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Abstract: In this paper, we introduce a class of stochastic processes in continuous time, called step
semi-Markov processes. The main idea comes from bringing an additional insight to a classical
semi-Markov process: the transition between two states is accomplished through two or several steps.
This is an extension of a previous work on discrete-time step semi-Markov processes. After defining
the models and the main characteristics of interest, we derive the recursive evolution equations for
two-step semi-Markov processes.
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1. Introduction

This article is concerned with continuous-time semi-Markov processes (SMPs). They
represent an important class of stochastic processes widely studied and applied in sev-
eral fields, such as reliability, survival analysis, financial mathematics, DNA modelling,
manpower planning, etc.; see, e.g., [1–5]. The interest in using this class of stochastic pro-
cesses in applications comes from the fact that the sojourn time in a state can be arbitrarily
distributed, as compared to Markov processes, where the sojourn time is geometrically
distributed (in discrete time) or exponentially distributed (in continuous time).

To be more specific, in this work, we introduce a class of stochastic processes, called
continuous-time step semi-Markov processes, which generalizes classical/usual continuous-
time semi-Markov processes. The main feature of this new type of SMPs comes from the
fact that the sojourn time in a state represents the addition of two or several times that
correspond to different physical causes. A typical example of this type of process can
be encountered in biomedical investigations of the time-evolution of a disease when this
sojourn time can be the sum between the incubation time of the disease and the waiting
time before a change of state occurs. Another example can be seen in manpower planning;
for instance, the sojourn time in this context can be seen as the sum between a first duration
after entering a position in a company and a second duration that corresponds to a training
period, for potential upgrade (change) of their position (see, e.g., [6–11]). It is clear that this
type of phenomenon can be modelled also by introducing a new state for each different
time (see [12]), but this implies that supplementary parameters are used for describing the
system, increasing thus the modelling complexity.

The present article extends the discrete-time step semi-Markov processes introduced
in [13] to the case of continuous-time semi-Markov processes. It is important to stress from
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the beginning that the passage from discrete-time case to continuous-time case and vice
versa is not obvious at all in such semi-Markov frameworks.

The need to move from discrete-time models to continuous ones has already been
suggested by several authors and is of great importance in many scientific fields, see,
e.g., [14]. One of the main advantages of continuous-time models is due to their greater
flexibility as compared to their discrete-time counterparts. Indeed, while the discrete-
time model needs the adoption of a specific time scale over which data are observed, the
continuous-time setting avoids this problem and considers the exact time of observation
of the events, see, e.g., [15]. A detailed description of the benefits of a continuous-time
framework is presented in [12] where illustrative examples are also given based on real
data and practical applications.

It is worth also noticing that one problem that researchers face when using continuous-
time stochastic processes is the need for discretization. In a semi-Markov setting, continuous-
time semi-Markov processes can be numerically solved by means of discrete-time semi-
Markov processes, as can be found in [16–20].

Our article is structured as follows: in the next section we first introduce classical
semi-Markov notations and we define the continuous-time step semi-Markov process. In
Section 3, we study the recursive evolution equations for step semi-Markov processes. A
particular case of the continuous-time step semi-Markov process is presented in Section 4.
Some elements of statistical estimation are also presented in Section 5. We end the article
with some concluding remarks.

2. System Settings

A continuous time stochastic process (Zt)t∈R+
evolving in a discrete finite state space

E = {1, . . . , N} is considered. Several counting processes have to be defined for modelling
the time evolution of this system, such as T = (Tn)n∈N representing the successive time
points when a change in the system states occurs, J = (Jn)n∈N the successive visited states
at these time points. Let us consider also the sojourn times in each state, denoted by
Xn = Tn − Tn−1, n ∈ N∗, where X0 = 0.

If the following relation is satisfied

P(Jn+1 = j, Tn+1 − Tn ≤ t | J0, . . . , Jn; T0, . . . , Tn)

= P(Jn+1 = j, Tn+1 − Tn ≤ t | Jn), (1)

then the stochastic process (Zt)t∈R+
is a semi-Markov process associated with the Markov

renewal chain (Jn, Tn)n∈N, with (Jn)n∈N being the so-called embedded Markov chain asso-
ciated with (Zt)t∈R+

, where Zt = JN(t) and Jn = ZTn , with N(t) := max{n ∈ N | Tn ≤ t}
representing the number of jumps up to the time point t.

