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Abstract: One of the key tools in an organization’s performance management is the goal tree, which
is used for solving both direct and inverse problems. This research deals with goal setting based
on a model of the future by presenting the goal and subgoal in the form of concrete quantitative
and qualitative characteristics and stepwise formation of factors. A stepwise solution to a factor
generation problem is considered on the basis of mathematical symmetry. This paper displays an
algorithm for solving hierarchical inverse problems with constraints, which is based on recursively
traversing the vertices that constitute the separate characteristics. Iterative methods, modified for
the case of nonlinear models and the calculation of constraints, were used to generate solutions
to the subproblems. To realize the algorithm, the object-oriented architecture, which simplifies
the creation and modification of software, was elaborated. Computational experiments with five
types of models were conducted, and the solution to a problem related to fast-food restaurant profit
generation was reviewed. The metrics of remoteness from set values and t-statistics were calculated
for the purpose of testing the received results, and solutions to the subproblems, with the help of a
mathematical package using optimization models and a method of inverse calculations, were also
provided. The results of computational experiments speak to the compliance of the received results
with set constraints and the solution of separate subproblems with the usage of the mathematical
package. The cases with the highest solution accuracy reached are specified.

Keywords: factor tree; hierarchical problem; economic analysis; inverse problem; object-oriented
architecture

MSC: 68U35

1. Introduction

The development of an economic system is defined by the effectiveness of the decisions
of management specialists who use a range of tools in their activity. One such tool is a goal
tree, which is represented by a hierarchical structure that includes the general goal, placed
at the root of the tree, and auxiliary subgoals at the first, second, and subsequent levels [1,2].
Maintenance of a company′s financial security [3], development of a “green” economy
in the region [4], optimization of the structure of an organization [5], strengthening of its
economic position [6], etc., can be considered in the function of a strategic goal. There
are various modifications of the goal tree; in particular, the authors of ref. [7] reviewed
goal setting based on a model of the future, wherein the goals and subgoals consist of
specific quantitative and qualitative factors connected between themselves by functional
dependency. The search direction forms the forward or reverse chain, each of which
includes a group of subproblems for solving the global task. Thus, when traversing the
factor tree from the bottom upward, the calculation of new characteristics based on existing
ones using preset functions (direct problem) takes place. Such a principle of traversing
allows for carrying out an evaluation and forecasting the goal-oriented characteristic in
the case of known data. In the case of traversing the factor tree from the top downward,
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the values of characteristics, which form the target value, are determined. At the same
time, the necessity of analyzing and processing bulk information emerges, which is difficult
to perform without relevant mathematical apparatus and software assets. In connection
to this, investigations are dedicated to the development of mathematical and algorithmic
tooling for solving inverse problems and increasing the speed of solution generation by
way of data processing automatization.

Setting up such problems in the form of optimizations (e.g., Ghobadi) is widespread
in the literature. The authors of ref. [8] defined the inverse problem by detecting the
parameter values of the goal function, ensuring the optimal solution of the direct problem;
for illustrative purposes, they considered the solution of a problem related to diet with the
help of linear programming. Aster et al. [9] investigated the inverse problem of parameter
estimation, specifically the problem of determining the parameters of linear regression for
fitting the function to a dataset under observation.

Within the problem of factor formation, the determination of characteristics occurs
in such a manner that the target value calculated on their basis is equal to a set value.
The solution of such a problem helps to determine the values of characteristics that are
required for achieving the set values of strategic and operational factors. Inverse problems
are referred to as incorrect ones because there are several alternatives achieving the set
value of the target factor, which have to be analyzed by an expert or group of experts before
the concrete option is chosen. A stable problem can be obtained through the definition of
additional conditions [10].

