the
NN approximation error, and ∇ε j(s) represents the partial derivative of ε j(s).

Assumption 2. It is assumed that the ideal weights Wj are limited to constants, i.e., ‖Wj ‖≤ λWj ,
and the neural network approximation residuals satisfy ‖ ε j ‖≤ λε j , ‖ ∇ε j ‖≤ λdε j

, and the neural
network activation functions satisfy ‖ φj ‖≤ λφj , ‖ ∇φj ‖≤ λdφj

.

Based on Formula (30), the Bellman approximation errors of the neural network
approximation can be expressed as

H1(s, W∗1 , W∗2 ) = εB1, H2(s, W∗1 , W∗2 ) = εB2. (31)

Remark 3. The Bellman approximation errors εB1 and εB2 will be equal to 0 with the number
of hidden neurons L → ∞. When the number of L is a constant, the Bellman approximation
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errors is bounded, i.e., εBj(s) < εBjh. In the later proof, we will consider the influence of Bellman
approximation errors εB1 and εB2.

Since the ideal weights W∗1 and W∗2 are unknown, we use the estimates of ideal weights
to construct the critic neural network:

V̂j(s) = ŴT
j φj(s),∇V̂j(s) = ∇φT

j (s)Ŵj. (32)

According to Formulas (22), (23) and (32), the approximate optimal control strategys are

û1 = −λ1 tanh
(

1
2λ1

R−1
11 GT

1 (s)∇φT
1 (s)Ŵ1

)
, (33)

û2 = −λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇φT
2 (s)Ŵ2

)
. (34)

Substituting (32)–(34) into (18) and (19), the approximate Hamiltonian function can
be obtained

H1(s, Ŵ1, Ŵ2) = sTQ1s + 2λ1(tanh−1(
û1

λ1
))T R11û1 + λ2

1R̄11 ln(1−
û2

1
λ2

1
) +

2λ2(tanh−1(
û2

λ2
))T R12û2 + λ2

2R̄12 ln(1−
û2

2
λ2

2
) + Γ1(s,∇V̂1) + (35)

∇V̂T
1 (F(s)− G1(s)λ1 tanh

(
1

2λ1
R−1

11 GT
1 (s)∇V̂1(s)

)
−

G2(s)λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇V̂2(s)
)
) , e1,

H2(s, Ŵ1, Ŵ2) = sTQ2s + 2λ1(tanh−1(
û1

λ1
))T R21û1 + λ2

1R̄21 ln(1−
û2

1
λ2

1
) +

2λ2(tanh−1(
û2

λ2
))T R22û2 + λ2

2R̄22 ln(1−
û2

2
λ2

2
) + Γ2(s,∇V̂2) + (36)

∇V̂T
2 (F(s)− G1(s)λ1 tanh

(
1

2λ1
R−1

11 GT
1 (s)∇V̂1(s)

)
−

G2(s)λ2 tanh
(

1
2λ2

R−1
22 GT

2 (s)∇V̂2(s)
)
) , e2.

The estimates of ideal weights need to be adjusted so that Ŵ1 and Ŵ2 can minimize
the squared residual error E = eT

1 e1/2 + eT
2 e2/2. In general, the online adaptive learning

algorithm usually requires a persistence excitation (PE) condition to achieve convergence.
In order to satisfy this condition, we redefine the residual squared error as E = 1

2 (e
T
1 e1 +

N
∑

l=1
eT

1le1l + eT
2 e2 +

N
∑

l=1
eT

2le2l), where e1l , e2l represent the past data with tl < t. We choose

the normalized gradient descent algorithm as the tuning laws of the estimates to minimize
the residual squared error,

˙̂W1 = −α1
σ1(t)
σ̄1(t)

[σ1(t)TŴ1 + r1(s, û1, û2, Γ1)]
T −

α1

N

∑
l=1

σ1(tl)

σ̄1(tl)
[σ1(tl)

TŴ1 + r1(s(tl), û1(tl), û2(tl), Γ1(tl))]
T , (37)