The time behaviour of the SMP is governed by the semi-Markov kernel

Q̃ij(t) = P(Jn+1 = j, Xn+1 ≤ t | Jn = i).

Equivalently, the SMP is defined by the transition probabilities of the embedded
Markov chain (Jn), i.e.,

p̃ij = P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N, (2)

and the conditional cumulative distribution function of the sojourn time Xn+1, defined by

F̃ij(t) = P(Xn+1 ≤ t | Jn = i, Jn+1 = j) =
∫ t

0
f̃ij(s)ds, t ∈ R+, (3)

where f̃ij(t) =
dF̃ij(t)

dt is the corresponding density with respect to the Lebesgue measure,
assumed to exist.
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Let us denote by α the initial distribution of the process, α(i) = P(J0 = i). We also
define the sojourn time distribution function in state i as

H̃i(t) = P(Xn+1 ≤ t | Jn = i) = ∑
j∈E

Q̃ij(t) =
∫ t

0
h̃i(s)ds, t ∈ R+, (4)

where h̃i(t) =
dH̃i(t)

dt is the density of the sojourn time distribution in state i with respect to
the Lebesgue measure, assumed also to exist. It is clear that the semi-Markov kernel can be
written as

Q̃ij(t) = p̃ij F̃ij(t), ∀i, j ∈ E.

Following the procedure proposed in [13] for discrete-time SMPs, the sojourn time
Xn+1 between two consecutive states Jn and Jn+1 can be seen as the sum of two different
times, say Un+1 and Vn+1, that is Xn+1 = Un+1 + Vn+1. Under this setting one can rewrite
the semi-Markov condition (1) in the following form

P(Jn+1 = j, Un+1 ≤ u, Vn+1 ≤ v. | J0, . . . , Jn; U0, . . . , Un, V0, . . . , Vn)

= P(Jn+1 = j, Un+1 ≤ u, Vn+1 ≤ v. | Jn). (5)

Having in mind this new setting, the semi-Markov kernel takes the following form for
t ∈ R+

Q̃ij(t) = P(Jn+1 = j, Un+1 + Vn+1 ≤ t | Jn = i)

=
∫ t

0
P(Jn+1 = j, Vn+1 ≤ t− u, Un+1 ∈ du | Jn = i)

=
∫ t

0
P(Vn+1 ≤ t− u | Un+1 = u, Jn = i, Jn+1 = j)

×P(Jn+1 = j | Jn = i, Un+1 = u)P(Un+1 ∈ du | Jn = i)

=
∫ t

0
Fiu;j(t− u)piu;jgi(u)du, (6)

where

• Fiu;j(v) = P(Vn+1 ≤ v. | Un+1 = u, Jn = i, Jn+1 = j);
• piu;j = P(Jn+1 = j | Jn = i, Un+1 = u), with ∑

j∈E
piu;j = 1; in other words (piu;j)i,j∈E is

a stochastic matrix, ∀u ∈ R+;
• gi(u)du ≈ P(u ≤ Un+1 ≤ u + du | Jn = i), using the definition of derivative and

represents the density of random variable Un+1, given that the previous state is Jn = i.

We can summarize all this discussion by introducing the new concept of two-step SMP,
for which the holding time is the sum of two different holding times. As mentioned in
the Introduction, this setting can be of interest in several applications, such as biomedical
sciences or manpower planning.

Definition 1. If a semi-Markov kernel is of the form given in (6), then (J, T) is called a two-
step Markov renewal chain and the associated semi-Markov process Z = (Zt)t∈R+

is called a
continuous-time two-step semi-Markov process.

An example of this type of process can be encountered for patients in a hospital that
may change status depending on their medical results. Due to this process, they will need
corresponding medical attention. Let U be the time interval between the status change in
the patient’s clinical condition and V the time that elapses until the operator’s action to
change the patient’s condition. This problem can be described by a continuous-time two-
step semi-Markov model. The main interest here is focused on computing the transition
probabilities between states.
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It is important to define the following quantities with respect to the fist passage time
in state i, given that Un+1 = u.

Definition 2. Under the previous setting, let us also introduce the following notations:

Qiu;j(v) := P(Jn+1 = j, Vn+1 ≤ v. | Jn = i, Un+1 = u)

= P(Vn+1 ≤ v. | Jn = i, Jn+1 = j, Un+1 = u)

×P(Jn+1 = j | Jn = i, Un+1 = u)

= piu;jFiu;j(v),

Fiu;j(v) := P(Vn+1 ≤ v. | Jn = i, Jn+1 = j, Un+1 = u),

Hiu(v) := P(Vn+1 ≤ v. | Jn = i, Un+1 = u) = ∑
j∈E

Qiu;j(v),

with the corresponding density hiu(v) =
dHiu(v)

dv assumed to exist, and

Gi(u) := P(Un+1 ≤ u | Jn = i),

with the corresponding density gi(u) =
dGi(u)

du assumed to exist.