With respect to additional conditions, the following regularization can be used: the mini-
mization of deviations from initial values of factors in the form of a sum of squares [11–13] or
the sum of absolute values of changes [14], as well as the apparatus of inverse calculations,
which was suggested for solving the inverse problems of the economy with the usage of expert
information [7]. By minimizing the change in the sum of squares of factors, the adjustment
of the initial data is fulfilled in such a way that all changes are as close as possible to zero;
by minimizing the sum of absolute values of arguments, characteristics can be selected as a
function of the target value of resultant factor to be achieved. In the case of regularization,
as a rule, the problem of linear and nonlinear programming falls under consideration [15].
The classic method of solving the problem of linear programming is a simplex method; the
problems of such type were reviewed by Ahuja and Orlin [16] and Egri et al. [17]. Classic
methods of optimization (penalization method [18], Lagrange multiplier technique [19,20],
and augmented Lagrangian method [21]) and heuristic approaches (cuckoo search [22], sim-
ulated annealing methodology [23], particle swarm optimization [24], artificial bee colony
optimization [23], and genetic algorithm [25]), as well as their combinations [26], enjoy the
greatest popularity for solving the tasks of nonlinear programming. Ye et al. [27] obtained the
solution of inverse problems, represented in the form of nonlinear programming, with the
help of methods such as variable substitution and the Lagrange multiplier technique. The
Newtonian, quasi-Newtonian, and conjugate gradient methods were outlined for solving the
unconstrained optimization problem. Classic methods are based on the optimization of a
modified function, which is formed from the target function and a constraint, which requires
high computational cost. In this regard, simpler iterative methods have been developed for
the solution of inverse problems. The most widely used are the Landweber algorithm [28] and
its modifications [29–31], developed with the aim of reducing computational complexity [32],
supplementing regularization on the basis of training data [29], and increasing calculation
accuracy with respect to specifics of the problem [30]. The Gauss–Newton method [32] and
steepest descent method [33] are also described in the literature. An iteration algorithm,
premised on the formulation of a dependence equation between arguments [34], was devel-
oped for the solution of tasks in the economic field.

Odintsov [7] suggested the apparatus of inverse calculations for solving the inverse
problems of the economy using expert information, i.e., the directions of change in identifi-
able factors and coefficients of their importance. Modifications of this apparatus and its
applications for solving social and economic objectives are considered in the literature. For
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example, Tsvetkov [35] solved the inverse problem where the same factor is used in the
calculation of two different characteristics. Vishtak and Shtyrova [36] proposed forming
the integral quality index of supplementary education in a higher-education establishment
defined by a set of characteristics at the lower level of a hierarchical structure. Barmina and
Kviatkovskaia [37] investigated the definition of an integral index for generating recom-
mendations of tools for increasing the quality of an organization’s work with the help of
inverse calculations. Blyumin and Borovkova [38] used inverse computations to calculate
the values of performance indicators of the department’s staff activity in a higher-education
establishment for achieving the desired value of the department’s rating.

The solution to the inverse problem is fraught with defining the range of values
of economic data, with which the problem makes sense, and for which a solution can
be identified. Furthermore, the determination of constraints results from a company′s
resource limitations, economic laws, offers of contracting parties and competitors, etc.
To solve the inverse problems of the economy with constraints, Odintsov [39] proposed
an iteration procedure, which was based on successively changing the resultative factor.
One disadvantage is the possibility to specify the complexity of calculation since, at each
iteration, it is necessary to check for compliance with constraints, correct the values of
relative importance coefficients, and solve the inverse problem, utilizing possible resources.
Moreover, this procedure does not stipulate the hierarchical model and presupposes the
definitions of the solution only in cases where the initial value satisfies the constraints.

The above review of studies revealed that there is no description of an algorithm for
solving inverse problems of applied economics with constraints in the case of a hierarchical
structure of indicators. Existing algorithms for solving the inverse problem with constraints
are of limited use. In addition, for some types of inverse problems, there are no easy-to-
implement iterative algorithms for their solution.

The aim of this study was to develop an algorithm designed for the stepwise formation
of characteristics, which constitute the factor tree, differing from existing ones in its ability
to solve hierarchical inverse problems with constraints and the usage of arguments in
minimal subproblems. To address this aim, this study makes the following contributions:

• Development of algorithms for solving separate subproblems;
• Development of an algorithm for solving the general problem for the formation of the

resultant factor in the goal tree;
• Development of object-oriented architecture.

It is assumed that the developed algorithm can be used to solve inverse problems
of applied economics with many related indicators and constraints. It can be applied to
improve the efficiency of management in economic entities.

The remainder of the paper is structured as follows: Section 2 provides a description of
the proposed algorithms and object-oriented architecture; Section 3 describes the results of
the numerical experiments; Section 4 presents a discussion; Section 5 concludes the paper.

2. Materials and Methods

This research is dedicated to solving hierarchical inverse problems of factor formation,
i.e., to define the changes in factors of the first and subsequent levels taking into account the
input constraints and the selected solution approach in such a way that the target indicator
takes a set value. Thus, the initial values for factors of the subgoal of the first (x1, x2, x3)
and second (x11, x21, x22) levels were set for the problem as shown in Figure 1, where it was
required to determine their changes (∆x1, ∆x2, ∆x3, ∆x11, ∆x21, ∆x22) in such a way that the
target factor was equal to y*.