˙̂W2 = −α2
σ2(t)
σ̄2(t)

[σ2(t)TŴ2 + r2(s, û1, û2, Γ2)]
T −

α2

N

∑
l=1

σ2(tl)

σ̄2(tl)
[σ2(tl)

TŴ2 + r2(s(tl), û1(tl), û2(tl), Γ2(tl))]
T , (38)
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where α1 > 0 and α2 > 0 are learning rates that determine the convergence speed of the
estimate, σ1(t) = ∇φ1(s)(F(s) + G1(s)û1 + G2(s)û2), σ̄1(t) = (σT

1 (t)σ
T
1 (t) + 1)2, σ2(t) =

∇φ2(s)(F(s) + G1(s)û1 + G2(s)û2), σ̄2(t) = (σT
2 (t)σ

T
2 (t) + 1)2, r1(s, û1, û2, Γ1) = sTQ1s +

Φ1(û1, λ1) + Φ2(û2, λ2) + Γ1(s,∇V̂1), r2(s, û1, û2, Γ2) = sTQ2s + Φ3(û1, λ1) + Φ4(û2, λ2) +
Γ2(s,∇V̂2), and s(tl), û1(tl), û2(tl), σ1(tl), σ̄1(tl), σ2(tl), σ̄2(tl), Γ1(tl), Γ2(tl) are all obtained
by storing the past data.

The weight estimation errors W̃1 and W̃2 can be defined as

W̃1 = W∗1 − Ŵ1, W̃2 = W∗2 − Ŵ2. (39)

Based on (37)–(39), we have

˙̃W1 = α1
σ1(t)
σ̄1(t)

[σ1(t)TŴ1 + r(s, u1, u2, Γ1)]
T +

α1

N

∑
l=1

σ1(tl)

σ̄1(tl)
[σ1(tl)

TŴ1 + r(s(tl), u1(tl), u2(tl), Γ1(tl))]
T , (40)

˙̃W2 = α2
σ2(t)
σ̄2(t)

[σ2(t)TŴ2 + r(s, u1, u2, Γ2)]
T +

α2

N

∑
l=1

σ2(tl)

σ̄2(tl)
[σ2(tl)

TŴ2 + r(s(tl), u1(tl), u2(tl), Γ2(tl))]
T . (41)

Combined with the previous content, the proposed multi-input safety-critical system
structure diagram is shown in Figure 1.

  Nominal system (12) 

Nonlinear multi-input safety-critical system (1)

Constrained Nash equilibrium 

solutions

Critical neural networks

Coupled HJB equations

Multi-input transformation system (9)

 

1 1 2 2( ), )ˆ ˆ (sWsW 

( )s t
( )s t

1( ( ); ( ), ( ))i i ai Aix b s t t t −= ( ( ); ( ), ( ))i i ai Ais b x t t t =

1 2
ˆ , ˆu u

Figure 1. The structure diagram of the proposed multi-input safety-critical system.

Theorem 2. Consider the system (9), the approximate optimal control strategy (33) and (34), and
the weight tuning laws (37) and (38). Suppose that ∇φ1, ∇φ2, ε1, ∇ε1, ε2, ∇ε2, εB1, εB2 are
all uniformly bounded. Assume that the Assumptions 1 and 2 hold. Then, the system state s, the
neural network weight errors W̃1, W̃2 can be guaranteed to be UUB under the time-varying safety
constraints and uncertain disturbances.

Proof of Theorem 2. See the Appendix A.

Remark 4. According to the result of Theorem 2, we can obtain that the neural network weight
errors are UUB. According to formulas (33), (34), and (39), we can easily derive that, as V̂1(s)→
V∗1 (s), V̂2(s) → V∗2 (s), then the control input û1 → u∗1 , û2 → u∗2 . That is, the control strategy
can be approximately optimal.
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Remark 5. Compared with [35], this work considers a more complex and interesting constrained
control problem, that is, the safety constraints change with time. In addition, we establish the coupled
HJB equation to obtain the constrained optimal solution, so that the system state can complete
convergence under the condition that the time-varying constraints are satisfied.