Proposition 1. The following relations hold true for any states i, j ∈ E and t ∈ R+ :

1. p̃ij =
∫ ∞

0 piu;jgi(u)du,

2. Q̃ij(t) =
∫ t

0 Qiu;j(t− u)Gi(du).

Proof. We immediately obtain the results as follows.

1. p̃ij = P(Jn+1 = j | Jn = i) =
∫ ∞

0 P(Jn+1 = j, Un+1 ∈ du | Jn = i)
=
∫ ∞

0 P(Jn+1 = j | Jn = i, Un+1 = u)P(Un+1 ∈ du | Jn = i) =
∫ ∞

0 piu;jgi(u)du.
2. According to expression (6) we have

Q̃ij(t) =
∫ t

0
Fiu;j(t− u)piu;jgi(u)du =

∫ t

0
Qiu;j(t− u)gi(u)du.

Thus, we have defined the main quantities that characterize such a process and we
can now focus on more complex matters of time behaviour of the process.

3. Recurrence Evolution Behaviour

In this section, recurrence evolution behaviour of a two-step semi-Markov process Zt
in the continue-time framework is investigated.

There are different types of evolution equations that may considered. First, we consider
the case with initial backward of the process, where the transition probability function
is the matrix-valued function bΦ = ( bφiu1;j(l; t); i, j ∈ E, u1, l, t ∈ R+) ∈ ME(R+ ×R+)
defined by

bφiu1;j(l, t) := P(Zt = j | Z0 = i, B0 = l, U1 = u1), (7)

where the left upper-script b stands for the initial backward, Bt := t− TN(t) represents the
backward time process associated with the SMP andME(R+ × R+) denotes the set of
matrix-valued functions defined on R+ ×R+ with values inME, the set of real matrices
on E× E.

Theorem 1.
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(a) The following recursive expression holds true ∀i, j ∈ E and ∀u1, l, t ∈ R+, such that u1 < l,

bφiu1;j(l, t) = δij
Hiu1(t + l − u1)

Hiu1(l − u1)

+
∫ t

m=0

(
∑
k∈E

∫ t−m

u2=0

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

+Gj(t−m) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)

)
dm. (8)

(b) Similarly, if u1 ≥ l, then

bφiu1;j(l, t) = δijHiu1(t + l − u1)

+
∫ t

m=u1−l

(
∑
k∈E

∫ t−m

u2=0

bφku2;j(0, t−m) · gk(u2) · qiu1;k(m + l − u1)du2

+Gj(t−m) · qiu1;j(m + l − u1)

)
dm, (9)

where G(·) = 1− G(·) denotes the survival function.

The proof of this result is given in the Appendix A.

4. Step SMP with Minimum Sojourn Time

In this section, we investigate a special case of a two-step semi-Markov process, where
the next state to be visited is selected to be the one with the minimum time.

4.1. System Setting

Let us consider the model proposed in Section 2. In addition to the quantities defined
above, let us consider the random variables Uij as the potential times spent in state i before
moving directly to state j. This type of framework was considered in [21,22], with a special
interest in reliability modelling.

The semi-Markov kernel becomes

Q̃ij(t) = P(min
l
{Uil}+ Vn+1 ≤ t & min occurs f or j | Jn = i)

= P(Vn+1 ≤ t− u, Uij ≤ Uil ∀l | Jn = i)

=
∫ t

0
P(Vn+1 ≤ t− u, Uij ≤ Uir ∀r, min

r
{Uir} ∈ du | Jn = i)

=
∫ t

0
P(Vn+1 ≤ t− u | min

r
{Uir} = u, Jn = i, Jn+1 = j)

×P(Jn+1 = j | Jn = i, min
r
{Uir} = u)P(min

r
{Uir} ∈ du | Jn = i)

=
∫ t

0
Fiu;j(t− u)piu;jg

(1)
i (u)du, (10)

where
Fiu;j(v) = P(Vn+1 ≤ v. | min

r
{Uir} = u, Jn = i, Jn+1 = j)

= P(Vn+1 ≤ v. | min
r
{Uir} = u, Jn = i),

= Fiu(v)independent ofj,

g(1)i (u)× du = P(min
r
{Uir} ∈ du | Jn = i).
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4.2. Recurrence Evolution of the Step SMP with Minimum Sojourn Time

The transition function with initial backwards process under the proposed model of
this section is described by the following result.

