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Abstract: The recent price crash of the New York Mercantile Exchange (NYMEX) crude oil futures
contract, which occurred on 20 April 2020, has caused history-writing movements of relative
prices. For instance, the West Texas Intermediate (WTI) experienced a negative price. Explosive
heteroskedasticity is also evidenced in associated products, such as the Intercontinental Exchange
Brent (BRE) and Shanghai International Energy Exchange (INE) crude oil futures. Those movements
indicate potential non-stationarity in the conditional volatility with an asymmetric influence of
negative shocks. To incorporate those features, which cannot be accommodated by the existing
generalized autoregressive conditional heteroskedasticity (GARCH) models, we propose a threshold
zero-drift GARCH (TZD-GARCH) model. Our empirical studies of the daily INE returns from March
2018 to April 2020 demonstrate the usefulness of the TZD-GARCH model in understanding the
empirical features and in precisely forecasting the volatility of INE. Robust checks based on BRE
and WTI over various periods further lead to highly consistent results. Applications of news impact
curves and Value-at-Risk (VaR) analyses indicate the usefulness of the proposed TZD-GARCH model
in practice. Implications include more effectively hedging risks of crude oil futures for policymakers
and market participants, as well as the potential market inefficiency of INE relative to WTI and BRE.

Keywords: zero-drift GARCH; heteroskedasticity; asymmetric effect; volatility forecasting; crude
oil futures

MSC: 37M10; 91G15

1. Introduction

Crude oil is an essential energy commodity. It is well known that crude oil storage of
a country is strategical and can largely affect many critical daily necessities, such as fuel
consumption. In addition, the demand for the so-called ‘black gold’ is relatively inelastic to
the business cycle of the macro economy, and many traders purchase the oil futures to hedge
against financial risks including the inflation risk (see, for example, Tang and Xiong [1] and
Sadorsky [2]). Consequently, accurate understanding and precise forecasting of the crude
oil volatility are important for both policy makers and financial market participants for
various aims.

Despite being the second largest economy in the world, China did not have a crude oil
future until 26 March 2018. The novel crude oil derivative was launched at the Shanghai
International Energy Exchange (INE), a unit of the Shanghai International Futures Exchange.
It is expected that INE will assist Chinese corporations and traders in hedging oil price
volatility, establishing an Asian oil pricing system, and developing the Chinese yuan (CNY)
internationalization. Compared to the two largest global crude oil futures, the Brent (BRE)
and West Texas Intermediate (WTI) futures, there are some essential differences for INE.
As concluded in Lv et al. [3], both BRE and WTI are based on light sweet low-sulfur crude
oil, whereas the underlying asset of INE is medium sour higher-sulfur crude oil. In terms
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of the trading hours, the INE has formed a 24-h continuous global trading with a trading
time zone of New York and London. Finally, the minimum trading margin of INE is 5% of
contract value. Since its launch, INE has rapidly attracted a growing number of investors.
By the time this paper was written, the trading volume of INE had exceeded the Oman
contract. Although still notably behind BRE and WTI, INE has become the largest crude oil
futures contract in the Asia-Pacific region. Nevertheless, INE is becoming an important
complementary and alternative oil future of BRE and WTI.

Due to the recent impact of the novel coronavirus disease (COVID-19), the global
financial markets experienced dramatically large volatility in early 2020. On 20 April 2020,
the price of WTI crashed from $18 a barrel to – $38 in a matter of hours. Although a historically
notable negative price did not occur for INE, its volatility has also considerably and quickly
increased over the first four months of 2020. To study the volatility of INE, we use the
Yang and Zhang [4] method, which employs the open, high, low and close prices and is
independent of drift and opening gaps to calculate volatility for a financial asset. The derived
daily volatility is plotted in Figure 1a, with a sample period of March 2018 to April 2020.
With the observed explosive patterns, it is worth investigating further whether the volatility
is non-stationary. According to the autoregressive functions (ACFs) shown in Figure 1b,
non-geometrically reducing and significant ACFs at large lags are found for the volatility of
INE. According to the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, the
p-values of the null hypothesis of the unit root are 0.495 and 0.446, respectively (Note that
when the DF-GLS test is employed, the p-value is 0.338, still indicating the existence of unit
root. In all cases, the employed unit root tests are just for motivation purposes. A more
rigorous test is related to the stability, which is implemented in the empirical analysis of this
paper). Such evidence provides strong motivation to consider the non-stationarity in the
volatility modelling and forecasting of the novel INE crude oil future.
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Figure 1. Volatility of INE and associated ACFs. (a) Volatility. (b) ACFs. Note: this figure presents the
estimated volatility of the INE returns from the period 2018–2020 via the Yang and Zhang [4] method.
The associated ACFs of the volatility are also reported.

As for the econometric methodology, GARCH model, which is proposed in the
seminal work of Bollerslev [5], has become a standard approach to studying the
conditional heteroskedasticity feature of economic and financial time series. For its
attractive characteristics such as the capability of modelling the volatility clustering
and the flexibility to incorporate extensions, GARCH model and its extensions have
been widely employed in oil volatility modelling and forecasting. Influential studies
include Chang et al. [6], Hou and Suardi [7] and Basher and Sadorsky [8], and more recent
research is conducted by Hou et al. [9], Lin et al. [10] and Marchese et al. [11], among
others. However, despite the popularity, many extensions of GARCH are yet to develop
well-established asymptotics for the estimators. This insufficiency seriously affects their
reliability and/or efficiency in volatility modelling and forecasting, as the related statistical
inferences are either questionable or inefficient. Even for the original GARCH model, no
consistent estimator of the intercept of the conditional variance equation can be derived,
when the underlying sequence is non-stationary [12]. Therefore, reliable forecasts cannot
be produced even with the simplest GARCH(1,1) specification.



Mathematics 2022, 10, 2757 3 of 20

To resolve this issue, a recent study by Li et al. [13] proposes a Zero-drift GARCH
(ZD-GARCH) model, by setting the intercept of the conditional variance to exactly 0. In
particular, the ZD-GARCH process is always non-stationary and has well-established
asymptotics of its quasi maximum likelihood estimator (QMLE). Moreover, to study
the sample path of the heteroskedasticity, a new feature named stability (instability) is
recommended to describe the patterns such that the unconditional variances will oscillate
between 0 and infinity (converge to 0 or diverge to infinity). From a practical perspective,
the new model nests the famous exponentially weighted moving average (EWMA) model
developed by the RiskMetrics. Based on the EWMA model, companies like J.P. Morgan
estimate and study the daily volatility of financial equities. Such desirable features make
ZD-GARCH a suitable alternative to GARCH in modelling and forecasting the potentially
non-stationarity of the INE’s future.