A separate subproblem indicates the solution of the inverse problem when defining
the values of characteristics which form the factor of the higher level. Thus, in Figure 1,
the solution of the general problem includes subproblems such as the determination of
values ∆x1, ∆x2, and ∆x3 for the development of y*, the calculation of ∆x11 and ∆x21 for the
formation of x1 + ∆x1, and the calculation of ∆x21 and ∆x22 for the formation of x2 + ∆x2.
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The object-oriented approach is suitable for modeling structures such as graphs and
trees [40,41], and its implementation enables the development and flexible modification
of readymade software, as well as a reduction in expenses for the realization of new
subject-oriented systems owing to the usage of ready-to-use templates.

Testing of the developed algorithm was performed using the example of solving the
task of profit generation, which is the most important indicator of enterprise activity.

2.1. Development of Algorithms for Solution of Subproblems

Let us consider the algorithms for solving the subproblems using the example of
forming the value of target factor y* (Figure 1), which is calculated on the basis of values of
x:y = f (x). The below methods of solving subproblems can be considered.

• Minimizing the sum of squares of argument changes:

g(∆x) =
n
∑

i=1
∆x2

i → min,

f (∆x) = y∗,
(1)

where ∆x denotes the target changes in the arguments x, y* is the target value of the
resulting indicator, n is the number of characteristics, and f is a function of dependence of
the resulting indicator on x.

• Minimizing the sum of absolute values of arguments:

g(∆x) =
n
∑

i=1

∣∣∆xi

∣∣→ min,

f (∆x) = y∗.
(2)

• Using the coefficients of relative importance and directions of argument changes.
• Involving the coefficients of relative importance for cases with the smallest changes

in factors.

To solve the given problems, the usage of iterative algorithms was reviewed; their
essence involves executing multiple iterations, where the arguments are changed to some
small extent until the solution with preset accuracy is found, and the difference between
the current value of the function and the target one increases.

Problems which involve minimizing the sum of squares of changes and the sum of
absolute values of changes of the arguments are referred to as optimization problems. Since
such problems have a symmetric objective function g(∆x) and one constraint, methods that
are easier to implement than traditional ones (penalties, Lagrange multipliers, etc.) have
been developed. The symmetry of the objective function provides an equal impact on the
change in the objective function of each argument, where the problem solves the equation
using the direction of the gradient vector.
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In order to solve the problem of minimizing the sum of squares of argument changes,
we consider the usage of the Landweber algorithm [34], according to which the change in
factor i is fulfilled through the following formula:

xi = xi + α · ∂ f (x)
∂xi

(y∗ − y), (3)

where α is a small number, defining the step of changing x, and y is the initial value of the
resulting indicator.

In the case of minimizing the sum of absolute values at each iteration, the selection of
the argument for change (index k) [42] takes place, after which the value of that argument
changes according to

xk = xk + α · ∂ f (x)
∂xk

· (y∗ − y). (4)

The argument for change is chosen on the basis of the value of the partial derivative,
i.e., the argument for which the absolute value of the partial derivative is maximum
( ∂ f (x)

∂xk
= max

i

{∣∣∣ ∂ f (x)
∂xi

∣∣∣}) is defined.

The authors of ref. [42] investigated the one-sweep method, where the solution of
the equation with respect to the argument for which the value of the partial derivative
is maximum was mentioned. However, testing on a set of models showed that, with
nonlinear functions, there was a change in the correlation of values of private derivatives
with a change in the arguments to achieve the target value of resultant factors. Thus,
iterative change makes it possible to take into account such behavior and obtain a more
precise result.

Figure 2 represent the factor tree in the event of using the coefficients of relative
importance, which are compliant to proportions of the change in arguments and their
directions reflecting the increase or decrease in the argument [43].
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The iterative change in arguments, in this case, is expressed as

xi = xi + ti · α · βi, (5)

where t is the direction factor (when t = 1, it is necessary to increase the argument; when t = –1, it
is required to decrease the argument), and β is the coefficient of relative importance established
by the expert.

This approach to solving problems can lead to situations where the solution cannot be
found, thus necessitating an expert to correct the initial data, which is a time-consuming
task when the number of arguments is high. A special situation using such an approach
with a lesser amount of expert information involves the use of coefficients of relative
importance when the change level of factors is low. For instance, in the case of an additive
model with an increase in the factor, the solution, in the event of the least adjustment
of arguments, will correspond to a positive change of characteristics. To implement this
solution, the influence of the argument on a change in the target factor can be analyzed
pursuant to the received direction of variable t (see Equation (5)). Another approach is
the use of the stochastic algorithm presented in ref. [44]. Within this algorithm, at each
iteration, argument x is selected to change by modeling the full group of incompatible
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events while considering the coefficients of importance as a probability. However, the given
algorithm allows determining the solution only in the case of an additive model where the
modification was fulfilled.

