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Abstract: Lévy flight is a random walk mechanism which can make large jumps at local locations
with a high probability. The probability density distribution of Lévy flight was characterized by sharp
peaks, asymmetry, and trailing. Its movement pattern alternated between frequent short-distance
jumps and occasional long-distance jumps, which can jump out of local optimal and expand the
population search area. The metaheuristic algorithms are inspired by nature and applied to solve
NP-hard problems. Lévy flight is used as an operator in the cuckoo algorithm, monarch butterfly
optimization, and moth search algorithms. The superiority for the Lévy flight-based metaheuristic
algorithms has been demonstrated in many benchmark problems and various application areas. A
comprehensive survey of the Lévy flight-based metaheuristic algorithms is conducted in this paper.
The research includes the following sections: statistical analysis about Lévy flight, metaheuristic algo-
rithms with a Lévy flight operator, and classification of Lévy flight used in metaheuristic algorithms.
The future insights and development direction in the area of Lévy flight are also discussed.

Keywords: Lévy flight; metaheuristic algorithms; swarm optimization; Lévy distribution

MSC: 78M50; 80M50

1. Introduction

With the rapid growth of the size and complexity of optimization problems, traditional
optimization algorithms are becoming more uncertain for solving these problems [1,2]. In-
spired by nature, metaheuristic algorithms [3–5] have proven to be a viable solution to this
challenge for solving NP-hard problems, such as flow shop scheduling [6], economic load
dispatch [7], signal processing [8], picture processing [9–12], feature selection [13,14], path
planning [15,16], information processing [17–20], neural networks [21,22], shape design [23],
object extraction [24], saliency detection and classification [22,25,26], cyber–physical social
systems [27], facial micro-expression recognition [28], engineering optimization [29–31],
big data and large-scale optimization [32], multi-objective and many-objective optimiza-
tion [33–37], and the knapsack problem [38,39]. Some of the well-known methods in
this area are genetic algorithms (GAs) [40,41], particle swarm optimization (PSO) [42–47],
differential evolution (DE) [48–52], monarch butterfly optimization (MBO) [13,53–56], ar-
tificial bee colonies (ABCs) [57,58], elephant herding optimization (EHO) [59], harmony
search (HS) [60–63], ant colony optimization (ACO) [64], cuckoo search (CS) [16,65–68],
krill herd (KH) [69–73], earthworm optimization algorithm (EWA) [74], firefly algorithms
(FAs) [75,76], monkey algorithms (MAs) [77,78], moth flame optimization (MFA) [79],
biogeography-based optimization (BBO) [80,81], bat algorithms (BAs) [82], wolf pack algo-
rithm (WPA) [83], and grey wolf optimization (GWO) [84].

Based on the random walk behavior of natural biological factors, a new flight mech-
anism, namely Lévy flight, was proposed by the French mathematician Paul Pierre Lévy
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in the 1930s. The probability density distribution of Lévy flight was characterized by
sharp peaks, asymmetry, and trailing. Its movement pattern alternated between frequent
short-distance jumps and occasional long-distance jumps, which can jump out of local
optimal and expand the population search area. Because of the above characteristics of
Lévy flight, it is widely used in various metaheuristic algorithms, such as cuckoo search,
monarch butterfly optimization, moth search, particle swarm optimization, differential
evolution, elephant herding optimization, etc. In these algorithms, Lévy flight essentially
provides a random walk, while the random step length is drawn from a Lévy distribution,
which is more efficient in exploring the search space as its step length is much longer
in the long run. The Lévy flight originating from the Lévy distribution is an impactful
random walk model on undiscovered and higher-dimensional search space, which expands
effectively the search area of the individual. In this paper, a comprehensive review for the
Lévy flight-based metaheuristic algorithms is presented

The remainder of this paper is organized as follows. The walk behavior of Lévy flight
is detailed in Section 2. Classification of Lévy flight used in metaheuristic algorithms is
presented in Section 3. Section 4 presents a conclusion and suggestions for future work.

2. Lévy Flight
2.1. Lévy Flight-Based Metaheuristic Algorithms Research Studies

The concept of Lévy flight has been around for a long time [85,86]. Thirteen thousand
Lévy flight-related studies have been published in journals/dissertations/conferences
up to 23 April 2022 since Lévy flight was proposed in 1981. Figure 1 gives a temporal
histogram of the collected published articles. The collected articles are from a wide variety
of journals covering the research fields of mathematics, computer sciences, mechanics,
physics, engineering, automation control systems, thermodynamics, chemistry, business
economics, and mathematical computational biology, which indicates the wide audience of
Lévy flight. Among these 3134 papers, 1761 papers were published in the mathematics field,
accounting for 56.190%; 1221 papers were published in the physics field, accounting for
38.960%; 1117 papers were published in the computer sciences field, accounting for 35.641%;
972 papers were published in the engineering field, accounting for 31.015%; 828 papers
were published in the mechanics field, accounting for 26.420%; 433 papers were published
in the thermodynamics field, accounting for 13.816%; 413 papers were published in the
chemistry field, accounting for 13.178%; 365 papers were published in the automation
control systems field, accounting for 11.646%; 327 papers were published in the business
economics field, accounting for 10.434%; 267 papers were published in the mathematical
computational biology field, accounting for 8.519%, as shown in Figures 2 and 3.

This paper systematically summarized and studied Lévy flight-based metaheuristic
algorithms. The traditional metaheuristic algorithm combines Lévy flight mechanisms to
give itself some optimization ability, thereby achieving better optimization behavior. From
the various papers collected for this study, 159 representative papers from 1 January 2006
to 20 March 2020 are selected and used for our survey, as shown in Figure 4. Figure 5
shows the classification proportions of Lévy flight methods used in different metaheuristic
algorithms. Figure 4 shows that this paper divides the Lévy flight used in metaheuristic
algorithms into 10 categories. Lévy flight is the most frequently used in the variants of the
cuckoo algorithm, because Lévy flight has been used to update the cuckoo position in the
basic CS algorithm. The methods of Lévy flight used in neural networks and evolutionary
computation ratios are used less than 10%. Furthermore, the methods of Lévy flight used
in swarm intelligence and cuckoo search having Lévy flight relatively frequently, with its
proportion exceeding 75%.
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2.2. Lévy Flight

Lévy flight is a random walk mechanism proposed by the French mathematician Paul
Pierre Lévy in the 1930s, whose walk steps meet the stable heavy-tail distribution which
can make large jumps at local locations with a high probability. The probability density
distribution of Lévy flight was characterized by sharp peaks, asymmetry, and trailing.
Its movement pattern alternated between frequent short-distance jumps and occasional
long-distance jumps, which can jump out of local optimal and expand the population
search area. Many insects and animals, such as flies and reindeer, follow a trajectory similar
to Lévy flight in nature. Figure 6 shows the movement trajectory of Lévy flight for 50, 100,
and 1000 times in two-dimensional space, respectively.
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Lévy flight is a random walk process with the following characteristics:

1. Self-similarity and random fractal;
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2. Power law progressive, namely ‘heavy-tailed’;
3. Infinite mean and infinite variance;
4. Lévy flight with the generalized central limit theorem, attraction will occur when the

evolutionary result is determined by the sum of a large number of random numbers.