Apart from the non-stationarity, the recent oil price crash draws attention to the
asymmetric effect of negative and positive news on the volatility of oil futures. The
negative shock that took place on 20 April 2020 has apparently resulted in the largest daily
volatility ever recorded for the WTI future. This is over twice as much as the daily volatility
ever caused by a positive shock. Among the existing studies, mixed results are reported on
the matter whether asymmetric volatility exists in crude oil markets or not (see, for example,
Engle [14], Nomikos and Andriosopoulos [15], Žikeš and Baruník [16] and Lin et al. [10],
among others). Nevertheless, the ZD-GARCH specification is unable to incorporate such a
potential asymmetry. This will limit its appropriateness in modelling and forecasting the
volatility of crude oil futures.

Inspired by the important works of Glosten et al. [17] and Zakoian [18], we propose a
threshold ZD-GARCH (TZD-GARCH) model to study the INE volatility in this paper. Our
baseline empirical results focus on the complete sample of INE returns ranging from its
launch date (26 March 2018) to 30 April 2020, contrasting the GARCH, threshold GARCH
(T-GARCH), ZD-GARCH and TZD-GARCH models. We provide strong evidence of the
non-stationarity of the INE volatility that is preliminarily shown in Figure 1, according to the
non-stationarity test [12] based on the GARCH and T-GARCH models. Both ZD-GARCH and
TZD-GARCH models further suggest significant stability of the non-stationary volatility. The
influence of negative shocks is significant and around 40% larger than that of positive shocks,
according to the TZD-GARCH model. Via an expanding window approach, we compare
the out-of-sample forecasts of the four models. The superiority of our TZD-GARCH over
GARCH, T-GARCH and ZD-GARCH is supported by various forecasting error measures,
including the root of mean squared error (RMSE), the mean absolute error (MAE), mean
absolute percentage error (MAPE), the mean absolute scaled error (MASE) and the Diebold
and Mariano [19] (DM) test. To check the robustness of our baseline findings, we also model
BRE and WTI returns over three different sample periods: 2018–2020 (the same as INE),
2016–2020 (1000 observations) and 2008–2020 (3000 observations). Highly consistent results
still hold, including the non-stationarity, stability, significant asymmetric influence of negative
shocks, and the more accurate forecasting performance of TZD-GARCH. Finally, we present
the news impact curves and perform the Value-at-Risk (VaR) analyses over INE, BRE and
WTI using the fitted TZD-GARCH models. The inspiring and promising results shed light on
the usefulness of the proposed TZD-GARCH model in modelling and forecasting volatility
of crude oil futures in practice.

The contributions and implications of this paper are twofold. First, both the in-sample
volatility features and out-of-sample forecasting results of the INE, BRE and WTI are well
examined. Those empirical results strongly support the superiority of TZD-GARCH over
existing GARCH-type and ZD-GARCH models, as for the accuracy of volatility forecasting.
Further, using both 95% and 99% VaRs, we demonstrate that the actual extreme negative
risks of INE, BRE and WTI are in-line with the risk tolerance of those metrics derived from
the TZD-GARCH model. Therefore, since oil future has become one of safe haven assets,
which are used by various hedge funds and pension funds, the proposed TZD-GARCH
model can assist users in constructing accurate risk appetite and portfolio management
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practices. Second, the evidenced asymmetric effect and estimated news impact curves
have at least two implications. For one thing, negative news is more influential than
positive news for the crude oil markets. Thus, policymakers and investors should allocate
scarcer resources to negative shocks to achieve the best hedging/risk management results
to manage risks of macro-economy and/or micro-portfolios. For another, we notice
that different from BRE and WTI, the asymmetric effect of the negative shocks is much
weaker for the novel INE product. This might be explained by its comparatively smaller
trading volume and liquidity, which has limited the response of INE to the market news.
Consequently, the market efficiency of INE might be relatively lower than that of WTI and
BRE.

The rest of this paper is organized as follows. Section 2 explains the GARCH and
ZD-GARCH models. Section 3 proposes the TZD-GARCH model. Empirical results are
presented in Section 4. Section 5 briefly discusses some implications. Section 6 concludes
the paper.

2. GARCH and Zero-Drift GARCH Models

The classical GARCH(1,1) model has the following specification:

yt = ηt
√

ht and ht = ω0 + α0y2
t−1 + β0ht−1 for t = 1, 2, . . . , n (1)

where yt is the modeled time series, ht is its conditional variance, {ηt} is an independently
and identically distributed (iid) innovation sequence, and n is the sample size. In the
original GARCH(1,1) model developed in Bollerslev [5], {ηt} is assumed to be Gaussian.
To ensure the non-negativity and weak stationarity, the constraints ω0 > 0, 0 ≤ α0 < 1,
0 ≤ β0 < 1 and 0 ≤ α0 + β0 < 1 are imposed. Further, with the assumption such
that Eηt = 0 and Eη2

t = 1, it can be shown that the unconditional variance of yt is
s2

t = var(yt) = ω0/(1− α0 − β0), and α0 + β0 (or more formally defined as α0var(ηt) + β0)
is known as the volatility persistence. In general, it measures how fast a shock to the
conditional variance will die out.

As for out-of-sample forecasting, the N-step-ahead forecast of the above GARCH(1,1)
model can be derived by

Enhn+N = ω0 + α0Eny2
n+N−1 + β0Enhn+N−1 (2)

where Eny2
n+N−1 = yn and Enhn+N−1 = hn for N = 1 and Eny2

n+N−1 = Enhn+N−1 for
N > 1. In a stationary case, the long-run forecast will converge to s2

t .
However, such a prediction is only valid when γ0 < 0, where γ0 is the top Lyapunov

exponent defined by
γ0 = E log(β0 + α0η2

t ).

The reason is that Bougerol and Picard [20] showed that the GARCH(1,1) model is
stationary if and only if γ0 < 0. Otherwise, yt defined in (1) is heteroskedastic with an
exponentially explosive unconditional variance, since s2

t = ω0var(η2
t )+ [var(η2

t )α0 + β0]s2
t−1.

In such a case, no consistent estimator of ω0 will be available [12], and thus the out-of-sample
forecasting with (2) is not viable.

To resolve this issue, Li et al. [13] propose a novel Zero-drift GARCH (ZD-GARCH)
model, which is directly motivated by (1), except that ω0 is set 0 as follows.

yt = ηt
√

ht and ht = α0y2
t−1 + β0ht−1 for t = 1, 2, . . . , n (3)