Remark 6. In [34,36], the safety optimal control problem with external disturbance is considered,
and the control scheme based on barrier transformation is designed. However, all of the external
disturbances mentioned are known. In this work, the safety control problem with uncertain distur-
bance is further studied, and it is proved that the system state can complete convergence under the
proposed control strategy.

4. Simulation

To prove the effectiveness of the proposed method, we give two nonlinear examples
with time-varying safety constraints. In both cases, we observe that the system can satisfy
the time-varying safety constraints.

4.1. Nonlinear System Example 1

Consider the affine nonlinear system as follows [30]:

ẋ =

 x2 − 2x1
(−x2 − 0.5x1 + 0.25x2(cos(2x1 + 2))2

+0.25x2(sin(4x1)
2 + 2)2)

+

[
0

cos(2x1 + 2)

]
u1+

[
0

4x2
1 + 2

]
u2 +

[
0

cos(x1)x2

]
d.

(42)

In addition, x = [x1, x2]
T is the system state. One selects α1 = α2 = 1, R11 = R12 = 2,

R21 = R22 = 1, Q1 = Q2 = [1 0; 0 1]. The initial system state is defined as
x0 = [2, 2]T . We choose ϕ(x) = x and d(ϕ(x)) = px1 sin x2, p ∈ [−1, 1]. Similarly, we select
δ(x) = x1 sin x2. Based on Formula (4) and (5), we define the time-varying parameters for
x1 as l1 = −1, l2 = −0.6, ϑ1 = −0.2, t1 = 3, t2 = 4, l3 = 2.2, l4 = 1.8, ϑ2 = 0.2.
We define the time-varying parameters for x2 as l1 = −2.8, l2 = −1.8, ϑ1 = −0.5,
t3 = 3, t4 = 4, l3 = 3, l4 = 2, ϑ2 = 0.5. Before 75 s, the persistence excitation con-
dition is ensured by the probing noise. Since the effectiveness of the barrier transformation
has been demonstrated in many previous works, we no longer compare our work with
scenarios without safety constraints, but with scenarios with constant constraints.

We define the activation functions as

φ1(s) = φ2(s) = [s2
1 s1s2 s2

2]
T .

Meanwhile, the critic weight parameters are denoted as

Ŵ1 = [ω̂11 ω̂12 ω̂13]
T , Ŵ2 = [ω̂21 ω̂22 ω̂23]

T .

The critic parameters after 100 s converge to the value of Ŵ1 = [−0.392 1.789 1.162],
Ŵ2 = [−1.849 2.590 0.142].

It is obtained from Figure 2 that the method of using constant constraints can satisfy
constant constraints (−1, 2.2), (−2.8, 3) in the process of system state convergence, but
can not satisfy the time-varying constraints (ζa1, ζA1), (ζa2, ζA2). It can be seen that the
trajectory of system state x obtained by the proposed method can converge to zero under
the condition that time-varying safety constraints are satisfied. Figure 3 gives the evolution
of the critic parameters for player 1. The evolution of the critic parameters for player 2 is
shown in Figure 4. It can be seen that, according to the proposed tuning laws (37) and (38),
the critic weight parameters converge to their ideal values. Figure 5 shows the state
trajectories of the transformation system (9).
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Figure 2. Evolution of the state x(t) by using the presented method and the method in [35].
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Figure 3. Evolution of the critic estimates for player 1.
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Figure 4. Evolution of the critic estimates for player 2.
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Figure 5. Transformed system states using the presented method.