The Lévy stable distribution can be expressed by four parameters: characteristic index
α, displacement parameter µ, and scale σ and sleekness parameter β. The Fourier transform
of characteristic function is summarized as follows.

pα,β(k; µ, σ) = F
{

pα,β(k; µ, σ)
}
≡

∞∫
−∞

dxeikx pα,β(k; µ, σ)

= exp
[
iuk− σα|k|α

(
1− iβ k

|k|v(k, α)
)] (1)

v(k, α) =

{
tan πα

2 , i f α 6= 1, 0 < α < 2
− 2

π ln |k|, i f α = 1
(2)

The probability density function of Lévy distribution has no fixed format, which
changes with parameter changes. In Lévy distribution, when α = 1, 2, β = 1, the basic
function can be expressed as follows.

p1/2.1(x) =

{
1√
2π

x−3/2 exp
(
− 1

2x

)
, x ≥ 0

0, x < 0
(3)

3. Classification of Lévy Flight Used in Intelligent Optimization Algorithms

Lévy flight is used in metaheuristic algorithms to solve different optimization prob-
lems. This is divided into four groups: metaheuristic algorithms having a Lévy flight
operator, Lévy flight used in swarm intelligence, Lévy flight used in evolutionary computa-
tion, and Lévy flight used in neural networks.

3.1. Metaheuristic Algorithms Having Lévy Flight Operator

As an operator of metaheuristic algorithms, Lévy flight can effectively improve the per-
formance of the algorithm. There are three kinds of metaheuristic algorithms that include
a Lévy flight operator: the cuckoo algorithm, monarch butterfly optimization, and moth
search. There are 373 papers included in the cuckoo search optimization algorithm. There
are 76 and 16 papers included in the monarch butterfly and the moth search optimization
algorithms, respectively. The classification of metaheuristic algorithms with Lévy flight is
shown in Figure 7 and Table 1.

3.1.1. Cuckoo Search Having Lévy Flight

The CS algorithm was proposed by Yang and Deb [87] in 2009. It is a swarm intelligence
algorithm inspired by the obligate brood parasitism of some cuckoo species that have a
specific way of laying their eggs in the nests of other host birds. The algorithm is based on
the obligate brood parasitic behavior found in some cuckoo nests by combining a model
of this behavior with the principles of Lévy flight, which is a type of random walk with
a heavy tail. In CS, cuckoo individual landscape using a series of straight flight paths is
punctuated by a sudden 90◦ turn, leading to a Lévy flight style intermittent scale free search
pattern. The Lévy flight essentially provides a random walk, while the random step length
is drawn from a Lévy distribution, which is more efficient in exploring the search space as
its step length is much longer in the long run.
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Table 1. The classification of metaheuristic algorithms with Lévy flight.

Algorithms The Literature

Cuckoo search having Lévy flight [16,29,67,68,87–94]
Monarch butterfly optimization
Algorithm having Lévy flight [55,95,96]

Moth search having Lévy flight [38,97–111]
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Subsequently, a number of CS variants have been developed to improve the perfor-
mance of the CS algorithm. Yang and Deb [88] proposed a modified CS to solve practical
engineering problems in 2010. Subsequently, Yang et al. [89] reviewed the fundamental
ideas of cuckoo search and the latest developments, as well as their applications, and
discuss the essence of algorithms and their link to self-organizing systems in 2013. Yang
et al. [90] also formulated a new cuckoo search for multi-objective optimization to validate
a set of multi-objective test functions, and then applied it for solving structural design
problems. The standard CS is extended by using the successful features of the cuckoo host
co-evolution with multiple interacting species by Yang et al. [92] in 2017. The proposed
method, the multi-species cuckoo search (MSCS), intends to mimic the co-evolution among
multiple cuckoo species that compete for the survival of the fittest.

Li et al. [29] enhanced the exploitation ability of the cuckoo search algorithm by using
a knowledge learning strategy. A new CS algorithm was developed by Gandomi et al. [112]
to solve truss optimization problems. A novel modified cuckoo search algorithm (NMCSA)
is proposed by Yang et al. [91] to solve optimal placement of actuators for active vibration
control. Majumder et al. [113] propose a hybrid discrete cuckoo search (HDCS) algorithm to
minimize makespan for scheduling problems, which transform a continuous position into
a discrete schedule for generating a new solution. A dynamic CS with Taguchi opposition-
based search (TOB-DCS) is proposed by Li et al. [67]. Dynamic evaluation and Taguchi
opposition-based search are adopted in TOB-DCS, which reduces the number of function
evaluations and accelerates the convergence property. Furthermore, Li et al. [16] proposed a
new CS dynamic step size cuckoo search algorithm (DMQL-CS) extended with Q-Learning
step size and genetic operator. Step size control strategy is used to examine the individual
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multi-step evolution effect, and the Q function value is calculated to learn the individual
optimal step size.

Bhandari et al. [114] introduced the cuckoo search algorithm into a novel optimized
brightness preserving the histogram equalization approach to preserve the mean brightness.
The proposed method utilizes plateau limits to modify the histogram of the image. The
sub-histograms are equalized and modified by obtaining plateau limits with the cuckoo
search optimization technique. A knowledge-based cuckoo search algorithm (KCSA) is
proposed by Cao et al. [93] for the scheduling field. The algorithm is used to build a self-
adaptive parameter control scheme of the CS algorithm in an offline training phase. The
suitable parameters are selected by proposing a knowledge base for ensuring the desired
diversification and intensification of population in each iteration, which is used to generate
new solutions by probability sampling in a designed mutation phase. Cao et al. [94] also
presented a cuckoo search algorithm with reinforcement learning and surrogate modeling
for semiconductor final testing scheduling problems with multi-resource constraints. A
surrogate model is employed to reduce computational complexity.