Theorem 2.

(a) Under the model setting of this section, the following formula stand true ∀i, j ∈ E and
∀u1, l, t ∈ R+, in the case u1 < l

bφ
iu(1)

1 ;j
(l, t) = δij

H
iu(1)

1
(t + l − u1)

H
iu(1)

1
(l − u1)

+
∫ t

m=0

(
∑
k∈E

∫ t−m

u2=0

bφ
ku(1)

2 ;j
(0; t−m) · gk(u2) ·

q
iu(1)

1 ;k
(m + l − u1)

H
iu(1)

1
(l − u1)

du2

+Gj(t−m) ·
q

iu(1)
1 ;k

(m + l − u1)

H
iu(1)

1
(l − u1)

)
dm. (11)

(b) In the case that u1 ≥ l, the transition function is

bφ
iu(1)

1 ;j
(l, t) = δij Hiu(1)

1
(t + l − u1)

+
∫ t

m=u1−l

(
∑
k∈E

∫ t−m

u2=0

bφ
ku(1)

2 ;j
(0, t−m) · gk(u2) · qiu(1)

1 ;k
(m + l − u1)

+Gj(t−m) · q
iu(1)

1 ;j
(m + l − u1)

)
, (12)

where the upper-script (1) stands for the minimum order statistic.

The proof of this result is given in the Appendix A.

5. Associated Estimation Procedures

Several researchers have investigated statistical inference topics for continuous-time semi-
Markov processes; the interested reader can see, e.g., [21,23–28] and the references within.

Let us consider a sample path of a two-step semi-Markov model censored at a fixed
arbitrary time M ∈ N∗,

J0, U1, V1, J1, U2, V2, . . . , JN(M)−1, UN(M), VN(M), JN(M), BM, (13)

where N(M) := max{n | Tn ≤ M} is the counting process of the number of jumps in [1, M]
and BM := M− TN(M) is the censored sojourn time in the last visited state JN(M).

Starting from this sample, one can obtain estimators of the quantities of interest
defining our model. Two main procedures may be considered:

1. Empirical estimation, as considered, for instance, in [26,27].
2. Nonparametric kernel estimation, as recently proposed in [23].

On the one hand, it should be noted that, following classical arguments, it is easy to
check that the empirical estimators are strongly consistent, as the sample size M→ ∞. On
the other hand, similar arguments as those used in [23] show that the nonparametric kernel
estimators are also strongly consistent, as the sample size M→ ∞.
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One can also consider several (say K) sample paths of a two-step semi-Markov model
censored at a fixed arbitrary time M ∈ N∗,

Jl
0, Ul

1, V l
1 , Jl

1, Ul
2, V l

2 , . . . , Jl
N(M)−1, Ul

N(M), V l
N(M), Jl

N(M), Bl
M, l = 1, . . . , K.

Similarly as that discussed above, one can propose corresponding empirical estimators,
taking into account the counting over the K sample paths; as before, these estimators are
strongly consistent, as K → ∞.

Let us give here a Monte Carlo algorithm in order to simulate a trajectory of a given
SMC in the time interval [0, M]. The output of the algorithm consists of the successive
visited states (J0, . . . , JN(M)) and in the successive holding times (U1, V1, . . . , UN(M), VN(M))
up to the time M ∈ N, i.e., a sample path of the process up to any arbitrary time M. This
algorithm is an adaptation to our framework of the one in [1].

Algorithm

1. Set k = 0, T0 = 0 and sample J0 from the initial distribution α;
2. Sample the random variable U ∼ gJk (·) and set Uk+1 = U(ω);
3. Sample the random variable J ∼ pJkU;· and set Jk+1 = J(ω);
4. Sample the random variable V ∼ FJkU;Jk+1(·) and set Vk+1 = V(ω);
5. Set Xk+1 = U + V and Tk+1 = Tk + Xk+1;
6. If Tk+1 ≥ M, then end;
7. Else, set k = k + 1 and continue to step 2.