4.2. Nonlinear System Example 2

Consider the following nonlinear system of a single link robot arm:

ẋ =

[
x2 − 2x1

−5 sin(x1)− 0.2x2

]
+

[
0

0.1

]
u1 +

[
0

0.1

]
u2 +

[
0
1

]
d. (43)

In addition, x = [x1, x2]
T is the system state. One selects α1 = 5, α2 = 1, R11 = R12 = 2,

R21 = R22 = 1, Q1 = Q2 = [5 0; 0 5]. The initial system state is defined as x0 = [2, 2]T .
Similarly, we choose ϕ(x) = x, d(ϕ(x)) = px1 sin x2, p ∈ [−1, 1], and δ(x) = x1 sin x2. In
this example, we apply the more complex time-varying safety constraints to the system
state, where the constraints on the upper bounds of x1, x2 vary at 3 and 8 s, respectively,
and the constraints on the lower bounds of x1 and x2 vary at 3 and 10 s, respectively.
Define λ1 = 3, λ2 = 18 as the boundaries of the control inputs. Before 75 s, the persistence
excitation condition is ensured by the probing noise.
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We define the activation function as

φ1(s) = φ2(s) = [s2
1 s1s2 s2

2]
T .

Meanwhile, we denoted the critic weight parameters as

Ŵ1 = [ω̂11 ω̂12 ω̂13]
T , Ŵ2 = [ω̂21 ω̂22 ω̂23]

T .

The critic parameters after 100 s converge to the value of Ŵ1 = [−1.319 0.249 −0.023],
Ŵ2 = [0.250 −1.113 0.658].

In Example 2, we further consider the case of input constraints. Figure 6 shows that
the method using constant constraints cannot satisfy the time-varying safety constraints
(ζa1, ζA1), (ζa2, ζA2) in the process of system state convergence, while the proposed method
can ensure that the system state x converges under the time-varying safety constraints. The
constrained control inputs are shown in Figure 7. The evolution of the critic parameters
is given in Figures 8 and 9. The transformation system state trajectories are shown in
Figure 10.
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Figure 6. Evolution of the state x(t) by using the presented method and the method in [35].
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Figure 7. Constrained control inputs of player 1 and player 2.
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Figure 8. Evolution of the critic estimates for player 1.
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Figure 9. Evolution of the critic estimates for player 2.
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Figure 10. Transformed system states using the presented method.

5. Conclusions

For the affine nonlinear multi-input safety-critical systems with uncertain disturbances
and time-varying safety constraints, a new adaptive learning algorithm based on the
coupled HJB equations was proposed to solve the constrained optimal control problem.
In order to satisfy the time-varying safety constraints, the novel barrier function and
smooth safety boundary function were used to transform the safety-critical system into the
transformation system without the time-varying safety constraints. The proposed barrier
function solves the time-varying safety constraint problem which cannot be solved by
the traditional constant constraint method. The influence of uncertain disturbances on
the transformation system was dealt with reasonably by establishing the nominal system
and disturbance-related term. In addition, two critic neural networks were used to learn
the optimal solutions of the coupled HJB equations. The effectiveness of this method
was verified by the theoretical proof. In addition, we test both the nonlinear system of
the robotic arm and the numerical nonlinear example. Simulation results also verify the
effectiveness of the proposed method.
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Appendix A

Proof of Theorem 2. Consider the following Lyapunov function candidate

L(s) = V1(s) + V2(s) +
1
2

α−1
1 W̃T

1 W̃1 +
1
2

α−1
2 W̃T

2 W̃2. (A1)

The time derivative on the trajectory of the transformation system is calculated as

L̇ = V̇1 + V̇2 + α−1
1 W̃T

1
˙̃W1 + α−1

2 W̃T
2

˙̃W2. (A2)

Considering (40), we derive that

α−1
1 W̃T

1
˙̃W1 = α−1

1 W̃T
1 (α1

σ1(t)
σ̄1(t)

[σ1(t)TŴ1 + r1(s, u1, u2, Γ1)]
T +

α1

N

∑
l=1

σ1(tl)

σ̄1(tl)
[σ1(tl)

TŴ1 + r1(s(tl), û1(tl), û2(tl), Γ1(tl))]
T). (A3)