3.1.2. Monarch Butterfly Optimization Having Lévy Flight

Monarch butterfly optimization (MBO) [55] was presented by Wang et al., in 2019,
which is a new kind of nature-inspired metaheuristic algorithm by simplifying and idealiz-
ing the migration of monarch butterflies. All the monarch butterfly individuals are located
in two distinct lands, and the positions of the monarch butterflies are updated in two
ways: the offspring are generated by a migration operator and other butterflies by means
of a butterfly adjusting operator by tuning the positions. Based on this, the optimization
process consists of two operators: subpopulation 1 and subpopulation 2. The information is
interchanged among the individuals of subpopulation 1 and subpopulation 2 by applying
the migration operator. The butterfly adjusting operator delivers the information of the best
individual to the next generation by Lévy flight. The step is calculated by implementing
the Lévy flight, which can make large jumps at local locations with a high probability. The
Lévy flight originating from the Lévy distribution is an impactful random walk model on
undiscovered and higher-dimensional search space, which expanded effectively the search
area of the individual.

Subsequently, Kim et al. [95] presented an improved MBO to solve an unequal area
facility layout problem, in which search performance of MBO is accelerated by using a slic-
ing tree representation to form a layout structure as well as greedy acceptance. Meaningful
results are obtained from a set of well-known instances. The proposed algorithm provided
the best solutions within a comparable amount of time.

A computational methodology based on MBO is provided by Kumar et al. [96] to solve
the cost-based unit commitment (CBUC) problems, in which the binary variables of CBUC
problems are handled by modifying the continuous-time nature of MBO. The experiment
comparative analysis shows the proposed method is more efficient in terms of execution
time and operating costs in relation to other techniques. A hybrid model based on the
multivariate fuzzy time series model and the MBO (MVFTS-MBO) are been considered to
predict the GDP of India by Jha et al. [115]. In the case of keeping the number of intervals
constant, the MBO is used to determine the optimal length of intervals in the universe
of discourse (UoD). The outcome obtained shows that the MVFTS-MBO outperformed
the existing methods for the prediction of India’s GDP. Nandhini et al. [116] proposed a
binary solution encoding scheme by using an improved crossover-based MBO (ICRMBO)
to minimize and optimize the parameters in the Convolutional Neural Network (CNN).
Two convolutional architectures, namely inception V3 and Vgg16, were optimized by using
the ICRMBO, which increased the classification accuracy.

Masoudi et al. [117] presented an improved MBO algorithm, namely IMBO, to develop
the optimal threshold values using a between-classes Otsu variance. In the IMBO algorithm,
migration and adjusting operators are enhanced by using a new adaptive crossover rate
to apply in image segmentation problems. Migration operations and butterfly adjusting
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operations are updated individuals in MBO. When solving engineering problems and global
numerical optimization, the IMBO can outperform many state-of-the-art optimization
techniques. Feng et al. [118] designed a comprehensive review of the MBO algorithm,
including its modifications, hybridizations, variants, applications, and further research
directions. In order to improve the threshold accuracy of segmentation and the effectiveness,
the MBO algorithm for image segmentation with multiple threshold values is presented by
Dorgham et al. [119], in which the MBO is applied for the image segmentation of multiple
threshold values.

Bai et al. [120] designed an effective leukemia detection approach by using the Taylor
monarch butterfly optimization-based support vector machine with integrated Taylor series
and MBO. By extracting the features, the experiment analysis shows that the performance of
classification is increased with less training time. Ates et al. [53] proposed a modified MBO
algorithm (M2BO) by modeling stochastic processes using different random distribution
functions. The performance of the M2BO is analyzed and optimized the feedback gain
matrix for the control of the three-degree-of-freedom hover system. The results show that
the M2BO increased the performance without changing the basic philosophy of algorithms
by modeling stochastic processes. Alweshah et al. [13] proposed a feature selection wrapper
method to subject k-nearest neighbor classification using the monarch MBO algorithm.
Two modifications are performed in the proposed method. Feature selection is improved
by involving the utilization of an enhanced crossover operator, and convergence speed is
improved by integrating the Lévy flight distribution into the MBO. The results showed that
the proposed method is superior compared with the other four metaheuristic algorithms.
Yi et al. [56] proposed a new quantum-inspired MBO algorithm (QMBO), in which a certain
number of the worst butterflies are updated by quantum operators. The optimal path
for uninhabited combat air vehicles (UCAV) path planning navigation problems can be
obtained by the proposed QMBO algorithm.

3.1.3. Moth Search Having Lévy Flight

Moth search (MS) [97] is a new kind of metaheuristic algorithm that was proposed
by Wang, inspired by the phototaxis and Lévy flight of the moths in 2009. In MS, the best
moth individual is viewed as the light source. Some moths that are close to the fittest one
always display an inclination to fly around their own positions in the form of Lévy flight.
The MS algorithm has been applied successfully to diverse fields since it was proposed.
Feng et al. [38] introduced the Lévy flight operator and the fly straightly operator into
the MS algorithm. Nine types of new mutation operator are specially devised to replace
the Lévy flight operator. This method is used to solve the discounted (0–1) knapsack
(DKP) problems. Strumberger et al. [102] hybridized the MS algorithm with artificial bee
colony metaheuristics. In order to prevent premature convergence due to Lévy flight,
Strumberger et al. [101] introduced a third search equation in the subpopulation to expend
the search space. Then, Strumberger et al. [99] presented a hybrid recent swarm intelligence
moth search algorithm to solve localization problems in wireless sensor networks. The
geographical coordinates of each sensor node with an unknown position that is randomly
deployed are found by using the improved algorithm.

Elaziz et al. [111] proposed an alternative method based on the improvement of the MS
using the Differential Evolution (DE) to solve cloud task scheduling problems. This method
aims to minimize makespan that required scheduling a number of tasks on different Virtual
Machines (VMs). To improve the diversity of the MS and to avoid it from sticking in the local
point, Fathy et al. [110] developed an enhanced MS with a disruptor operator (DO). This
method is employed to identify the optimal parameters of Triple-Junction (TJS) photovoltaic
panel for different operating conditions. Feng et al. [109] applied an improved MS algorithm
to solve discrete optimization problems, in which a transfer function is charged to map a
continuous search space to a discrete search space. Twelve transfer functions divided into
three families are combined with MS. Twelve discrete version MS algorithms are proposed
to solve set-union knapsack problems (SUKP). The transfer function effectively improved
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the quality of solutions and convergence rates. Feng et al. [107] considered an enhanced
MS for solving SUKP, in which an enhanced interaction operator (EIO) instead of Lévy
flight is introduced into the global harmony search. Feng et al. [108] proposed an improved
MS based on self-learning (SLMS) to solve the 0–1 multidimensional knapsack problem
(MKP) with many diverse applications. In SLMS, a self-learning flight straightly operator is
introduced to make each individual learn from any one better than itself, not just the global
best individual.