The inverse problem of defining the value of argument k on iteration i is solved
as follows:

x(i)k = x(i−1)
k + ∆xk ·

∂ f (x)
∂xk

. (6)

Accordingly, unlike the previous algorithm, where the new value is defined by solving
the equation with respect to the selected argument, in the presented formula, the step of
change is calculated on the basis of a partial derivative through the modifiable variable.
Value ∆xk is defined as the difference between the argument value, calculated by means of
solving the equation with respect to it, and the previous argument value x(i−1)

k . The use of
the derivative enabled the ability to exclude the influence of functional dependency.

2.2. Development of Algorithm for Generation of the Resultant Factor of Goal Tree

Let us consider the solution to the general problem of defining the resultant factor
while taking into account the constraints. In this case, it is required to define the additional
characteristics for each factor, i.e., the minimum l and maximum m value, allowing the use of
fc in calculations. To traverse the goal tree, the recursive procedure is used (Figure 3), within
which the factors are presented in the form of nodes (descendant nodes are characteristics
which form the factor of a higher level). The new values of the descendant nodes, calculated
using the procedure of solving the inverse problem, become target values for defining the
descendant nodes of the subsequent level.
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Figure 4 present the general algorithm for solving the inverse problem. The condition for
the algorithm halting is the increase in the difference between the target value of the resultant
factor and its current value. Calculating the normalized values of importance coefficients is
performed by excluding from calculations those nodes for which the values reach the boundary
levels. The new value of the node is calculated using Equations (3) and (5), where a “positive”
change is understood to be a situation where the value in the current iteration becomes closer
to the permissible region in comparison to the previous iteration (the initial value did not
satisfy input constraints). For applicability in calculations, this value is set to 1 if a further
change in this factor is possible or 0 if this factor cannot be changed. After completion of the
algorithm, it is checked for compliance with the constraints. If the value does not comply with
the constraints, the closest boundary value is assigned, and the algorithm starts afresh, while a
change in this argument does not happen over the course of algorithm execution. Furthermore,
checking for the lack of a solution is performed using relative importance coefficients when the
input interrelations and directions of change do not allow us to reach the goal.
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An algorithm for solving the problem based on the selection of arguments for change
is presented in Figure 5. Node j is the top of the tree that represents the factor under
formation in the current subproblem. In the stochastic algorithm, the calculation of data for
node selection includes normalizing the importance coefficients, which act as probabilities,
and the selection of the k node is accomplished by modeling the full group of incompatible
events. When minimizing the sum of arguments’ absolute values, the calculation of data
includes the calculation of partial derivatives, and the selection of the k node is performed
by defining the maximum value of the partial derivative. The value of the k node is
determined using Equations (4) and (6).

The novelty of the proposed algorithms (Figures 4 and 5) is in the ability to traverse the
factor tree with changes to the indicators and check for constraints. In contrast to existing
procedures for solving one-level inverse problems [39], the proposed algorithm makes it
possible to find a solution in the case of a large number of arguments and if the initial
conditions do not satisfy the constraints.

If the same characteristic is used in the calculation of various factors (for example,
in Figure 1, the value x21 is used when calculating x1 and x2), an adjustment is made
after finding the solution [45–47]. For instance, such a situation occurs when the parallel
formation of the cost price of different manufacturers takes place, and this cost price, in turn,
is defined by the price of the same product. In this case, an adjustment tree is developed,
which includes the factors of the goal tree, and the problem is solved while minimizing the
sum of squares of argument changes. The adjustment tree is created in the following way
(Figure 6):
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• On a zero level, there is an entry vertex for the startup position of the tree traversal
procedure;

• There are adjustments on a first level, with the number of nodes on this level corre-
sponding to the necessary quantity of adjustments;

• Factors and their characteristics are on the second and third levels.
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The problem is solved iteratively; the changes in characteristics are defined in such a
way that the sum of squares of changes is minimal, while the values of the factors being
formed are equal to those defined using the goal tree.

g(∆x) =
n
∑

j=1
∆x2

1j → min,

fi
(
∆x1j

)
= x∗i , i = 1..m.