6. Conclusions

In this paper, we studied step semi-Markov models in continuous-time. The interest
in these models comes from the fact that they are very flexible, general, and add a new
source of randomness as compared to classical semi-Markov processes, which consists
of considering the sojourn times as the sum of two (or possibly several) random times.
This type of stochastic model could be very promising in the study of reliability problems,
survival analysis and queuing theory.

An important estimation topic could also be developed. It consists of the estimation of
the main functions defining the model when the variables Un and Vn are latent and the only
available observations are the sojourn time lengths Xn. Another important development is
represented by extending the model to open systems where several individuals are consid-
ered. This would bring to a generalization of the so-called Markov/semi-Markov systems
which have found a large body of literature (see, e.g., [29,30] and the reference therein).
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and A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1.

(a) For the case where u1 < l, the transition function can be written as

bφiu1;j(l, t) = P(Zt = j | Z0 = i, B0 = l, U1 = u1)

= P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) (A1)

+ P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1). (A2)
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Let us study separately each term of the preceding formula. The first term (A1) can be
expressed in the following way

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1)

= P(Zt = j | T1 > t, Z0 = i, B0 = l, U1 = u1)P(T1 > t | Z0 = i, B0 = l, U1 = u1)

= δijP(T1 > t | Z0 = i, B0 = l, U1 = u1)

= δijP(T1 − T0 > t− T0 | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δijP(U1 + V1 > t + l | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δijP(V1 > t + l − u1 | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δij
P(V1 > t + l − u1, T1 > 0 | J0 = i, T0 = −l, U1 = u1)

P(T1 > 0 | J0 = i, T0 = −l, U1 = u1)
.

(A3)

Let us consider now the numerator of (A3)

P(V1 > t + l − u1, T1 > 0 | J0 = i, T0 = −l, U1 = u1)

= P(V1 > t + l − u1, V1 > l − u1 | J0 = i, T0 = −l, U1 = u1)

= P(V1 > t + l − u1, | J0 = i, U1 = u1) = Hiu1(t + l − u1).

(A4)

As for the denominator of (A3) we have

P(T1 > 0 | J0 = i, T0 = −l, U1 = u1)

= P(T1 − T0 > 0− T0 | J0 = i, U1 = u1, T0 = −l)

= P(U1 + V1 > l | J0 = i, U1 = u1, T0 = −l)

= P(V1 > l − u1 | J0 = i, U1 = u1) = Hiu1(l − u1).

(A5)

Combining (A3)–(A5) yields to

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1) = δij
Hiu1(t + l − u1)

Hiu1(l − u1)
. (A6)

Let us move to the second term (A2), i.e.,



Mathematics 2022, 10, 2745 9 of 12

P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1)

= ∑
k∈E

∫ t

m=0

∫ ∞

u2=0

P(Zt = j, T1 ∈ [m, m + dm], J1 = k, U2 ∈ [u2, u2 + du2] | Z0 = i, B0 = l, U1 = u1)

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 ∈ [u2, u2 + du2] | T1 = m, J1 = k)

× P(T1 ∈ [m, m + dm], J1 = k | J0 = i, T0 = −l, T1 > 0, U1 = u1)

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 ∈ [u2, u2 + du2] | T1 = m, J1 = k)

× P(T1 − T0 ∈ [m + l, m + l + dm], J1 = k, T1 > 0 | J0 = i, T0 = −l, U1 = u1)

P(T1 − T0 > 0 + l | J0 = i, T0 = −l, U1 = u1)

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 ∈ [u2, u2 + du2] | T1 = m, J1 = k)

× P(V1 ∈ [m + l − u1, m + l − u1 + dm], J1 = k | J0 = i, U1 = u1)

P(V1 > l − u1 | J0 = i, U1 = u1)

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2dm.

= ∑
k∈E

∫ t

m=0

( ∫ t−m

u2=0

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

+
∫ ∞

u2=t−m

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

)
dm.

= ∑
k∈E

∫ t

m=0

( ∫ t−m

u2=0

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

+
∫ ∞

u2=t−m
δkj · gk(u2) ·

qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

)
dm.

=
∫ t

m=0

(
∑
k∈E

∫ t−m

u2=0

bφku2;j(0; t−m) · gk(u2) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)
du2

+ Gj(t−m) ·
qiu1;k(m + l − u1)

Hiu1(l − u1)

)
dm.
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(b) Similarly as before, one can prove (9) in the case of u1 ≥ l. In this case, (A1) can be
written as

P(Zt = j, T1 > t | Z0 = i, B0 = l, U1 = u1)

= δijP(T1 − T0 > t− T0 | J0 = i, T0 = −l, T1 > 0, U1 = u1)

= δij
P(V1 > t + l − u1 | J0 = i, U1 = u1)

P(T1 > 0 | J0 = i, T0 = −l, U1 = u1)

= δij Hiu1(t + l − u1).