This simple modification effectively avoids the dilemma of inconsistent estimator
of ω0 when γ0 ≥ 0. Also, the iterative relationship of the unconditional variance of yt
defined in (3) is now s2

t = [var(η2
t )α0 + β0]s2

t−1, such that s2
t = [var(η2

t )α0 + β0]
t−1s2

1.
Consequently, the ZD-GARCH model is able to incorporate both the unconditional and
conditional heteroskedasticity simultaneously.
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There are additional attractive merits of the ZD-GARCH model, from both practical
and technical aspects. First, it can be straightforwardly shown that (3) nests the famous
exponentially weighted moving average (EWMA) model, as proposed in RiskMetrics. The
EWMA model is widely employed by financial practitioners. For instance, J.P. Morgan
calculates the daily volatility of many assets by EWMA. Second, Li et al. [13] prove that
except for a different scale, the sample path of ZD-GARCH has a similar shape as that of the
GARCH model. Thus, (3) is an effective alternative of and more convenient than (1). Third,
like GARCH, asymptotics of the quasi-maximum likelihood estimator (QMLE) of α0 and
β0 exist for the ZD-GARCH model. This enables the related statistical inferences. Fourth,
Li et al. [13] define the case γ0 = 0 (γ0 6= 0) as stable (unstable) and propose a stability test
with good power. The concept of stability/instability comprehensively describes various
cases of heteroskedasticity. More specifically, |yt| converges to zero or diverges to infinity
almost surely (a.s.) at an exponential rate when γ0 < 0 or γ0 > 0, respectively. In contrast,
in the stable case, |yt| oscillates randomly between zero and infinity over time. Finally,
an associated portmanteau test is developed for the model diagnostic purpose of the ZD-
GARCH model. When testing the standardized residuals (η2

t ), this test is analogous to the
famous Li and Mak [21] test to diagnose potential misspecification for the original GARCH
model. Good power is also evidenced via simulations.

3. Threshold Zero-Drift GARCH Model

Despite the effectiveness of the ZD-GARCH model, it cannot accommodate the asymmetric
effects of negative and positive shocks to the volatility, which are studied with mixed results for
the crude oil futures [10,14–16]. In the case of the GARCH framework, influential early efforts
to address this issue are explored in Glosten et al. [17] and Zakoian [18]. In this paper, we
discuss the specification examined in Zakoian [18], namely the Threshold GARCH (T-GARCH)
model with the (1,1) specification as follows:

yt = ηt
√

ht and ht = ω0 + α+0 (y
+
t−1)

2 + α−0 (y
−
t−1)

2 + β0ht−1 for t = 1, 2, . . . , n (4)

where y+t−1 = yt−1 (y−t−1 = yt−1) when yt−1 > 0 (yt−1 < 0) and otherwise is equal to 0.
Note that α+0 and α−0 are the impacts of positive and negative shocks, respectively. When
asymmetric impacts exist, we have that α+0 6= α−0 .

When {ηt} is assumed symmetric with unit variance, the volatility persistence is measured
by 0.5(α+0 + α−0 )+ β0. The Lyapunov exponent γ0 changes to E log(β0 + α+0 (η

+
t )2 + α−0 (η

−
t )2).

To ensure the stationarity and non-negativity, we require that 0 ≤ 0.5(α+0 + α−0 ) + β0 < 1.
Similar to the GARCH model, T-GARCH shares those drawbacks discussed in Section 2,

including the non-existence of the consistent estimator of ω0. A natural solution is to extend
the idea of the ZD-GARCH to develop a threshold Zero-drift GARCH (TZD-GARCH) model
by letting ω0 = 0. With the usual (1,1) order, the specification is described below

yt = ηt
√

ht and ht = α+0 (y
+
t−1)

2 + α−0 (y
−
t−1)

2 + β0ht−1 for t = 1, 2, . . . , n. (5)

Let θ
def
= (α+0 , α−0 , β0)

′ ∈ Θ be the unknown parameter of TZD-GARCH(1,1) model
described by (5), and Θ is the parametric space. Assume that {yt} with a sample size of n
is an TZD-GARCH(1,1) process, the Gaussian QMLE is defined as follows

θ̂n = arg min
θ∈Θ

n

∑
t=1

ln(θ), where ln(θ) = log(σ2
t (θ)) +

y2
t

σ2
t (θ)

and σ2
t (θ) = α+0 (y

+
t−1)

2 + α−0 (y
−
t−1)

2 + β0σ2
t−1(θ) for all t = 1, . . . , n. The asymptotics of

which would follow naturally from the discussions in Li et al. [13]. As for the initial values,
without loss of generality, y0 may be chosen as the first non-zero observation, whereas
σ2

0 (θ) = 0.
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As stated in Section 2, the Lyapunov exponent γ0 is critical to determining the
stationarity (stability) for GARCH-type (ZD-GARCH-type) models. For the GARCH
scenario, Francq and Zakoïan [12] propose a stationarity test to examine H0 : γ0 ≥ 0
(non-stationary) against H1 : γ0 < 0 (stationary). As for the ZD-GARCH framework, which
only considers the non-stationary process, Li et al. [13] develop a stability test to investigate
H0 : γ0 = 0 (stable) against H1 : γ0 6= 0. For both tests, a natural plug-in estimator of γ0 is
defined below

γ̂n =
1
n

n

∑
t=1

log(β̂n + α̂nη̂2
t )

where α̂n and β̂n are the QMLE of α0 and β0, respectively.
Analogous to this specification, we derive the following estimator of γ0, which will be

used in both the T-GARCH and TZD-GARCH models

γ̂n =
1
n

n

∑
t=1

log(β̂n + α̂+n (η̂
+
t )2 + α̂−n (η̂

−
t )2).

Its asymptotics in the case of T-GARCH model may be derived following the proof of
Theorem 3.1 in Francq and Zakoïan [12]. The asymptotics of TZD-GARCH can be shown
using the results of Li et al. [13].

To implement the stability test, a t-type test statistic can be constructed to detect
H0 : γ0 = 0:

Tn =
√

n
γ̂n

σ̂η
where σ̂2

η =
1
n

n

∑
t=1

[log(β̂n + α̂+n (η̂
+
t )2 + α̂−n (η̂

−
t )2)]2 − γ̂2

n.

Since Tn defined above asymptotically follows N(0, 1), we will then reject H0 as for a
usual t-type test. For instance, at the 5% level, we will reject H0 and argue the instability
when |Tn| > 1.96.

Note that in the case of the non-stationarity test for GARCH-type models, we will
perform a one-way test. Therefore, although Tn will be constructed with analogous formulas
to those of ZD-GARCH-type models under H0 : γ0 ≥ 0, we will only claim stationarity at
5% when Tn < −1.645.

Finally, we now check the adequacy of the proposed TZD-GARCH model with a
portmanteau test. We firstly follow Li et al. [13] and define the lag-k autocorrelation
function (ACF) of the r-th power of the absolute residuals {|η̂t|r} as

ρ̂r(k) =
∑n

t=k+1(|η̂t|r − âr)(|η̂t−k|r − âr)

∑n
t=k+1(|η̂t|r − âr)2 ,

where r > 0, k is a positive integer, and âr = n−1 ∑n
t=1 |η̂t|r. The limiting distribution of our

portmanteau test is discussed in the following theorem.
To perform the proposed portmanteau test, firstly note that Ω̂2(m) defined in Theorem 4

is just its sample counterpart using η̂t (We do not explicitly discuss the case β0 = 0 in this
paper. For the interested readers, Ω̂2(m) reduces to Im in such a scenario). The test statistic
is then defined by