(7)

where n is the number of characteristics referring to the first adjustment, the values of
which are subject to the change, m is the number of factors under formation, and x∗i is the
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target value of xi, defined in the process of solving the inverse problem with usage of the
goal tree.
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After solving the primary problem and adjustments, the task of results processing
may arise, involving the calculation of new values based on existing ones, e.g., defining the
total volume of raw materials on the basis of the cost price of different types of products.
For this, a graph of results processing is created from the respective nodes (Figure 7). As
this problem is direct, the graph is traversed from bottom to top. In this case, the nodes
are calculated successively; the end node is fictitious and designed for the startup of the
recursive procedure of graph traversal, which implies the calculation of the current vertex
only when all its descendants are calculated. For the realization of the traversal procedure,
each node has a calculated attribute. At the initial stage, the value “false” is assigned to
this attribute. In the course of recursive graph traversal, a change in the attribute value
to “true” takes place. An algorithm for calling up the fictitious end node is presented in
Figure 8. In this algorithm, the variable “flag” is used, which adopts the value “false” if all
descendant nodes of the current node are calculated (the calculation of the current node is
only initiated in this case).
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Forward traversal can also be used for the traversal of the factor tree when, for example,
the solution of an inverse problem is determined on the basis of a direct problem solution.

Thus, the solution to the inverse problem includes the traversal of three layers, for
which a tree/graph is formed in each case (Figure 9).
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2.3. Object-Oriented Architecture

For software implementation of the graph/tree, representation in the form of a multi-
linked list is used. Each element of this list is an object of the node class, which is capable
of referring to any quantity of ancestor nodes and descendant nodes (Figure 10). The class
node for solving the problem contains a reference to the abstract class calculation. The
realization of algorithms for solving the inverse and direct problems is fulfilled in inheritor
class calculation. Each object of the node class contains the link to the inheritor object of
the calculation class, whereby the solution path for direct and inverse problems is set as
a vertex. For instance, in the method “calculationInv”, Equations (1)–(5) are iteratively
realized. The methods «callofDescendants» and «call ofAncestors» are implemented for
the recursive traversal of the graph/tree. The algorithm for solving the inverse problem,
taking into account the constraints (Figures 4 and 5), is realized in the method “solution”,
which is called up during recursive traversal. Figure 10 display the basic attributes of the
“node” class (“1..*” means that an object of the node class connects with at least one another
object). The object-oriented architecture provides the possibility of flexible modification
and expansion of the system, i.e., the addition of new factors, methods for solving inverse
problems, etc.
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3. Results
3.1. Testing of Iterative Algorithms of Solving the Inverse Tasks

Testing of the developed algorithm was carried out for solving subproblems using the
following models most often applied in economic analysis:

• Additive model: y = x1 + x2 + x3 + x4 + x5;
• Multiplicative model (model of product manufacture): y = x1 x2 x3 x4;
• Nonlinear additive model (cost model in inventory management system): y = a1/x1 +

b1 x1 + a2/x2 + b2 x2 + a3/x3 + b3 x3;
• Nonlinear multiplicative model (Cobb–Douglas model): y = x1

a x2
b;

• Multiplicatively additive model (profit model): y = x1−x2−x3−x4.

As an example, the results of solving the problem using the multiplicative model are
presented in Table 1 (initial data: x1 = 10, x2 = 26, x3 = 10, x4 = 8; input value of resultant
factor = 25,000; positive direction of change for the first, third, and fourth arguments;
negative direction of change for the second argument). The value of the Euclidean metric
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e(x) was calculated to check for compliance of the received solution with the coefficients of
relative importance:

e(x) =

√√√√√√√

∣∣∣∣∣∣∣∣

∆x1
n
∑

i=1
∆xi

∣∣∣∣∣∣∣∣− β1


2

+ . . . +


∣∣∣∣∣∣∣∣

∆xn
n
∑

i=1
∆xi

∣∣∣∣∣∣∣∣− βn


2

,

where n is the number of arguments.

Table 1. The results of computational experiments for multiplicative model.