Hussein et al. [105] used a new alternative machine learning method that combined
the random vector functional link network (RVFL) and MS to improve the performance
of the RVFL by using optimal features selection. This method is applied to predict the
missing values of total algal count during water-quality monitoring of surface waters. Singh
et al. [103] introduced a newly developed MS technique to solve the complex distributed
energy resources (DER) integration problems, which minimized the cost of annual energy
loss and node voltage deviations over multiple load levels.

Han et al. [106] proposed a new hybrid MS method (MSFWA) that introduced explo-
sion and mutation operators into MS for solving constrained engineering optimization
problems. MSFWA not only preserved the advantages of fast convergence, but also en-
hanced exploitation and exploration capability. Gokuldhev et al. [104] introduced a hybrid
optimal task-scheduling algorithm with MS and the flower pollination algorithm (FPA),
which chose an optimal solution for proper task scheduling in the cloud. Sun et al. [98]
proposed an optimal parameter estimation method for the undetermined parameters in
proton exchange membrane fuel cells by using a novel version that minimized the total of
the squared deviations (TSD) between the output voltage and the experimental data.

3.2. Lévy Flight Used in Swarm Intelligence

Lévy flight as an operator effectively improved the performance of metaheuristic algo-
rithms. Meanwhile, Lévy flight is also widely used in swarm intelligence to solve different
optimization problems. Lévy flight is used in twelve swarm intelligence algorithms: Lévy
flight used in the particle swarm optimization algorithm, Lévy flight used in the artificial
bat algorithm, Lévy flight used in the bee colony algorithm, Lévy flight used in the whale
optimization algorithm, Lévy flight used in the moth–flame algorithm, Lévy flight used in
the salp swarm algorithm, Lévy flight used in the firefly algorithm, Lévy flight used in the
elephant herding optimization algorithm, Lévy flight used in the sparrow search algorithm,
Lévy flight used in the krill herd algorithm, Lévy flight used in the grey wolf optimization
algorithm, and Lévy flight used in the ant colony optimization algorithm. The classification
of Lévy flight used in swarm intelligence is shown in Figure 8 and Table 2.

Table 2. The classification of swarm intelligence with Lévy flight.

Algorithms The Literature

Lévy flight used in particle swarm optimization algorithm [25,46,47,121–135]
Lévy flight used in artificial bat algorithm [136–140]
Lévy flight used in bee colony algorithm [57,58,141–153]
Lévy flight used in whale optimization algorithm [154–160]
Lévy flight used in moth-flame algorithm [79,161–165]
Lévy flight used in salp swarm algorithm [31,166–168]
Lévy flight used in firefly algorithm [75,76,169]
Lévy flight used in elephant herding optimization algorithm [170–172]
Lévy flight used in sparrow search algorithm [173,174]
Lévy flight used in krill herd algorithm [175,176]
Lévy flight grey wolf optimization algorithm [84,177–182]
Lévy flight used in ant colony optimization algorithm [183–189]
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3.2.1. Lévy flight Used in Particle Swarm Optimization Algorithm

Bousmaha et al. [25] presented a new training method based on hybrid particle swarm
optimization (PSO) with multi-verse optimization based on Lévy flight (PLMVO), which
can avoid premature convergence and can achieve a better balance between exploration and
exploitation. PLMVO is utilized to search better solution space for proving its efficiency in the
trapping in local minima problems. In order to solve the high-dimensional problems poorly
for quantum-behaved particle swarm optimization (QPSO), Liu et al. [121] introduced two
strategies, Lévy flight and straight flight (SF), into QPSO, named LSFQPSO. The LSFQPSO
showed good performance for solving engineering design optimization problems.

Haklı et al. [122] presented an improved PSO algorithm combined with Lévy flight
(PSOLF). The particle is redistributed in the search space with the Lévy flight method
when the limit value determined is exceeded by a particle, which improved global search
capability. Jensi et al. [123] introduced Lévy flight into the PSO namely PSOLF for updating
particle velocity. The results show that the PSOLF have better performance and higher
convergence rates than the standard PSO algorithm. Chegini et al. [124] introduced a
new hybrid method called PSOSCALF that combined with position updating equations
in the sine–cosine algorithm (SCA) and the Lévy flight approach. More effective searches
occurred in the search space by using Lévy flight with large jumps. Zhang et al. [125]
proposed a hybrid discrete particle swarm optimization (DPSO) algorithm with Lévy flight
to establish an optimized model for the multiple-input and multiple-output (MIMO) radar
task scheduling.

Bejarbaneh et al. [47] used a novel hybrid PSO algorithm that combined the sine–
cosine algorithm (SCA) and Lévy flight to propose two different designs of a robust control
system for the nonlinear model. The proposed method not only gave stunning time–
domain performances but also showed higher robustness in the presence of disturbances
and parametric uncertainties. Chen et al. [126] proposed a photovoltaic maximum power
tracking (MPPT) control algorithm with Lévy flight to change the formula of particles.
The characteristics of short-step and occasionally long-step jump are used to improve
the diversity of particles in the algorithm population, which can effectively improve the
dynamic quality of the photovoltaic power generation system and the maximum power
tracking efficiency under uncertain environments. Habib et al. [127] presented an improved
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combinational algorithm based on the integration of Lévy flight randomization and multi-
objective particle swarm optimization (MOPSO-Lévy). MOPSO-Lévy has achieved superior
performance compared with other multi-objective algorithms.

Luan et al. [46] presented an improved quantum-behaved particle swarm optimization
algorithm (LQPSO), which established a class of fuzzy portfolio models with transaction
costs and background risk in real dealing processes. The Lévy flight strategy and the
contraction–expansion coefficient with nonlinear structure are taken into account for en-
hancing exploration ability in the LQPSO algorithm. Motamarri et al. [128] proposed a
velocity of particle swarm optimization-based Lévy flight (VPSO-LF) for global maximum
power point tracking (MPPT) of the photovoltaic (PV) system under partial shading con-
ditions (PSO). Tracking time is less to reach the global peak of PV array when verified
with VPSO-LF. An efficient hybrid multi-objective PSO algorithm with particle filter and
Lévy flight (PLMEAPS) is developed to find feasible solutions, which benefited from the
synergy of decomposed multi-objective evolutionary algorithms (MOEA/D) and PSO
algorithms [129].