Q2(m) = n(n + 2)
(

ρ̂2(1)
n− 1

, . . . ,
ρ̂2(m)

n−m

)
[Ω̂2(m)]−1

(
ρ̂2(1)
n− 1

, . . . ,
ρ̂2(m)

n−m

)′
where m is then the tested order of lags, the common choices of which are 6 and 12 in
practice [13]. From Theorem 4, it is straightforward to see that Q2(m) asymptotically
follows a χ2

m distribution. The rejection of H0 such that the fitted model is adequate (with
no ARCH errors left for the standardized residuals) will be stated as a standard one-way
χ2-test. For instance, when m = 6, we will not reject H0 when Q2(6) < 12.59 at 5%
significant level.
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4. Empirical Results

In this section, we study the novel crude oil future traded at the Shanghai International
Energy Exchange (INE) using the four GARCH- and ZD-GARCH-type models discussed
in this paper. We focus on the daily returns ranging from 26 March 2018 (the launch date
of INE) to 30 April 2020. For comparison and robustness check purposes, we also discuss
the modelling results of the two popular international oil futures: Brent crude oil (BRE)
and West Texas Intermediate crude oil (WTI). The same range of 2018–2020 is used for
comparison against the results of INE. In addition, we also consider larger sample sizes of
BRE and WTI, the starting date goes back to mid-2008.

To be consistent with Figure 1 for the case of INE, we present the volatilities of BRE and
WTI, both calculated via the Yang and Zhang [4] method, in Figure 2. For both contracts,
their volatilities exhibit much similar temporal trend: oscillating between 0 and 1 from
mid-2008 to early-2020, and growing rapidly up to 1.5 for BRE and 5 for WTI by the end of
April 2020. This indicates the potential non-stationarity, as observed for the volatility of
INE and described in Section 1. In Panel A of Table 1, we present descriptive statistics of
the three daily returns in percentages (log-differences of daily closing price times 100) over
2018–2020 and 2008–2020 (for BRE and WTI only). All returns demonstrate fairly similar
features. When contrasting INE, BRE and WTI over the same sample period of 2018–2020,
it can be seen that returns of BRE and WTI are more volatile than those of INE. This may be
explained by the differences in trading volumes and liquidities of the three products.

2010 2012 2014 2016 2018 2020

0.
5

1.
0

1.
5

(a)

2010 2012 2014 2016 2018 2020

0
1

2
3

4
5

(b)

Figure 2. Volatility of BRE and WTI: 2008–2020. (a) BRE. (b) WTI. Note: this figure presents the
estimated volatility of the BRE and WTI returns over 2008–2020 via the Yang and Zhang [4] method.

Table 1. Descriptive statistics.

Mean Std. Dev. Median Q0.05 Q0.25 Q0.75 Q0.95

Panel A: 2018–2020
INE −0.1088 2.2126 0.0239 −3.9135 −1.0391 1.0590 2.8180
BRE −0.2174 3.1299 0.0146 −4.4388 −1.2353 0.9772 3.1626
WTI −0.2354 4.2435 0.0156 −5.0563 −1.1994 1.0993 3.5455

Panel B: 2008–2020
BRE −0.0517 2.2569 0.0000 −3.5725 −1.0905 0.9954 3.2039
WTI −0.0604 2.8070 0.0214 −3.9148 −1.1797 1.1254 3.6384

Note: this table presents the descriptive statistics of the INE, BRE and WTI daily returns over 2018–2020 and
2008–2020. Std. Dev. is the standard deviation. Q0.05, Q0.25, Q0.75 and Q0.95 are the 5th, 25th, 75th and 95th
percentiles, respectively.

4.1. Volatility Modelling and Forecasting Results: 2018–2020

We now analyze our baseline results of the INE volatility. The daily returns of INE
are firstly demeaned, and then fitted by each of the GARCH, T-GARCH, ZD-GARCH and
TZD-GARCH models individually, all with the (1,1) specification described in Section 2.
The fitted results are presented in Table 2.
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Table 2. Empirical results: INE.

GARCH T-GARCH ZD-GARCH TZD-GARCH

ω̂n 0.2475 * 0.3649 *
(0.1129) (0.1223)

α̂n or α̂+n 0.1667 * 0.0606 0.1319 * 0.1088 *
(0.0454) (0.0354) (0.0358) (0.0382)

β̂n 0.7843 * 0.7491 * 0.8902 * 0.8930 *
(0.0582) (0.0598) (0.0268) (0.0290)

α̂−n 0.2748 * 0.1491 *
(0.0752) (0.0132)

v̂n 0.9511 0.9116 1.0217 1.0204
γ̂n −0.0131 −0.0164 0.0027 0.0026

(0.2224) (0.2601) (0.1759) (0.1742)
Tn −1.3135 −1.4108 0.3432 0.3337
log lik. −1060 −1054 −1063 −1055
AIC 2127 2115 2130 2116
BIC 2140 2132 2138 2129
Q2(6) 3.50 5.63 5.33 2.78
Q2(12) 8.47 9.14 8.26 8.10

Note: this table presents empirical results of the fitted GARCH, T-GARCH, ZD-GARCH and TZD-GARCH models
of INE daily returns over 2018–2020. ω̂n, α̂n, α̂+n , α̂−n and β̂n are the model parameters. v̂n is the sample volatility
persistence. γ̂n is the Lyapunov exponent. Values in the parentheses are the corresponding standard errors. Tn is
the stationarity (GARCH and T-GARCH) and stability (ZD-GARCH and TZD-GARCH) test statistic. log lik. is the
log likelihood. AIC and BIC are the Akaike Information Criterion and Bayesian Information Criterion, respectively.
Q2(6) and Q2(12) are the portmanteau test statistics at the 6th and 12th lags of standardized residuals, respectively.
* denotes that the corresponding test is significant at 5% level.

All parameters of the GARCH model are significant at 5% level. In particular, the volatility
persistence is over 0.95, indicating potential non-stationarity, which is consistent with our
observation of Figure 1. When testing the non-stationarity (γ0 ≥ 0) using the test developed
in Francq and Zakoïan [12], we observe that the γ̂n is close to 0, and Tn = −1.31 > −1.65,
leading to non-rejection of the non-stationary hypothesis. Consequently, the estimate of ω̂n
is inconsistent, and forecasting with it may cause inaccuracy. The same conclusions mostly
hold for the fitted T-GARCH model. It is notable that the estimate of α̂+n is only 0.06 and
insignificantly different from 0. In contrast, the estimate of α̂−n is quite large at 0.27 and
significant at 5% level. This suggests that only negative shocks can significantly influence
the conditional variance. Nevertheless, the Li and Mak [21] test statistics Q2(6) and Q2(12)
suggest no model misspecification in both cases, whereas the Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC) prefer T-GARCH to GARCH.