Method of Solution Tool
Value of Factor

x1 x2 x3 x4 e(x)/g(x) d

Using relative importance
coefficients and directions

of change

Iteration algorithm,
α = 10−6 11.278844 25.040867 10.639422 8.319711 1.7 × 10−5 0.013

Mathematical package 11.278843 25.040868 10.639421 8.319711 5 × 10−8 0.0081

Using relative importance
coefficients

Iteration algorithm,
α = 10−8 10.90183 26.67648 10.45079 8.22552 1.8 × 10−4 1.6 × 10−4

Mathematical package 10.90182 26.67637 10.45091 8.22546 2.5 × 10−11 7 × 10−4

Minimizing the sum of
squares of argument

changes

Iteration algorithm,
α = 10−13 10.5131 26.20162 10.5131 8.63279 0.967594 3.5 × 10−6

Mathematical package 10.51512 26.20672 10.51512 8.62778 0.967533 1.2 × 10−3

Minimizing the sum of
modules of argument

changes

Iteration algorithm,
α = 10−12 0 0 0 9.61538 1.61538 3 × 10−5

Mathematical package 0 0 0 9.61538 1.61538 10−9

To solve the problem by minimizing the sum of squares of argument changes and the
sum of modules of argument changes, the values of target function g(x) in Equations (1) and (2)
were calculated.

The evaluation of compliance with the constraints is defined as the absolute difference
between the value of constraint function f (x) and set value y*.

d = |f (x) − y*|.

At the same time, the reduction of step α partly contributes to an improvement in the
solution by minimizing these characteristics.

While using relative importance coefficients, the application of the stochastic algorithm
was considered; Table 1 demonstrate the solution in one iteration. Averaging the solution
within a few iterations was also conducive to an increase in accuracy.

For comparison, the factors were also computed using the Excel mathematical package.
The received results corroborated the solutions obtained using the mathematical package,
optimization models, and classic methods. When using the relative importance coefficients
and the directions of argument changes, the values were accurate to the sixth decimal place.
When minimizing the sum of squares of argument changes using the iteration algorithm,
a smaller deviation from the set value was achieved; when using the function from the
mathematical package, a smaller value of the target function was obtained.

The iteration algorithms were also tested with constraints; in particular, an option
when the initial values do not comply with the constraints was considered. The received
results were compliant with the permissible region.

3.2. Solving the Problem of Profit Generation in a Fast-Food Restaurant

Premised on the developed algorithm, the problem of profit generation was developed
in C# language using the Visual Studio environment.
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The program’s input data were as follows:

• The initial values of price, cost price, and sales volume for each type of product;
• The importance coefficients, directions of change, minimum and maximum values of

profit from sales of products i, price, cost price, and sales volume;
• The target value of total profit;
• The methods of solving the problem included the use of relative importance coefficients

and directions of change or the use of relative importance coefficients for values
with the smallest change of values, with minimization of the deviation from the
initial values;

Two-level and three-level problems were considered. In the case of a two-level prob-
lem, the price, cost price, and sales volume for each product were defined to determine the
input value of the total profit. When solving the three-level problem, the profit by product
name was determined to reach the established consolidated profit before calculating the
cost price, sales volume, and price for profit generation.

The program output data were the values of price, cost price, sales volume, and profit
by product name according to the input value of the target profit.

The program was tested by calculating the Euclidean distance from set values, solving
separate subproblems using the Excel mathematical package, and comparing the values
with defined boundaries. For the computational experiments, the real data of a fast-food
restaurant (LLC WokiFoodTomsk) were used. Eight popular menu items were selected
(Table 2). The information received from the organization included the selling price, cost
price, and sales volume.

Table 2. Input data.

№ Product Selling Price Cost Price Sales
Volume Profit

1 Buckwheat noodles 100 19.1 153 12,377.7
2 Wheat noodles 100 15.29 234 19,822.14
3 Rice 100 12.025 280 24633
4 Rice spaghetti 100 23.94 131 9963.86
5 Cellophane noodles 100 27.77 153 11,051.19
6 Egg noodles 100 17.25 387 32,024.25
7 Pork tenderloin 70 21.08 147 7191.24
8 Beef 90 24.52 178 11,655.44

The factor tree, in the case of a three-level model, is presented in Figure 11. This figure
demonstrates the use of initial expert information (importance coefficients of profit accord-
ing to the product name and directions of change); the importance coefficients of price, cost
price, and sales volume for all products were equal to 0.5, 0.2, and 0.3, respectively.
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Table 3 present the results of solving the problem of profit generation, equal to RUB
160,000 (the initial value of total profit was RUB 128,718.82). The values of Euclidean
distance from set values represent the values close to zero. For comparison purposes, the
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problem was also solved using a mathematical package. Figure 12a display the value r
(depending on the parameter step α), which represents the absolute difference between the
value of profit by product name calculated with the help of the algorithm and that defined
using the Excel mathematical package. Figure 12b show the dependence of the difference
value r on parameter α for the price, cost price, and sales volume of the first item.

Table 3. The calculated values of factors when using relative importance coefficients and directions
of change (for the first level, α = 10−4; for the second level, α = 10−6).