Define Π1 = σ1(t)TŴ1 + r1(s, u1, u2, Γ1). Based on Formula (31), one has

Π1 = σ1(t)TŴ1 + sTQ1s + Φ1(û1, λ1) + Φ2(û2, λ2) +

Γ1(s,∇V̂1)− σ∗1 (t)
TW∗1 − sTQ1s−Φ1(u∗1 , λ1)−Φ2(u∗2 , λ2)

−Γ1(s,∇V∗1 ) + εB1, (A4)

= Φ1(û1, λ1) + Φ2(û2, λ2)−Φ1(u∗1 , λ1)−Φ2(u∗2 , λ2) + εB1

−W̃T
1 σ1(t) + W∗T1 (σ1(t)− σ∗1 (t)) + Γ1(s,∇V̂1)− Γ1(s,∇V∗1 ),

where σ∗1 (t) = ∇φ1(s)(F(s) + G1(s)u∗1 + G2(s)u∗2).
Define Π2 = Φ1(û1, λ1)−Φ1(u∗1 , λ1). Based on the results in [39,40], we can obtain

Π2 = ŴT
1 ∇φ1(s)G1(s)λ1tanh(D̂1) + W̃T

1 ∇φ1(s)G1(s)λ1tanh(σm1D̂1)

−W∗T1 ∇φ1(s)G1(s)λ1tanh(D1)−W∗T1 ∇φ1(s)G1(s)λ1[tanh(σm1D̂1) (A5)

−tanh(σm1D1)] + λ2
1R̄11(εD̂1

− εD1) + εσ1,

where D̂1 = 1
2λ1

R−1
11 GT

1 (s)∇φ1(s)
TŴ1, D1 = 1

2λ1
R−1

11 GT
1 (s)∇φ1(s)

TW∗1 , εD̂1
and εD1 are

bounded approximation errors, σm1 is a big constant, and εσ1 is the approximate error
between the tanh and sgn functions.

Define Π3 = Φ2(û2, λ2)−Φ2(u∗2 , λ2). Similarly, we can obtain

Π3 = ŴT
2 ∇φ2(s)G2(s)λ2tanh(D̂2) + W̃T

2 ∇φ2(s)G2(s)λ2tanh(σm2D̂2)

−W∗T2 ∇φ2(s)G2(s)λ2tanh(D2)−W∗T2 ∇φ2(s)G2(s)λ2[tanh(σm2D̂2) (A6)
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−tanh(σm2D2)] + λ2
2R̄22(εD̂2

− εD2) + εσ2,

where D̂2 = 1
2λ2

R−1
22 GT

2 (s)∇φ2(s)
TŴ2, D2 = 1

2λ2
R−1

22 GT
2 (s)∇φ2(s)

TW∗2 , εD̂2
and εD2 are

bounded approximation errors, σm2 is a big constant, and εσ2 is the approximate error.
Based on (A5) and (A6) and some manipulation, one has

Π1 = ŴT
1 ∇φ1(s)G1(s)λ1tanh(D̂1) + W̃T

1 ∇φ1(s)G1(s)λ1tanh(σm1D̂1)

−W∗T1 ∇φ1(s)G1(s)λ1tanh(D1)−W∗T1 ∇φ1(s)G1(s)λ1[tanh(σm1D̂1)

−tanh(σm1D1)] + ŴT
2 ∇φ2(s)G2(s)λ2tanh(D̂2)

−W∗T2 ∇φ2(s)G2(s)λ2tanh(D2)−W∗T2 ∇φ2(s)G2(s)λ2[tanh(σm2D̂2)

−tanh(σm2D2)]− W̃T
1 σ1(t) + W∗T1 (σ1(t)− σ∗1 (t)) + ε11 + ε12

+W̃T
2 ∇φ2(s)G2(s)λ2tanh(σm2D̂2), (A7)

= −W̃T
1 σ1(t) + W̃T

1 ∇φ1(s)G1(s)λ1[tanh(σm1D̂1)− tanh(D̂1)]