Charin et al. [130] proposed a hybrid PSO algorithm(LPSO) integrated Lévy flight
and particle swarm optimization, which is applied to track the maximum power point
of photovoltaic (PV) systems under partial shading conditions and to extract the global
maximum power point (GMPP). Dash et al. [131] proposed an efficient hybrid optimiza-
tion algorithm based on sine–cosine and particle swarm optimization with Lévy flight
(PSOLVSC). The PSOLVSC replaced neural networks with deep architecture for handling
big and time-varying databases. Lu et al. [46] presented an improved quantum-behaved
particle swarm optimization algorithm (LQPSO), in which Lévy flight and the contraction–
expansion coefficient with nonlinear structure are taken into account. Kalakanti et al. [132]
designed a hybrid approach using the PSO algorithm and the firefly algorithm (FFA) with
a Lévy flight to solve the electric vehicle charging scheduling (EVCS). The EVCS has been
evaluated to find the best hybrid variant that validates the effectiveness on both synthetic
and real-world transportation networks. Yang et al. [133] proposed a fault recovery re-
configuration strategy for DC distribution networks based on a hybrid PSO algorithm
introducing Lévy flight. Chegini et al. [134] proposed a new hybrid approach used the
relatively new swarm decomposition (SWD) method and the optimized compensation
distance evaluation technique (OCDET) to enhance the signal processing stage. The hybrid
optimization algorithm combined PSO with the sine–cosine algorithm (SCA), having Lévy
flight to improve the support vector machine (SVM) classifier. Mukherjee et al. [135] de-
signed a new Lévy flight-based adaptive PSO technique to solve complex mathematical
benchmark functions and practical electrical engineering problems.

3.2.2. Lévy Flight Used in Bat Algorithm

Boudjemaa et al. [136] proposed an improved version of the classical bat algorithm
(BA), named the fractional Lévy flight bat algorithm (FLFBA). In the FLFBA, a local search
procedure based on Lévy flight is used to update the velocity, which helped individuals to
escape from local optimal values. Wang et al. [137] developed an improved bat algorithm
based on Lévy flight and adjustment factors, in which dynamically decreasing inertia
weight is added to update the velocity. The global search ability is improved because of
the search strategy of Lévy flight. Wang et al. [137] proposed an improved bat algorithm
with Lévy flight and inertial weight, in which the Lévy flight changed the flight direction
of the bat individuals, and linear inertial weights prevented premature convergence of
the algorithm. Saji et al. [140] proposed a new discrete bat algorithm to solve the famous
traveling salesman problem. Random walks based on Lévy flight are combined with bat
movements to avoid getting stuck in local minima and to enhance the searching strategy.

3.2.3. Lévy Flight Used in Artificial Bee Colony

Hajizadeh et al. [139] proposed a new hybrid multi-objective algorithm constructed
multi-objective artificial bee colony algorithms (ABC) and Lévy flight to deal with the
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deployment problem. Ghafarzadeh et al. [141] proposed an improved ABC-based Lévy dis-
tribution random walk to promote the ABC algorithm for solving the number of functional
evaluations and for obtaining better convergence speeds. Aydoğdu et al. [142] proposed
an enhanced artificial ABC, adding Lévy flight distribution to formulate optimum design
problems of steel space frames, which demonstrated its robustness and efficiency. Chen
et al. [143] presented an improved artificial bee colony algorithm, namely an artificial
bee colony algorithm based on an escaped foraging strategy (EFSABC), in which Lévy
flight and search strategies are introduced. The results show that the EFSABC algorithm
outperformed the traditional artificial bee colony algorithm in all aspects. Dong et al. [144]
designed an improved ABC algorithm (DSM-ABC) combined with a dual-search mech-
anism containing differential self-perturbation and Lévy flight. DSM-ABC is applied to
three classical structural design problems, including gear train design, cantilever beam
design, and three-bar truss design. Jadon et al. [145] proposed a modified ABC algorithm
named EcABC that composed two local search strategies, Lévy flight random walk and
classical unidimensional search. In order to find more promising solutions in the territory
of the best individual, EcABC is applied on the best individual of each iteration.

Liu et al. [146] designed a new algorithm based on a dynamic penalty function and
Lévy flight (DPLABC), in which four modifications are put forward. Lévy flight with a
logistic map is applied into the employed bee phase, and the dynamic penalty method
is used to handle the constraints. The results indicated that DPLABC is competitive
with other algorithms for solving constrained optimization problems. Panda et al. [147]
proposed a modified ABC algorithm with Lévy flight swarm intelligence, namely an
artificial bee colony Lévy flight stochastic walk (ABC-LFSW). ABC-LFSW is applied to solve
asset assignment problems based on signal-to-noise ratio (SNR) optimization networks
with quality of service constraints. Rambabu et al. [148] proposed a hybrid artificial bee
colony and a monarchy butterfly optimization algorithm (HABC-MBOA)-based cluster
head selection scheme for the predominant selection of cluster heads under clustering
processes. In HABC-MBOA, the employee bee phase of ABC is replaced by a mutating
butterfly adjusting operator for preventing earlier trapping of solutions into a local optimal
point. Shan et al. [149] developed a self-adaptive hybrid enhanced ABC algorithm that
introduced these modifications: Lévy flight initialization, self-adaptive mechanism, and
chaotic opposition-based learning (OBL) for scout bee step.

Sharma et al. [150] proposed an improved ABC algorithm named as the opposition-
based Lévy flight ABC algorithm, based on Lévy flight random walk and incorporated
with the ABC algorithm along with an opposition-based learning strategy. The experiment
results showed that the proposed method outperformed the basic ABC and other variants.
Sharma et al. [151] developed an improved ABC algorithm integrated with the Lévy flight
search strategy named as the Lévy flight ABC algorithm (LFABC), in which the step sizes
are automatically adjusted and the global search capability can be achieved by tuning the
Lévy flight parameters. Yahya et al. [152] proposed a multi-objective artificial bee colony
(MOABC) with Lévy flight to determine the optimum construction site layout, which is
intended to optimize the dynamic layout of an unequal area under two objective functions.

Yonar et al. [57] proposed an enhanced ABC algorithm with Lévy flight (LABC) to
improve the exploitation ability of the ABC algorithm for the parameter estimation of
3-p distribution. The results, compared with other well-known metaheuristic algorithms,
show that the LABC gave more accurate maximum likelihood (ML) estimations than other
metaheuristic algorithms. Zhou et al. [58] developed a multi-objective hybrid artificial
bee colony (MOHABC) algorithm which is applied in service composition and optimal
selection (SCOS) for cloud manufacturing. The concept of Pareto dominance is used to
direct the searching of a bee swarm and in MOHABC. At the same time, a cuckoo search
with Lévy flight is introduced to maintain the diversity of population.
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3.2.4. Lévy Flight Used in Whale Optimization Algorithm

Abd Elaziz et al. [154] proposed a developed method named the multi-leader whale
optimization algorithm (MLWOA) that aimed to avoid the limitations of the traditional
whale optimization algorithm (WOA) during the searching process. MLWOA was achieved
by using the different tools with WOA, such as Lévy flight, self-learning strategy, multi-
leader method, and memory mechanism, which enhanced the robustness of the algorithm.
Deepa et al. [155] proposed an improved WOA with Lévy flight mechanism (LWOA)
for embedding coverage optimization wireless sensor networks (WSN), which can allow
trapping of the local optima to balance the exploration ability of WOA. Lai et al. [156]
developed an enhanced WOA that incorporated Lévy flight and distribution (LFWOA) to
increase productivity at the Klang Gate Dam (KGD).