Product Selling Price,
Rubles

Cost Price,
Rubles Sales Volume Profit,

Rubles e(x) d

Buckwheat noodles 109.625 15.25 158.775 14,984.465 10−8 2.8 × 10−5

Wheat noodles 126.048 4.871 249.629 30,249.2 9.96 × 10−9 10−5

Rice 85.175 17.955 288.895 19,419.47 9.99 × 10−9 1.6 × 10−4

Rice spaghetti 110.942 19.563 137.565 12,570.625 1.02 × 10−8 9.9 × 10−5

Cellophane noodles 136.211 13.286 174.726 21,478.25 1.01 × 10−8 1.3 × 10−5

Egg noodles 89.592 21.413 393.245 26,810.72 1.02 × 10−8 8.4 × 10−7

Pork tenderloin 90.648 12.821 159.389 12,404.77 10−8 6.8 × 10−5

Beef 122.978 11.329 197.786 22,082.5 1.01 × 10−8 7.5 × 10−5
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Let us also consider the solution to this problem while taking the constraints into
account. For the first four items, the lower boundary of cost price was equal to 10, while the
upper boundary of price was equal to 115; for the last four products, the upper boundary
of price was equal to 120, while the lower boundary of cost price was equal to 15. The
results of the solution are presented in Table 4. In this situation, the prices for items 2, 5,
and 8 and cost prices for items 2, 5, 7, and 8 (see Table 2 for numbering) were adjusted to
the boundary value. Thus, the coefficients of relative importance were corrected, and the
received values of change correlation are presented in Figure 13.

Table 4. The calculated value of factors, provided there are constraints.

Product Selling Price Cost Price Volume of Sales Profit

Buckwheat noodles 109.625 15.250 158.775 14,984.465
Wheat noodles 115 10 288.088 30,249.200

Rice 85.175 17.955 288.895 19,419.470
Rice spaghetti 110.942 19.563 137.565 12,570.625

Cellophane noodles 120 15 204.555 21,478.250
Egg noodles 89.592 21.413 393.245 26,810.720

Pork tenderloin 92.336 15 160.401 12,404.770
Beef 120 15 210.310 22,082.500
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When minimizing the sum of squares of factor changes, two characteristics were
defined: g(x), the sum of squares of factor changes; d, the absolute difference between the
received value of constraint function f (x) and set value y*.

Table 5 present the results of solving the task of generation of total profit, as well
as profit by product names, using the proposed algorithm and tools of the mathematical
package. By considering a multi-objective problem for the minimization of two parameters,
it is possible to conclude that, for the subproblem of the first level, the values of the two
factors were smaller than the solution received using the developed algorithm. For the
subproblem of the second level, the algorithm enabled a smaller value of the compliance
indicator with the set constraints, while the mathematical package provided function g(x).

Table 5. Results of solving the problem when minimizing the sum of squares of argument changes.

Subproblem
Solution with the Help of Program Solution with the Help of Excel Package

g(x) d g(x) d

Generation of total profit 122,314,059.014985 0.003995 122,315,034.395265 0.128719
Profit generation, buckwheat noodles 271.05273 2.9 × 10−5 270.8571151 6 × 10−3

Profit generation, wheat noodles 138.413805 4.8 × 10−5 138.3721408 3 × 10−4

Profit generation, rice 130.395605 1.5 × 10−4 130.3673111 5 × 10−4

Profit generation, rice spaghetti 346.375331 1.6 × 10−5 345.9028259 4.3 × 10−4

Profit generation, cellophane noodles 275.231678 8.8 × 10−5 274.8970648 2.3 × 10−4

Profit generation, egg noodles 63.420252 2.8 × 10−4 63.41656061 2 × 10−2

Profit generation, pork tenderloin 377.790356 10−4 377.1783217 3 × 10−4

Profit generation, beef 216.896854 1.4 × 10−4 216.7093108 4.6 × 10−4

The problem of profit generation was also solved using relative importance coefficients
with the help of a stochastic algorithm. The Student’s t-test was used to compare the average
sample value with the set value. A total of 50 experiments were conducted for calculations.
Thus, Figure 14 present the values of profit by product name with the step size equal to 10−4