−W∗T1 ∇φ1(s)G1(s)λ1[tanh(σm1D̂1)− tanh(σm1D1)]

+ŴT
2 ∇φ2(s)G2(s)λ2[tanh(D̂2)− tanh(σm2D̂2)]

+W∗T2 ∇φ2(s)G2(s)λ2[tanh(σm2D2)− tanh(D2)]

+W∗T1 ∇φ1(s)G2(s)λ2[tanh(D∗2 )− tanh(D̂2)] + ε11 + ε12,

= −W̃T
1 σ1(t) + W̃T

1 ψ1 + W∗T1 (ψ5 − ψ2) + ŴT
2 ψ3 + W∗T2 ψ4 + ε11 + ε12,

where

ε11 = Γ1(s,∇V̂1)− Γ1(s,∇V∗1 ) + εB1,

ε12 = λ2
1R̄11(εD̂1

− εD1) + εσ1 + λ2
2R̄22(εD̂2

− εD2) + εσ2,

ψ1 = ∇φ1(s)G1(s)λ1[tanh(σm1D̂1)− tanh(D̂1)],

ψ2 = ∇φ1(s)G1(s)λ1[tanh(σm1D̂1)− tanh(σm1D1)],

ψ3 = ∇φ2(s)G2(s)λ2[tanh(D̂2)− tanh(σm2D̂2)],

ψ4 = ∇φ2(s)G2(s)λ2[tanh(σm2D2)− tanh(D2)],

ψ5 = ∇φ1(s)G2(s)λ2[tanh(D∗2 )− tanh(D̂2)].

Similarly,

σ1(ti)
TŴ1 + r(s(ti), û1(ti), û2(ti), Γ1(ti))]

T = −W̃T
1 σ1(ti) + W̃T

1 ψ1

+W∗T1 (ψ5 − ψ2) + ŴT
2 ψ3 + W∗T2 ψ4 + ε11 + ε12. (A8)

Substituting Formulas (A7) and (A8) into Formula (A3) yields

α−1
1 W̃T

1
˙̃W1 = −W̃T

1 [
σ1(t)σT

1 (t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)σ
T
1 (ti)

σ̄1(ti)
]W̃1

+W̃T
1 [

σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
]ψT

1 W̃1 + W̃T
1 [

σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
]ψT

3 Ŵ2

+W̃T
1 [

σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
](ψ5 − ψ2)

TW1

+W̃T
1 [

σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
]ψT

4 W∗2 (A9)

+W̃T
1 [

σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
](ε11 + ε12),

= −W̃T
1 v1W̃1 + W̃T

1 v2ψT
1 W̃1 + W̃T

1 v2ψT
3 Ŵ2 + W̃T

1 v2ψT
4 W∗2

+W̃T
1 v2(ψ

T
5 − ψT

2 )W1 + W̃T
1 v3,
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≤ −W̃T
1 v1W̃1 +

rc

2
W̃T

1 v2vT
2 W̃1 +

1
2rc

W̃T
1 ψ1ψT

1 W̃1 + W̃T
1 v2ψT

3 Ŵ2

+W̃T
1 v2(ψ

T
5 − ψT

2 )W1 + W̃T
1 v3 + W̃T

1 v2ψT
4 W∗2 ,

where rc is a positive constant to be determined,

v1 = [
σ1(t)σT

1 (t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)σ
T
1 (ti)

σ̄1(ti)
],

v2 = [
σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
],

v3 = [
σ1(t)
σ̄1(t)

+
N

∑
l=1

σ1(ti)

σ̄1(ti)
](ε11 + ε12).