Since all the unit root test (described in Section 1) and stationarity tests support the
non-stationarity, it is more appropriate to employ the ZD-GARCH-type models. From
Table 2, the estimated volatility persistences of both ZD-GARCH and TZD-GARCH are
slightly over 1, suggesting that the unconditional variance s2

t is increasing over time. The
stability test, however, supports the null hypothesis of γ0 = 0. Thus, as expected for
financial products including the oil futures, volatility of INE will not diverge to infinity
in the long run. As for the asymmetric impacts, TZD-GARCH indicates that the negative
shocks have greater influence on the conditional variance, comparing to the positive shocks.
On average, with the same magnitude, the influence of a negative shock is around 40%
larger than that of a positive shock. Finally, according to our proposed portmanteau test
statistics, both ZD-GARCH and TZD-GARCH models are adequate, with the results of
TZD-GARCH comparatively better. The same conclusion also holds when the AIC and BIC
are employed. Overall, the TZD-GARCH model is the most preferred model among the
four competing specifications, when the BIC is employed.

To compare with the results of INE, we now consider modelling BRE and WTI
volatilities by all the four investigated models over the same period of 2018–2020. The
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results are reported in Table 3. It can be seen that all our previous conclusions are robust
for both BRE and WTI volatilities. In short, non-stationarity is supported by GARCH-
type models in both cases. T-GARCH model suggests that only negative shocks can
significantly influence the conditional variance. Stability significantly holds, as argued
by the ZD-GARCH-type models. The TZD-GARCH model produces preferable results to
ZD-GARCH, in terms of the model misspecification test and information criteria. There
are only one outstanding difference, comparing to the results of Table 2. With the same
magnitude, a negative shock of BRE (WTI) is expected to be 120% (200%) more influential
than a positive shock. This suggests that the asymmetric effects are much more significant
for the BRE and WTI than for the INE.

As argued above, the two GARCH-type models may not produce accurate forecasts,
since the INE exhibits non-stationarity. To examine this, we produce out-of-sample forecasting
results via an expanding window approach. Altogether, there are around 500 observations of
the INE daily returns. We use the first 400 as the starting training sample to fit each of the
GARCH, T-GARCH, ZD-GARCH and TZD-GARCH models. Following the descriptions in
Sections 2 and 3, we then calculate the one-step-ahead out-of-sample forecast of the conditional
variance. Next, we include the t = 401 observation in the training sample and produce another
one-step-ahead out-of-sample forecast at time t = 402. We continue this procedure until the
100 out-of-sample forecasts are all collected. Finally, assume that the true values of volatility
are those estimated via the Yang and Zhang [4] method, we derive four forecasting error
measures as follows:

RMSE =

√√√√ 1
100

100

∑
N=1

ê2
n+N

MAE =
1

100

100

∑
N=1
|ên+N |

MAPE =
1

100

100

∑
N=1

|ên+N |
An+N

RMSE =

(
1

100

100

∑
N=1
|ên+N |

)
/

(
1

n− 1

n

∑
t=2
|At − At−1|

)

where At is the actual volatility at time t, ên+N is the forecast error (actual value-forecast
value) at time n + N, RMSE is the root of mean squared error, MAE is the mean absolute
error, MAPE is the mean absolute percentage error, and MASE is the mean absolute scaled
error. The results of the four measures are presented in Table 4.
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Table 3. Empirical results: BRE and WTI (2018–2020).

BRE WTI

GARCH T-GARCH ZD-GARCH TZD-GARCH GARCH T-GARCH ZD-GARCH TZD-GARCH

ω̂n 0.2382 * 0.5935 * 0.3151 * 0.4291 *
(0.1111) (0.2290) (0.1497) (0.1775)

α̂n or α̂+n 0.2081 * 0.0556 0.1629 * 0.0816 * 0.2295 * 0.0303 0.1796 * 0.0686 *
(0.0474) (0.0352) (0.0307) (0.0324) (0.0475) (0.0353) (0.0308) (0.0300)

β̂n 0.7947 * 0.6653 * 0.8826 * 0.9058 * 0.7743 * 0.7693 * 0.8718 * 0.9017 *
(0.0472) (0.0912) (0.0187) (0.0190) (0.0506) (0.0660) (0.0186) (0.0188)

α̂−n 0.5406 * 0.1885 * 0.4038 * 0.2096 *
(0.1485) (0.0323) (0.0959) (0.0361)

v̂n 1.0015 0.9334 1.0438 1.0287 1.0016 0.9587 1.0486 1.0295
γ̂n −0.0110 −0.0117 0.0044 0.0046 −0.0063 −0.0099 0.0056 0.0059

(0.2820) (0.2958) (0.2311) (0.2100) (0.2994) (0.3412) (0.2429) (0.2229)
Tn −0.8769 −0.9275 0.4258 0.4898 −0.4723 −0.6505 0.5155 0.5918
log lik. −1121 −1107 −1123 −1110 −1171 −1159 −1176 −1163
AIC 2248 2221 2250 2226 2348 2325 2356 2332
BIC 2261 2238 2258 2239 2360 2342 2364 2344
Q2(6) 6.47 6.86 6.07 5.44 7.03 7.11 6.61 5.62
Q2(12) 8.59 8.69 8.33 7.29 8.83 8.69 8.88 7.62

Note: this table presents empirical results of the fitted GARCH, T-GARCH, ZD-GARCH and TZD-GARCH models of BRE and WTI daily returns over 2018–2020. ω̂n, α̂n, α̂+n , α̂−n and β̂n

are the model parameters. v̂n is the sample volatility persistence. γ̂n is the Lyapunov exponent. Values in the parentheses are the corresponding standard errors. Tn is the stationarity
(GARCH and T-GARCH) and stability (ZD-GARCH and TZD-GARCH) test statistic. log lik. is the log likelihood. AIC and BIC are the Akaike Information Criterion and Bayesian
Information Criterion, respectively. Q2(6) and Q2(12) are the portmanteau test statistics at the 6th and 12th lags of standardized residuals, respectively. * denotes that the corresponding
test is significant at 5% level.
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From Table 4, we observe that TZD-GARCH is the best performing model out of the
four competing specifications, as recognized by all error measures except MAPE. It is also
worth noting that the ZD-GARCH-type models are preferred to the GARCH-type models
in all cases, which is consistent with the tested non-stationarity in volatility. In particular,
T-GARCH model leads to the worst performance, despite its better AIC and BIC than those
of the GARCH and ZD-GARCH models. To statistically test the differences in out-of-sample
forecasting, we employ the famous Diebold and Mariano [19] (DM) test. For its pairwise
nature, we employ the DM test to evaluate the relative forecasting accuracy of TZD-GARCH
against each of the GARCH, T-GARCH and ZD-GARCH models. According to the p-values
presented in Table 4, the null hypothesis of identical performance is rejected in all cases,
and our proposed TZD-GARCH model significantly beats the GARCH, T-GARCH and
ZD-GARCH counterparties at 5% level.

Table 4. Out-of-sample forecasting results: INE.