A novel global exploration whale optimization algorithm (EGE-WOA) was developed
by Liu et al. [157]. Lévy flight is introduced to enhance its global exploration efficiency
for unconstrained optimization problems and constrained optimization problems in EGE-
WOA. The EGE-WOA can indeed effectively improve the global exploration efficiency
of the WOA. Liu et al. [158] designed a hybrid WOA with Lévy flight and differential
evolution (WOA-LFDE) to solve job shop scheduling problems. The convergence of WOA
and the abilities of global search are enhanced by changing the expression of Lévy flight
and the DE search strategy.

Yan et al. [159] proposed a hybrid WOA called the LI-LWOA, based on the Lévy
flight strategy (LWOA) and lateral inhibition (LI) to solve the underwater image matching
problem in an unmanned underwater vehicle (UUV) vision system. The Lévy flight strategy
can expand the search space to escape from local extremes in LI-LWOA. Subsequently, Yan
et al. [160] proposed an enhanced whale optimization algorithm which added the Lévy
flight strategy and the ranking-based mutation operator, which realized complementary
advantages to balance exploration and exploitation.

3.2.5. Lévy Flight Used in Moth–Flame Algorithm

Abu Khurmaa et al. [79] proposed an enhanced moth–flame optimization (MFO)
algorithm within a wrapper feature selection framework, which aims to improve the classi-
fication tasks in medical applications. The proposed modification strategy is based on two
stages of enhancement such as the Lévy flight operator and binary variants. Bandopad-
hyay et al. [161] developed an improved metaheuristic optimization method named the
hybrid multi-objective moth flame optimization (HMOMFO) that integrated the particle
swarm optimization (PSO) technique and the Lévy flight method. The aim of HMOMFO is
to enhance the searching and exploitation capabilities. Khurma et al. [162] proposed an
effective metaheuristic approach that integrated the Lévy flight and evolutionary selection
operators into the MFO to solve the feature selection problem for medical applications.
The exploratory behavior of the MFO and mitigating the stagnation in local minim are
enhanced by using the Lévy flight operator.

To establish a data-driven model for the residual capacity estimation, Ni et al. [163]
proposed an improved moth–flame optimization in which the adaptive weight and Lévy
flight are introduced to the MFO to prevent the local optimal value. Rahman et al. [164]
proposed three new metaheuristic algorithms such as DE with different mutation strategy
variation, MFO, and Lévy flight to optimize the trade-off between the total cost of tardiness
and batch delivery. The proposed algorithm is validated on a set of distribution problems
with sequence dependent setup time for multiple customers in flow shop environments.
Suja et al. [165] developed a Lévy flight moth–flame optimization (LFMFO) to improve the
performance and to mitigate the power quality (PQ) issues in the smart grid (SG) system.
Lévy flight is utilized in the SG system to avoid the local optima and to improve the global
search of MFO.
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3.2.6. Lévy Flight Used in Salp Swarm Algorithm

Nautiyal et al. [31] proposed an improved salp swarm algorithm (SSA) based on
Gaussian, Cauchy, and Lévy flight mutation schemes, in which the Gaussian mutation
is used to enhance the neighborhood-informed ability, the Cauchy mutation is used to
increase the global search ability, and the Lévy flight mutation is used to increase the
randomness of the search. Ren et al. [166] designed an improved SSA integrated with
adaptive weight and the Lévy flight mechanism. The solution space is explored by using
random walk of Lévy flight, which enhanced and well adjusted the global exploratory
and local exploitation capabilities of the algorithm. Nasri et al. [167] presented a new
metaheuristic algorithm called the Lévy flight trajectory-based salp swarm algorithm
(LSSA) to estimate model parameters, double diode (DD), and estimated single diode (SD)
for simulation and optimization of photovoltaic (PV) systems. The Lévy flight trajectory
characteristic of long jump steps enhanced population diversity in LSSA. The results show
that LSSA offered very competitive results for estimating PV parameters. Zhang et al. [168]
established an improved SSA based on Lévy flight and the sine–cosine operator (LSC-SSA).
The solution space is searched with the Lévy flight mechanism using the route of short
walks combined with long jumps, which can effectively improve the global exploration
capability of the algorithm.

3.2.7. Lévy Flight Used in Firefly Algorithm

Peng et al. [75] established a new light firefly algorithm, namely Lévy flight (FAFA),
to obtain the optimal thresholds for multilevel thresholding image segmentation by maxi-
mizing the Rényi entropy. An adaptive parameter strategy based on Lévy flight is used
to improve the performance of the FAFA. Wu [76] provided an adaptive logarithmic spi-
ral Lévy firefly algorithm (AD-IFA) to address the inadequacy of the Lévy flight firefly
algorithm. Exploration and exploitation modes are adaptively switched during the search
process. Yang et al. [169] intended to formulate a new metaheuristic algorithm based on
Lévy flight via FA. The results suggest that the Lévy flight firefly algorithm is superior to
other metaheuristic algorithms. Peng et al. [75] proposed a new FA named the Lévy flight
firefly algorithm (FAFA) to obtain optimal thresholds for multilevel thresholding image
segmentation by maximizing the Rényi entropy.

3.2.8. Lévy Flight Used in Elephant Herding Optimization Algorithm

Singh et al. [170] proposed a modified elephant herding optimization algorithm (IEHO)
to enhance the capability of a classical algorithm for convalescent convergence rates. Lévy
distribution with a step size controller is applied to update global search positions in IEHO.
Wang et al. [171] put forward an improved elephant herding optimization (IEHO) algorithm
to solve multi-dimensional nonlinear complex problems. The accuracy of EHO is improved
by introducing Lévy flight operators and boundary mutation operators in the position
update process. Then, in view of the performance of the IEHO algorithm in function
optimization, an algorithm combining IEHO with the BP neural network (IEHO-BP) is
proposed. The experimental results showed that the IEHO-BP is more accurate and less
oscillating. Xu et al. [172] studied an improved EHO based on the Lévy flight strategy
(LFEHO), which overcame the defects of low convergence accuracy, which solved detection
accuracy degradation due to irrelevant or redundant feature data for intrusion detection
systems (IDS).