(solving the problem of the first level). The problem solved using inverse calculations was
taken as the set value. Accordingly, the directions of change were established (Figure 11),
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which enabled the increase of the resultant value while minimizing the change in the initial
data (for profit by product name, price, and sales volume—positive direction of change;
for cost price—negative direction of change). Table 6 present the average values, sample
variance, and statistical values when solving the problem of the first level. With 49 degrees
of freedom and a level of significance of 0.001, the critical value was equal to 3.5. All the
calculated values of statistics were lower than the critical value; consequently, the null
hypothesis regarding the equality of the average sample value to the set value was not
rejected. A step reduction allowed for improving the convergence and decreasing variance.
Thus, when solving the subproblems of the second level, the step size was set to 10−7,
yielding a maximum variance of 1.44 × 10−5. Absolute values of the calculated statistical
data are presented in Figure 15. All values were lower than the critical value for a level of
significance of 0.1 (equal to 2.68). Hence, the null hypothesis regarding the equality of the
average value to the set value was not rejected.
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Table 6. Statistical values of Student′s t-test.

Factor

Profit by Name

Buckwheat
Noodles

Wheat
Noodles Rice Rice

Spaghetti
Cellophane

Noodles Egg Noodles Pork
Tenderloin Beef

Average value 13,941.89 26,078.17 27,760.93 11,527.87 173,07.59 35,151.90 10,319.21 17,912.45
Sample variance 1.54 4.44 3.21 1.56 3.10 2.91 3.34 2.58

Values received from
inverse calculations 13,941.76 26,078.38 27,761.12 11,527.92 17,307.43 35,152.37 10,319.36 17,911.68

Value of test statistics 0.745774 −0.70121 −0.74422 −0.29017 0.641834 −1.92211 −0.56969 3.387541
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4. Discussion

This article developed an algorithm for solving inverse hierarchical problems with
constraints. The algorithm differs from existing ones in its ability to solve hierarchical
inverse problems with constraints and the use of arguments in a few subproblems. The
algorithm was tested by splitting the problem into subproblems and calculating the metrics
of deviation from the set values and target functions while also comparing the received
results with the solution of subproblems using a mathematical package. Iterative algorithms
were used to solve the subproblems, enabling simpler realization, as well as ensuring the
possibility to check constraints at each iteration. Accordingly, the iteration formulas of
known algorithms were modified; specifically, the stochastic algorithm and the algorithm
of solving the problem by minimizing the sum of absolute values of arguments, and
procedures for checking compliance with constraints during and after completion of the
algorithm were added.

The accuracy of a solution is defined by the step size of the factor change; thus, the
results in Figure 12 testify that higher compliance with the solution using the classic method
was achieved using a smaller step size (with a step size equal to 10−7, the solution was
precise up to the fifth decimal place). The problem was also solved when considering the
constraints (Table 3); the obtained values corresponded to the admissible ones.

In the situation of minimizing the sum of squares of argument changes, the solution
was evaluated using two criteria: the value of the target function and compliance of the
solution with constraints. The results demonstrated in Table 4 show that the use of the
algorithm at the second level enabled higher compliance with the constraints, while the
solution using the mathematical package allowed defining the solution with a smaller
value of the target function.

The modified stochastic algorithm was used to determine the solution when using
the relative importance coefficients. The results displayed in Table 5 and Figure 15 speak
to the compliance of the results to the problem solved using the algorithm and inverse
calculations with established directions of change.

The novelty of the proposed iterative algorithms lies in the possibility of solving the
inverse problem for various types of functions, including nonlinear ones. When minimizing
the sum of absolute values of arguments, this was achieved by iteratively choosing the
argument to change. In the case of the stochastic algorithm, a correction based on the
derivative of the constraint function was used.

For the realization of the algorithm, an object-oriented architecture was developed,
which enabled the performance of flexible modification and software development. Fur-
thermore, this architecture ensures the stepwise solution of subproblems; at each stage, the
specialist uses the results of solving the previous subproblem to determine the input data
for solving the next subproblem. The created algorithm was applied to solving the problem
of profit generation to prove its applicability.

5. Conclusions

In this work, an algorithm for solving inverse hierarchical problems with constraints
was developed on the basis of the recursive traversal of a factor tree with a stepwise iterative
solution to the inverse problem. The problem solution included the passage of three layers,
for which a separate tree was initiated.

The results of solving the subproblems using a multiplicative model and a real case of
fast-food restaurant profit generation were presented.

The results of this work can be useful for decision-making by economic special-
ists as well as in the field of software development for informational support during
decision-making. The results can also be used in other fields for solving similar inverse
and optimization tasks.

Future work will aim at developing iterative algorithms for solving optimization prob-
lems such as inverse problems with few constraints and inequalities, for linear programming,
and for the creation of table models for informational support during decision making.
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