GARCH T-GARCH ZD-GARCH TZD-GARCH

RMSE 0.4094 0.6032 0.3028 0.2849
MAE 0.2961 0.4167 0.2217 0.2169
MAPE 4.4705 4.8082 2.1203 2.2031
MASE 1.8989 2.6727 1.4221 1.3915
DM 0.0028 * 0.0002 * 0.0209 * -

Note: this table presents the out-of-sample forecasting results of INE volatility between the end of November
2019 and the end of April 2020. The training sample ranges from the end of March 2018 to the end of November
2019. The benchmark volatility is produced via the model described in Yang and Zhang [4]. RMSE is the root
of mean squared error. MAE is the mean absolute error. MAPE is the mean absolute percentage error. MASE
is the mean absolute scaled error. Bold numbers indicate the smallest forecasting errors for each criterion. DM
is the p-value of the Diebold and Mariano [19] test, which is performed pair-wisely by contrasting forecasts of
TZD-GARCH to those of one of the rest three models. In each case, the null (alternative) hypothesis is that the
forecasts of TZD-GARCH are as accurate as (more accurate than) those of the tested model. * denotes that the
corresponding test is significant at 5% level.

Finally, we examine the out-of-sample forecast results of BRE and WTI using the
same setting as INE. The four forecasting error measures are presented in Table 5. Our
conclusions of Table 4 largely hold here. In almost all cases, the TZD-GARCH model beats
the rest according to various forecasting error measures. In all scenarios, the pairwise DM
test further supports that the forecasts of TZD-GARCH are significantly more accurate than
those of the other competing models at 10% level.
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Table 5. Out-of-sample forecasting results (2018–2019): BRE and WTI.

BRE WTI

GARCH T-GARCH ZD-GARCH TZD-GARCH GARCH T-GARCH ZD-GARCH TZD-GARCH

RMSE 0.5779 0.7863 0.4103 0.3751 0.4196 0.4652 0.3783 0.3740
MAE 0.3588 0.5152 0.2752 0.2350 0.2412 0.2459 0.2519 0.2511
MAPE 0.3684 0.5027 0.2786 0.2329 0.4621 0.4666 0.4462 0.4096
MASE 3.4682 4.9798 2.6603 2.2716 2.8925 2.9016 2.8318 2.7779
DM 0.0029 * 0.0003 * 0.0014* - 0.0491 * 0.0410 * 0.0654 -

Note: this table presents the out-of-sample forecasting results of BRE and WTI volatility between the end of November 2019 and the end of April 2020. The training sample ranges from
the end of March 2018 to the end of November 2019. The benchmark volatility is produced via the model described in Yang and Zhang [4]. RMSE is the root of mean squared error. MAE
is the mean absolute error. MAPE is the mean absolute percentage error. MASE is the mean absolute scaled error. Bold numbers indicate the smallest forecasting errors for each criterion.
DM is the p-value of the Diebold and Mariano [19] test, which is performed pair-wisely by contrasting forecasts of TZD-GARCH to those of one of the rest three models. In each case, the
null (alternative) hypothesis is that the forecasts of TZD-GARCH are as accurate as (more accurate than) those of the tested model. * denotes that the corresponding test is significant at
5% level.
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4.2. Additional Robustness Check

We now consider additional robustness checks of the modelling results. Note that the
period over 2018–2020 has around 500 observations, which may be treated as the small
sample case. Thus, we further explore the scenarios with 1000 observations (2016–2020)
and 3000 observations (2008–2020), the fitted results of which are presented in Tables 6 and 7,
respectively. Overall, the findings are largely robust against those described above in both cases,
with several notable differences. First, the results of TZD-GARCH indicate that the asymmetric
effects of negative shocks are stronger when the sample size increases to 1000 and/or 3000,
compared to those observed in Table 3. Second, TZD-GARCH is the only model that can pass
the model misspecification test at 5%, according to both the Q2(6) and Q2(12), when the full
sample of 2008–2020 for BRE is fitted. Third, despite the potentially unreliability of the estimate
of ω̂n, both GARCH and T-GARCH models suggest that the estimates reduce rapidly with
the sample size. For instance, contrasting Tables 3 and 7, the reduction of ω̂n is nearly 90%
and over 90% for BRE and WTI, respectively. This may further support the preference of the
ZD-GARCH-type models to GARCH-type competitors, when the sample size of the crude
oil futures increases. Last but not least, the standard errors of QMLE of all parameters in the
TZD-GARCH model almost uniformly decline with the increase of sample coverage. This
provides additional empirical evidence of the asymptotics of QMLE as argued in Section 3.

Finally, we examine the robustness of the out-of-sample forecast results. Similar to
the in-sample modelling analyses, we consider another two different starting size of the
training sample: 900 (2016–2019) and 2900 (2008–2019). In both cases, the test sample is the
same (i.e., the last 100 observations, ranging from the end of November 2019 to the end of
April 2020). The four forecasting error measures are presented in Table 8. Our conclusions
of Tables 4 and 5 largely hold here. Nevertheless, it is interesting to note that when more
observations are included, the performances of GARCH and T-GARCH models almost
uniformly improve. When the complete period (2008–2019) is considered, the measures of
GARCH and T-GARCH models are not too much worse than those of ZD-GARCH and
TZD-GARCH models. This is as expected, since the estimated ω̂n of the GARCH-type
models are close to 0 in this case, as observed in Table 7. However, comparing the results
of Panels A, B and C of Table 8, ZD-GARCH-type models demonstrate relatively similar
results. Hence, it may indicate that the proposed TZD-GARCH model is not ‘hungry for
data’ in order to precisely forecast volatility of crude oil futures. Therefore, when a new
product, such as INE, becomes available at the market, the corresponding sample size is
limited. In such a case, the market participants are more motivated to use the TZD-GARCH
model to obtain reliable volatility forecasts.

To sum up, with various sample sizes, the analyses of BRE and WTI volatilities lead to
largely robust results against those of the INE volatility. The only outstanding difference is
the much stronger additional influence of the negative shocks on the conditional variance
of BRE and WTI returns than that of INE. The out-of-sampling forecasting results support
the superiority of the proposed TZD-GARCH model over the other competitors. This
is particularly important when market participants are facing a new oil product, and
need to build up their strategies for hedging, speculating and portfolio management with
limited data.
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Table 6. Empirical results: BRE and WTI (2016–2020).