3.2.9. Lévy Flight Used in Sparrow Search Algorithm

Li et al. [66] developed an improved chaotic sparrow search algorithm (ICSSA) inte-
grated with Lévy flight and Kent chaotic mapping. The inertial and friction parameters of
a two-link robot manipulator with unknown payloads are estimated via simulation experi-
ments benefitting from the unique advantages. The results demonstrated that the ICSSA
offers another promising approach of high-level accuracy for advanced control techniques
in industry robot manipulators. Wang et al. [174] proposed a multi-strategy improved
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chaotic sparrow search algorithm (CISSA). Three strategies such as tent chaotic mapping,
random following, and Lévy flight were combined to improve the load forecasting accuracy.

3.2.10. Lévy Flight Used in Krill Herd Algorithm

Wang et al. [175] proposed a Lévy-flight krill herd (LKH) algorithm to solve optimiza-
tion tasks within limited computing. A new local Lévy flight (LLF) operator is included
during the process for updating krill to improve efficiency. Guo et al. [176] presented an
improved krill herd (IKH) approach to exchange information between top krill during
motion calculation process, which generated better candidate solutions. Krill herd mo-
tion calculation is updated by using Lévy flight distribution and an elitism scheme. This
IKH preserved the robustness of the basic KH algorithm while accelerating the global
convergence speed.

3.2.11. Lévy Flight Used in Grey Wolf Optimization Algorithm

Chen et al. [177] developed a dynamically adjusting inertia weight and Lévy flight
strategy based grey wolf optimization algorithm (DFGWO). Lévy flight is performed with
high probability at the beginning of the iteration to improve the global search ability and to
increase the population diversity. Gupta et al. [178] introduced an improved leadership-
based GWO (GLF-GWO), in which the leaders are updated through a Lévy flight search
mechanism. GLF-GWO provided better guidance to accelerate the search process of the
grey wolf optimization (GWO) algorithm and enhanced the search efficiency of leading
hunters. Hu et al. [179] developed a GWO algorithm variant, namely GWOCMALOL, with
a Lévy flight mechanism, a covariance matrix adaptation evolution strategy (CMAES), and
an orthogonal learning (OL) strategy, which is to overhaul the shortcomings of the original
process. Liu et al. [180] proposed a grey wolf optimizer based on the dimensional learning
strategy (DLGWO) to improve the utilization of the population knowledge. The Lévy flight
is also utilized in the DLGWO to guide the grey wolves in the swarm. Zhou et al. [181]
proposed a Lévy flight and weighted distance-updated multi-objective GWO algorithm
(LWMOGWO) to compute the total energy consumption of the flexible manufacturing cell
(FMC) system. Heidari et al. [84] proposed an improved modified GWO algorithm named
Lévy-embedded GWO (LGWO) to solve either global or real-world optimization problems.
Lévy flight and a greedy selection strategy are integrated with the modified hunting phases
to boost the efficacy of GWO in LGWO. Goyal et al. [182] responded with an improved
multi-objective grey wolf optimization algorithm (MOGWO) to move the Pareto fronts
along various mutually conflicting process responses.

3.2.12. Lévy Flight Used in Ant Colony Optimization Algorithm

Zhang et al. [183] proposed a hybrid max–min ant system (HMMAS) employing
a Lévy flight strategy to deal with the shortcomings of the max–min ant system. The
diversity of solutions is increased by dynamically adjusting the parameters in HMMAS.
Liu et al. [184] studied an improved ant colony optimization (ACO) that employed the
Lévy flight mechanism based on the Lévy distribution to the candidate selection process.
The method not only guaranteed the search speed but also extended the searching space.
Moreover, Liu et al. [185] proposed a greedy Lévy ACO incorporated epsilon greedy and
Lévy flight to solve complicated combinatorial optimization problems, which is imple-
mented on the top of max–min ACO to solve the traveling salesman problems. Fileccia
et al. [187] used an improved ACO algorithm for the back calculation of pavement moduli
from surface deflection data. The performance of the proposed algorithm is demonstrated
both in terms of goodness of fitness and computational effort. Zhang et al. [188] proposed
a combinational algorithm based on a cuckoo search and an ant colony optimization, in
which the latter candidate solution is replaced when the candidate solution of the ACO
search is better than the one by the Lévy flight. Zhang et al. [189] proposed a hybridization
of ACO and CS to solve specific heating route design problems.
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3.3. Lévy Flight Used in Evolutionary Computation

Lévy flight is widely used in evolutionary computations as well as in swarm intelli-
gence algorithms. Lévy flight is used in four evolutionary computation algorithms: Lévy
flight used in a differential evolution algorithm, Lévy flight used in a genetic algorithm,
Lévy flight used in a memetic algorithm, and Lévy flight used in a general programming
algorithm. The classification of Lévy flight used in evolutionary computations is shown in
Figure 9 and Table 3.
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tion of the ACO search is better than the one by the Lévy flight. Zhang et al. [189] pro-
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Table 3. The classification of evolutionary computation with Lévy flight.

Name Reference

Lévy flight used in differential evolution [51,112,190–194]
Lévy flight used in genetic algorithm [40,195]

Lévy flight used in memetic algorithm [77,78,196]
Lévy flight used in general programming [197]

3.3.1. Lévy Flight Used in Differential Evolution

Feng et al. [51] proposed a new differential evolutionary algorithm based on a memetic
algorithm framework that can explore locally using the local search including the Lévy
flight and explore globally using the differential evolutionary algorithm. The results
showed that the proposed method can reduce the number of design parameters. Coelho
et al. [190] presented a DE algorithm combined with Lévy flight random walks and a
population diversity measure (DEL). The crossover and mutation operations are designed
to help avoiding premature convergence effectively in the proposed method, which can
address this vital concern for power system operations economic load dispatch (ELD).
Elaziz et al. [112] studied a hybrid algorithm, namely MSDE, with moth search (MS) and
differential evolution (DE), which aims to minimize makespan that is required to schedule
a number of tasks on different virtual machines (VMs). The Lévy flight represented the
exploration and exploitation ability, respectively, in MSDE. Suresh et al. [191] proposed a
modified differential evolution (MDE) algorithm to contrast the enhancement of satellite
images. The MDE is developed with an exploration phase by DE and an exploitation phase
by CS, which utilized the mutation, crossover, and selection strategies together with Lévy
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flight. The exploitation phase modeled using Lévy flight is intensified for finding the global
optimal solutions in complex enhancement problems.