We can also obtain an upper bound on α−1
2 W̃T

2
˙̃W2 using the similar method,

α−1
2 W̃T

2
˙̃W2 = −W̃T

2 v4W̃2 + W̃T
2 v5ψT

6 W̃2 + W̃T
2 v5ψT

8 Ŵ1 + W̃T
2 v5ψT

9 W∗1
+W̃T

2 v5(ψ
T
10 − ψT

7 )W2 + W̃T
2 v6,

≤ −W̃T
2 v4W̃2 +

rc

2
W̃T

2 v5vT
5 W̃2 +

1
2rc

W̃T
2 ψ6ψT

6 W̃2 + W̃T
2 v5ψT

8 Ŵ1 (A10)

+W̃T
2 v5(ψ

T
10 − ψT

7 )W2 + W̃T
2 v6 + W̃T

2 v5ψT
9 W∗1 ,

where εD̂1
and εD1 are bounded approximation errors, σm3, σm3 are two big constants, and

εσ3, εσ4 are approximate errors,

ψ6 = ∇φ2(s)G2(s)λ2[tanh(σm3D̂2)− tanh(D̂2)],

ψ7 = ∇φ2(s)G2(s)λ2[tanh(σm3D̂2)− tanh(σm3D2)],

ψ8 = ∇φ1(s)G1(s)λ1[tanh(D̂1)− tanh(σm4D̂1)],

ψ9 = ∇φ1(s)G1(s)λ1[tanh(σm4D1)− tanh(D1)],

ψ10 = ∇φ2(s)G1(s)λ1[tanh(D∗1 )− tanh(D̂1)],

v4 = [
σ2(t)σT

2 (t)
σ̄2(t)

+
N

∑
l=1

σ2(ti)σ
T
2 (ti)

σ̄2(ti)
],

v5 = [
σ2(t)
σ̄2(t)

+
N

∑
l=1

σ2(ti)

σ̄2(ti)
],

v6 = [
σ2(t)
σ̄2(t)

+
N

∑
l=1

σ2(ti)

σ̄2(ti)
](ε21 + ε22),

ε21 = Γ2(s,∇V̂2)− Γ2(s,∇V∗2 ) + εB2,

ε22 = λ2
1R̄11(εD̂3

− εD3) + εσ3 + λ2
2R̄22(εD̂4

− εD4) + εσ4.

Considering (30), we derive that

V̇1 = (W∗T1 ∇φ1(s) +∇εT
1 )(F(s) + G1(s)u1 + G2(s)u2)

= (W∗T1 ∇φ1(s)F(s)−W∗T1 ∇φ1(s)G1(s)λ1tanh(D̂1)

−(W∗T1 ∇φ1(s)G2(s)λ2tanh(D̂2) + ε0, (A11)

where ε0 = ∇εT
1 (F(s)− G1(s)λ1tanh(D̂1)− G2(s)λ2tanh(D̂2)). Based on Assumptions 1

and 2, one has

ε0 ≤ λdε1 λ f ‖s‖+ λdε1 λ1gλ1 + λdε1 λ2gλ2. (A12)

Based on (31), one has
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W∗T1 ∇φ1(s)F = −sTQ1s−Φ1(u1, λ1)−Φ2(u2, λ2)− Γ1(s,∇V1) + εB1

+(W∗T1 ∇φ1(s)G1(s)λ1tanh(D1) + (W∗T1 ∇φ1(s)G2(s)λ2tanh(D2). (A13)

Based on (A13) and the facts that (W∗T1 ∇φ1(s)G1(s)λ1[tanh(D1)− tanh(D̂1)] ≤ 2λ1λg1

λdφ1‖W
∗
1 ‖, (W∗T1 ∇φ1(s)G2(s)λ2[tanh(D2) − tanh(D̂2)] ≤ 2λ2λg2λdφ1‖W

∗
2 ‖, εB1 ≤ εB1h,

and Φ1(u1, λ1), Φ2(u2, λ2), Γ1(s,∇V1) are positive definite, one has

V̇1 ≤ −sTQ1s + εB1h + λdε1 λ f ‖s‖+ λdε1 λ1gλ1 + λdε1 λ2gλ2

+2λ1λg1λdφ1‖W
∗
1 ‖+ 2λ2λg2λdφ1‖W

∗
2 ‖. (A14)