BRE WTI

GARCH T-GARCH ZD-GARCH TZD-GARCH GARCH T-GARCH ZD-GARCH TZD-GARCH

ω̂n 0.1765 * 0.1909 * 0.2186 * 0.1694 *
(0.0710) (0.0835) (0.0907) (0.0774)

α̂n or α̂+n 0.1422 * 0.0091 0.1075 * 0.0135 0.1575 * 0.0051 0.1160 * 0.0225
(0.0289) (0.0149) (0.0159) (0.0128) (0.0299) (0.0174) (0.0170) (0.0158)

β̂n 0.8331 * 0.8513 * 0.9131 * 0.9478 * 0.8192 * 0.8736 * 0.9074 * 0.9392 *
(0.0376) (0.0482) (0.0113) (0.0092) (0.0399) (0.0400) (0.0120) (0.0114)

α̂−n 0.2205 * 0.1116 * 0.2058 * 0.1253 *
(0.0567) (0.0157) (0.0442) (0.0179)

v̂n 0.9758 0.9579 1.0209 1.0083 0.9760 0.9664 1.0227 1.0087
γ̂n −0.0054 −0.0064 0.0025 0.0027 −0.0057 −0.0046 0.0032 0.0033

(0.2083) (0.2227) (0.1643) (0.1386) (0.2203) (0.2121) (0.1703) (0.1517)
Tn −0.8248 −0.9085 0.4811 0.6162 −0.8187 −0.6919 0.5942 0.6881
log lik. −2089 −2068 −2094 −2071 −2171 −2153 −2178 −2157
AIC 4185 4143 4192 4148 4347 4313 4361 4320
BIC 4199 4163 4202 4162 4362 4333 4371 4333
Q2(6) 11.48 11.80 9.69 9.58 9.61 9.55 9.57 9.37
Q2(12) 12.39 15.18 10.97 11.30 11.36 11.43 11.77 11.31

Note: this table presents empirical results of the fitted GARCH, T-GARCH, ZD-GARCH and TZD-GARCH models of BRE and WTI daily returns over 2016–2020. ω̂n, α̂n, α̂+n , α̂−n and β̂n

are the model parameters. v̂n is the sample volatility persistence. γ̂n is the Lyapunov exponent. Values in the parentheses are the corresponding standard errors. Tn is the stationarity
(GARCH and T-GARCH) and stability (ZD-GARCH and TZD-GARCH) test statistic. log lik. is the log likelihood. AIC and BIC are the Akaike Information Criterion and Bayesian
Information Criterion, respectively. Q2(6) and Q2(12) are the portmanteau test statistics at the 6th and 12th lags of standardized residuals, respectively. * denotes that the corresponding
test is significant at 5% level.
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Table 7. Empirical results: BRE and WTI (2008–2020).

BRE WTI

GARCH T-GARCH ZD-GARCH TZD-GARCH GARCH T-GARCH ZD-GARCH TZD-GARCH

ω̂n 0.0316 * 0.0346 * 0.1277 * 0.1224 *
(0.0111) (0.0113) (0.0276) (0.0228)

α̂n or α̂+n 0.0831 * 0.0172 * 0.0749 * 0.0184 * 0.1226 * 0.0154 * 0.1142 * 0.0342 *
(0.0095) (0.0070) (0.0078) (0.0053) (0.0143) (0.0097) (0.0125) (0.0119)

β̂n 0.9158 * 0.9281 * 0.9344 * 0.9503 * 0.8651 * 0.8872 * 0.9069 * 0.9318 *
(0.0102) (0.0106) (0.0061) (0.0043) (0.0152) (0.0141) (0.0090) (0.0096)

α̂−n 0.1114 * 0.1061 * 0.1735 * 0.1259 *
(0.0147) (0.0090) (0.0206) (0.0132)

v̂n 0.9989 0.9943 1.0094 1.0055 0.9877 0.9806 1.0211 1.0117
γ̂n −0.0011 −0.0013 0.0009 0.0009 −0.0035 −0.0034 0.0012 0.0012

(0.1272) (0.1309) (0.1166) (0.1105) (0.1791) (0.1891) (0.1673) (0.1539)
Tn −0.4834 −0.5324 0.4227 0.4463 −1.0551 −0.9973 0.3928 0.4269
log lik. −6117 −6078 −6123 −6082 −6550 −6505 −6560 −6508
AIC 12,239 12,163 12,250 12,169 13,106 13,018 13,124 13,022
BIC 12,257 12,187 12,262 12,187 13,124 13,042 13,136 13,040
Q2(6) 15.09 * 15.42 * 13.69 * 10.98 2.96 3.04 2.58 1.99
Q2(12) 18.32 18.28 16.84 14.90 7.28 7.95 6.10 6.14

Note: this table presents empirical results of the fitted GARCH, T-GARCH, ZD-GARCH and TZD-GARCH models of BRE and WTI daily returns over 2008–2020. ω̂n, α̂n, α̂+n , α̂−n and β̂n

are the model parameters. v̂n is the sample volatility persistence. γ̂n is the Lyapunov exponent. Values in the parentheses are the corresponding standard errors. Tn is the stationarity
(GARCH and T-GARCH) and stability (ZD-GARCH and TZD-GARCH) test statistic. log lik. is the log likelihood. AIC and BIC are the Akaike Information Criterion and Bayesian
Information Criterion, respectively. Q2(6) and Q2(12) are the portmanteau test statistics at the 6th and 12th lags of standardized residuals, respectively. * denotes that the corresponding
test is significant at 5% level.
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Table 8. Out-of-sample forecasting results (2016–2019 and 2008–2019): BRE and WTI.

BRE WTI

GARCH T-GARCH ZD-GARCH TZD-GARCH GARCH T-GARCH ZD-GARCH TZD-GARCH

Panel A: 2016–2019 (900 observations)
RMSE 0.4895 0.5667 0.3906 0.3767 0.3892 0.4031 0.3822 0.3722
MAE 0.3165 0.3641 0.2642 0.2501 0.2664 0.2713 0.2302 0.2118
MAPE 0.2959 0.3268 0.2514 0.2333 0.4942 0.5069 0.4294 0.3641
MASE 3.0593 3.5193 2.5538 2.4172 3.0678 3.1241 2.6514 2.4394
DM 0.0006 * 0.0001 * 0.0831 - 0.0473 * 0.0150 * 0.0513 -

Panel B: 2008–2019 (2900 observations)
RMSE 0.4155 0.4828 0.3881 0.3719 0.3809 0.3901 0.3791 0.3707
MAE 0.2633 0.3010 0.2584 0.2443 0.2662 0.2691 0.2416 0.2411
MAPE 0.2392 0.2655 0.2423 0.2256 0.4904 0.4980 0.4376 0.4205
MASE 2.5447 2.9091 2.4974 2.3608 3.0662 3.0997 2.7831 2.7767
DM 0.0024 * 0.0002 * 0.0389 * - 0.0391 * 0.0272 * 0.0429 * -

Note: this table presents the out-of-sample forecasting results of BRE and WTI volatility between the end of November 2019 and the end of April 2020. The training samples are classified
in to two cases: 2016–2019 (900 observations) and 2008–2019 (2900 observations). The benchmark volatility is produced via the model described in Yang and Zhang [4]. RMSE is the root
of mean squared error. MAE is the mean absolute error. MAPE is the mean absolute percentage error. MASE is the mean absolute scaled error. Bold numbers indicate the smallest
forecasting errors for each criterion. DM is the p-value of the Diebold and Mariano [19] test, which is performed pair-wisely by contrasting forecasts of TZD-GARCH to those of one of
the rest three models. In each case, the null (alternative) hypothesis is that the forecasts of TZD-GARCH are as accurate as (more accurate than) those of the tested model. * denotes that
the corresponding test is significant at 5% level.
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4.3. Other Practical Applications: News Impact Curves and Value-at-Risk Analyses

For its outstanding in-sample and out-of-sample performance, we now discuss other
practical applications of the TZD-GARCH model when employed to study the oil volatilities.
For the seek of the maximized data availability, we use the TZD-GARCH model fitted with
the INE data spanning 2018–2020 (Table 2), and BRE and WTI data ranging over 2008–2020
(Table 7). We discuss two common practical applications in this section, including the news
impact curves and Value-at-Risk (VaR) analyses.