(A7)

As for (A2), it takes the form

P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, U1 = u1)

= ∑
k∈E

∫ t

m=u1−l

∫ ∞

u2=0
P(Zt = j | T1 = m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(U2 ∈ [u2, u2 + du2] | T1 = m, J1 = k)

× P(T1 ∈ [m, m + dm], J1 = k | J0 = i, T0 = −l, T1 > 0, U1 = u1).

A similar procedure in the case u1 < l leads to the desired result.

Proof of Theorem 2.

(a) The transition function, in the case u1 < l, takes the form

bφ
iu(1)

1 ;j
(l, t) = P(Zt = j | Z0 = i, B0 = l, min

r
{Uir} = u1)

= P(Zt = j, T1 > t | Z0 = i, B0 = l, min
r
{Uir} = u1) (A8)

+ P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, min
r
{Uir} = u1). (A9)

The term (A8) of the above formula is written as

P(Zt = j, T1 > t | Z0 = i, B0 = l, min
r
{Uir} = u1)

= P(Zt = j | T1 > t, Z0 = i, B0 = l, min
r
{Uir} = u1)

× P(T1 > t | Z0 = i, B0 = l, min
r
{Uir} = u1)

= δijP(T1 > t | Z0 = i, B0 = l, min
r
{Uir} = u1)

= δij

P(V1 > t + l − u1, T1 > 0 | J0 = i, T0 = −l, min
r
{Uir} = u1)

P(T1 > 0 | J0 = i, T0 = −l, min
r
{Uir} = u1)

= δij

H
iu(1)

1
(t + l − u1)

H
iu(1)

1
(l − u1)

.

As for the term (A9) is written as



Mathematics 2022, 10, 2745 11 of 12

P(Zt = j, T1 ≤ t | Z0 = i, B0 = l, min
r
{Uir} = u1)

= ∑
k∈E

∫ t

m=0

∫ ∞

u2=0
P(Zt = j, T1 ≤ m, J1 = k, min

s
{Ujs} ∈ du2 | Z0 = i, B0 = l, min

r
{Uir} = u1)du2dm

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

P(Zt = j | T1 ≤ m, J1 = k, min
s
{Ujs} = u2, J0 = i, T0 = −l, T1 > 0, U1 = u1)

× P(min
s
{Ujs} ∈ du2 | T1 ≤ m, J1 = k)P(T1 ≤ m, J1 = k | J0 = i, T0 = −l, T1 > 0, U1 = u1)du2dm

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

P(Zt = j | T1 ≤ m, J1 = k, U2 = u2, J0 = i, T0 = −l, T1 > 0, min
r
{Uir} = u1)

× P(min
s
{Ujs} ∈ du2 | T1 ≤ m, J1 = k)

P(V1 ≤ m + l − u1, J1 = k | J0 = i, minr{Uir} = u1)

P(V1 > l − u1 | J0 = i, minr{Uir} = u1)
du2dm

=
∫ t

m=0

∫ ∞

u2=0
∑
k∈E

bφ
ku(1)

2 ;j
(0; t−m) · gk(u2) ·

q
iu(1)

1 ;k
(m + l − u1)

H
iu(1)

1
(l − u1)

du2dm.

=
∫ t

m=0

(
∑
k∈E

∫ t−m

u2=0

bφ
ku(1)

2 ;j
(0; t−m) · gk(u2) ·

q
iu(1)

1 ;k
(m + l − u1)

H
iu(1)

1
(l − u1)

du2

+ Gj(t−m) ·
q

iu(1)
1 ;k

(m + l − u1)

H
iu(1)

1
(l − u1)

)
dm.

(b) Following similar steps as before, one may obtain the corresponding recursive formula.
We omit here the corresponding details.

References
1. Barbu, V.S.; Limnios, N. Semi-Markov Chains and Hidden Semi-Markov Models toward Applications—Their Use in Reliability and DNA

Analysis; Lecture Notes in Statistics; Springer: New York, NY, USA, 2008; Volume 191.
2. Janssen, J.; Manca, R. Semi-Markov Risk Models for Finance, Insurance and Reliability; Springer: New York, NY, USA, 2007.
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