Similarly, we can derive

V̇2 ≤ −sTQ2s + εB2h + λdε2 λ f ‖s‖+ λdε2 λ1gλ1 + λdε2 λ2gλ2

+2λ1λg1λdφ2‖W
∗
1 ‖+ 2λ2λg2λdφ2‖W

∗
2 ‖. (A15)

Collecting the results in (A9), (A10), (A14) and (A15), one has

L̇ ≤ −sTQ1s− sTQ2s− W̃T
1 v1W̃1 +

rc

2
W̃T

1 v2vT
2 W̃1 +

1
2rc

W̃T
1 ψ1ψT

1 W̃1

+W̃T
1 v2ψT

3 Ŵ2 + W̃T
1 v2(ψ

T
5 − ψT

2 )W
∗
1 + W̃T

1 v3 + W̃T
1 v2ψT

4 W∗2

−W̃T
2 v4W̃2 +

rc

2
W̃T

2 v5vT
5 W̃2 +

1
2rc

W̃T
2 ψ6ψT

6 W̃2 + W̃T
2 v5ψT

8 Ŵ1 (A16)

+W̃T
2 v5(ψ

T
10 − ψT

7 )W2 + W̃T
2 v6 + W̃T

2 v5ψT
9 W∗1 + h1 + h2,

= −sTQ1s− sTQ2s− W̃T
1 h3W̃1 + W̃T

1 h4 − W̃T
2 h5W̃2 + W̃T

2 h6 + h1 + h2,

where

h1 = εB1h + λdε1 λ f ‖s‖+ λdε1 λ1gλ1 + λdε1 λ2gλ2 + 2λ1λg1λdφ1‖W
∗
1 ‖+ 2λ2λg2λdφ1‖W

∗
2 ‖,

h2 = εB2h + λdε2 λ f ‖s‖+ λdε2 λ1gλ1 + λdε2 λ2gλ2 + 2λ1λg1λdφ2‖W
∗
1 ‖+ 2λ2λg2λdφ2‖W

∗
2 ‖,

h3 = v1 +
rc

2
v2vT

2 +
1

2rc
ψ1ψT

1 ,

h4 = v2ψT
3 Ŵ2 + v2(ψ

T
5 − ψT

2 )W
∗
1 + v3 + v2ψT

4 W∗2 ,

h5 = v4 +
rc

2
v5vT

5 +
1

2rc
ψ6ψT

6 ,

h6 = v5ψT
8 Ŵ1 + v5(ψ

T
10 − ψT

7 ) + v6 + v5ψT
9 W∗1 .

Finally, collecting the results in (A9), (A10), (A14), (A15) and (A16), one has

L̇ ≤ −sTQ1s− sTQ2s− W̃T
1 h3W̃1 + W̃T

1 h4 − W̃T
2 h5W̃2 + W̃T

2 h6 + h1 + h2,

≤ −λmin(Q1)‖s‖2 − λmin(Q2)‖s‖2 − λmin(h3)‖W̃1‖2 + ‖W̃1‖‖h4‖ (A17)

−λmin(h5)‖W̃2‖2 + ‖W̃2‖‖h6‖+ h1 + h2.

Reasonable selection of parameters makes h3 > 0, h4 > 0, h5 > 0, h6 > 0, and the
Lyapunov derivative (A2) is negative if

‖W̃1‖ >
‖h4‖

2λmin(h3)
+

√
‖h4‖2

4λ2
min(h3)

+
‖W̃2‖‖h6‖+ h1 + h2

λmin(h3)
, (A18)

‖W̃2‖ >
‖h6‖

2λmin(h5)
+

√
‖h6‖2

4λ2
min(h5)

+
‖W̃1‖‖h4‖+ h1 + h2

λmin(h5)
. (A19)



Mathematics 2022, 10, 2744 21 of 22

Based on the Lyapunov theorem and Formulas (A18) and (A19), we can select param-
eters appropriately to ensure that the system state s and critic neural network weight errors
W̃1, W̃2 are UUB.

This completes the proof.
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