The news impact curve is proposed in Engle and Ng [22] to study the (asymmetric)
influences of news (standardized shocks) on the conditional volatility. For the case of
the TZD-GARCH model, we investigate the case such that the conditional variance is
evaluated at the magnitude of the sample variance. This is slightly different from the
original news impact curve for the GARCH model, where the unconditional variance is
assumed homoskedastic. For a given value of ηt, the curve of the TZD-GARCH is calculated
as follows √

β̂nht + α̂+n (η̂
+
t )2 + α̂−n (η̂

−
t )2

where ht is set to the sample variance of the returns, and ηt ranges from −3 to 3, which
covers 99.7% of the Gaussian distributed shocks. The results of INE, BRE and WTI are
plotted in Figure 3.
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Figure 3. News impact curves. (a) INE. (b) BRE. (c) WTI. Note: this figure presents the fitted news
impact curves of INE, BRE and WTI via the TZD-GARCH model. The sample ranges from 2018 to
2020 for INE, and from 2008 to 2020 for BRE and WTI.

From Figure 3, we observe that when ηt = 0, the starting influence ranges from 2.1
(INE) to 2.2 (BRE) and 2.7 (WTI). With ηt being more negative, the accelerations of the three
curves are much similar. When ηt reaches −3, the news impact curve increases to 2.4 for
INE and BRE and 2.9 for WTI. As for the positive news, the increase in slopes is much
faster for INE than for BRE and WTI. This is consistent with the observed smaller relative
asymmetric effect of INE than those of BRE and WTI, as discussed above. When ηt is 3, the
news impact varies from around 2.35 for INE, 2.25 for BRE and 2.75 for WTI.

The second application considered here is the popular VaR analysis. We calculate both
the 95% and 99% VaRs using the fitted conditional volatilities of TZD-GARCH for INE,
BRE and WTI. More specifically, the 95% (99%) VaR at time t is the estimated σ̂t times −1.96
(−2.33). We plot the results in Figure 4, together with the demeaned daily returns. Overall,
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the VaRs well capture the temporal patterns of volatilities in all cases. When counting
the percentages of observations that exceed the 95% VaR and 99% VaRs, the results are
6.4% and 1.2% for INE, 4.7% and 1.8% for BRE and 4.9% and 1.7% for WTI. It is also worth
mentioning that the negative daily return of INE does not exceed the estimated 95% VaR on
20 April 2020, the date of the crash in WTI. Consequently, even with a Gaussian distribution,
the resulting VaRs of the TZD-GARCH are satisfactorily accurate for all the three oil future
volatilities.
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Figure 4. Value-at-Risk analyses. (a) INE. (b) BRE. (c) WTI. Note: this figure presents the Value-at-
Risk results of INE, BRE and WTI via the TZD-GARCH model. The sample ranges from 2018 to 2020
for INE, and from 2008 to 2020 for BRE and WTI. Dashed red and dashed green curves are the fitted
95% and 99% Value-at-Risk, respectively.

5. Discussion

Our empirical results, especially those in Section 4.3, demonstrate implications that are
of key importance for both policymakers and investors. First, consistent with the estimated
strong asymmetric effects, the news impact curve indicates the importance to monitor the
negative news on the oil markets. This is especially critical for the BRE and WTI, since the
asymmetric effect is stronger than that of INE. For policymakers to hedge the risks of oil
future movements to the macro-economy, this suggests that an uneven allocation of scarce
resource should be made for the positive and negative shocks. Specifically, comparatively
more resource should be distributed to monitor the arrival of negative shocks to the market
to achieve the best hedging effectiveness.

In addition, the relatively more important role of negative news for BRE and WTI may
be explained by their much larger trading volumes and liquidities than those of the INE.
Thus, when negative news of crude oil is received, prices of BRE and WTI will respond
faster with more volatilities. For policymakers and market participants, this might indicate
the less market efficiency of INE, compared to BRE and WTI for the crude oil future. A
quantitative comparison of this will involve the price discovery and information share [23],
which remains for future works. Nevertheless, relevant trading limitations/conditions of
INE may need to be redesigned by the policymaker to improve its market efficiency to
attract more investors.

Last but not least, our results suggest that performing the VaR analyses with TZD-GARCH
can assist policymakers and market traders in constructing accurate risk measures and other
risk/portfolio management applications. For instance, studies including Van Eyden et al. [24]
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argue that changes in conditional volatility of crude oil could indicate recession in the economic
growth globally. Further, as suggested by research such as Bampinas and Panagiotidis [25],
the share of crude oil future has steadily increased in various global hedge funds, pension
funds, and insurance companies, as alternative assets of safe heaven. Understanding the tail
risks of crude oil futures using VaR and the proposed TZD-GARCH model would therefore
be critical to the effectiveness of portfolio management. This is particularly important in the
response of accelerated uncertainty over recent periods, especially after the pandemic caused
by COVID-19.

6. Conclusions

This paper proposes a threshold zero-drift GARCH (TZD-GARCH) model to study and
forecast the potentially non-stationary volatility of oil futures. Nesting the recent ZD-GARCH
model [13] as a special case, the new TZD-GARCH model can incorporate the asymmetric
influence of positive and negative news on the conditional variance. The key conclusions of this
paper are summarized below. First, for the three examined crude oil futures, the INE returns
over 2018–2020, and the BRE and WTI returns over 2018–2020, 2016–2020 and 2008–2020, the
significant non-stationarity (stability) is evidenced by GARCH and T-GARCH (ZD-GARCH
and TZD-GARCH) models. This is consistent with the empirical observations, as all three
oil futures have demonstrated explosive volatilities over early-2020, which, however, is not
expected to last long from a practical perspective. Second, the TZD-GARCH model almost
uniformly beats the GARCH, T-GARCH and ZD-GARCH models for volatility modelling and
forecasting. This is robust across various forecasting performance valuation criteria/test, oil
future products, model diagnostics and sample periods. Finally, practical applications such
as the Value-at-Risk analyses can be performed with the TZD-GARCH model for both policy
makers and oil market participants for market monitoring and risk management purposes.

The limitation of this research is in the employed univariate methodological framework.
To address this, there are two potential future directions to extend this paper. First, as
examined in Chang et al. [6] and Marchese et al. [11], multivariate GARCH-type models are
employed to study multiple oil futures simultaneously. From a technical point of view, it is
worth extending the current univariate ZD-GARCH-type framework to be multivariate,
which enables the empirical analyses such as the existence of volatility spillovers. Second,
as shown in Section 4, the role of negative news is much less important for INE than those
for BRE and WTI. This might be due to the slower response speed of INE with respect to
the market news. Future works may consider quantitative comparison of this speed, which
could adopt the price discovery method and information share [23].
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