Tarkhaneh et al. [192] proposed an improved DE algorithm named adaptive differential
evolution with neighborhood search (ADENS) by utilizing Lévy flight, neighborhood
search (NS), and Archimedean spiral. A new mutation strategy is used to generate robust
solutions by combining Lévy flight with neighborhood search. Meanwhile, Tarkhaneh
et al. [193] developed an improved DE with an adaptive approach and new mutation
strategies to achieve good balance between exploitation and exploration. Lévy flight and
Cauchy distributions are harnessed to improve the global search in the new mutation
methods. Zhao et al. [194] proposed a new hybrid algorithm based on the self-adaptive
gravitational search algorithm (GSA) and DE to solve single objective optimizations. A
new perturbation based on Lévy flight is embedded to enhance the performance of the
algorithm. The experimental solution showed that the proposed method was capable of
accelerating the convergence rate effectively compared with the GSA.

3.3.2. Lévy Flight Used in Genetic Algorithm

Aghaee et al. [40] presented an improved genetic algorithm (GA) based on Lévy flight
to select bands in a semi-supervised manner. Experimental results show that the proposed
method has been effective in the case of sufficient training samples and the accuracy
improvement is near 11% in some experiments. Zhang et al. [195] proposed a hybrid
genetic algorithm (HGA) to solve type-II mixed-model assembly line balancing problems
with uncertain task times. A heuristic method is utilized to seed the initial population
and a discrete Lévy flight is hybridized to enhance the performance of the algorithm. The
efficiency of the HGA method is verified through the results of the type-II mixed-model
assembly line balancing problem.

3.3.3. Lévy Flight Used in Memetic Algorithm

Santucci et al. [77] designed an improved memetic algebraic differential evolution
(iMADEB) algorithm that incorporated critical information about multidimensional two-
way number partitioning problems (MDTWNPP). Three key design concepts such as a self-
adaptive algebraic differential mutation scheme built on Lévy flight, novel non-redundant
bit-string representation, and a smoother local search operator purposely designed for the
MDTWNPP landscapes are evolved in iMADEB. Tang et al. [78] propose a memetic algo-
rithm based on a combination of three methods: memetic diffusion component, memetic
evolutionary component, and memetic learning component. The diversity of population
is enhanced by using the memetic diffusion component. The exploitation task with the
Lévy flight operator is accomplished by using the memetic evolutionary component. Yang
et al. [196] developed a novel memetic algorithm with Lévy flight by exploring the principle
of memetic computing and Lévy flight. An efficient local search strategy with Lévy flight
is designed to enhance the search ability for short walking distance and occasional long
jumps to be made by the particle. The lifetime of each particle is defined to determine
whether a particle needs to be redistributed using the Lévy flight.

3.3.4. Lévy Flight Used in General Programming

Coelho et al. [197] proposed an improved genetic programming method based on
Lévy flight, which estimates discrete polynomial nonlinear autoregressive with exogenous
inputs (NARX). The contribution of Lévy flight is related to the tune of crossover and
mutation probabilities. The experimental results show that the proposed method based on
Lévy flight is available for model identification of a poppet valve.

3.4. Lévy flight Used in Neural Network

Lévy flight is not only used in evolutionary computation and swarm intelligence, but
also widely used in neural networks. Some of the literature regarding Lévy flight applied
in neural networks are shown in Table 4.
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Table 4. Lévy flight used in neural networks.

Journal Author Year

Cluster Computing-The Journal of Networks Software Tools and Applications Alshmrany et al., [198] 2022
Applied Soft Computing Alweshah et al., [22] 2015
Neural Computing and Applications Amirsadri et al., [199] 2018
Evolutionary Intelligence Bousmaha et al., [25] 2021
Journal of Circuits Systems and Computers Chidadala et al., [200] 2021
Journal of Multiple-Valued Logic and Soft Computing He et al., [201] 2010
Application Research of Computers He et al., [202] 2021
Engineering With Computers Jalali et al., [203] 2021
Journal of Ambient Intelligence and Humanized Computing Khan et al., [204] 2019
Applied Soft Computing Li et al., [205] 2019

Alshmrany et al. [198] proposed a convolutional neural network-based Lévy flight
distribution (CNN-LFD) algorithm to learn style prediction. The learning styles, namely
active/reflective, sensing/intuitive, visual/verbal, and sequential/global based on the
extracted features, are predicted by using the CNN-LFD algorithm. The experimental
results show that the CNN-LFD algorithm has higher classification accuracy during the
learning style prediction. Alweshah et al. [22] studied a hybridized method denoted with
the firefly algorithm and simulated annealing. The randomness step inside the firefly
algorithm is controlled by using the simulated annealing. The Lévy flight is used to explore
the search space within the firefly algorithm, which improved the performance of the
probabilistic neural network. Amirsadri et al. [199] developed a new algorithm combining a
gradient-based and a metaheuristic algorithm into a train neural network, which eliminated
the problem of becoming stuck in local optimum. The improved algorithm is combined
with back propagation (BP) and Lévy flight to apply to the local search ability of the BP
algorithm in a training neural network.

Bousmaha et al. [25] presented a new training method based on a hybrid PSO with
multi-verse optimization and Lévy flight (PLMVO) that optimized the number of hidden
neurons and connection weights simultaneously in feed forward neural networks (FFNN).
Chidadala et al. [200] proposed a hybrid algorithm based on a convolutional neural network
and the cuckoo search (CNN-CS). CNN-CS can replace the large scale of time-consuming
machine learning techniques and complex training. The CNN is optimized by using Lévy
flight in CNN-CS. Experimental results demonstrated that the CNN-CS improved the
throughput and reduced the power consumption. He et al. [201] proposed a new artificial
neural network (ANN) training algorithm named LGSO based on an improved group
search optimizer algorithm (GSO) by replacing the Gaussian random walk with Lévy flight.
The LGSO is applied to tune the parameters of three-layer feed-forward ANN, connection
weights, and bias. The sunspot number forecasting problems and the Cleveland heart
disease classification problems have been employed to assess the performance of the LGSO.
The experimental results showed that LGSO has better convergence and generalization
performance on the two real-world problems. He et al. [202] proposed an improved
WOA by using an elite opposition-based learning SVM and Lévy flight, which is a multi-
classification evaluation algorithm (LFEO-BWOA-SV M). Position information effectively
is updated by using a Lévy flight strategy instead of a spiral trajectory strategy for multi-
classification comprehensive decision making. The results showed that the convergence
speed and optimization ability of the proposed method are obviously improved.

Jalali et al. [203] proposed an enhanced grasshopper optimization algorithm named
EGOA to optimize the deep long short-term memory (LSTM) for neural network archi-
tecture. The Lévy flight and chaotic theory strategies are applied to make an efficient
balance between the exploration and exploitation in the EGOA. The experimental results
revealed that the LSTM achieved the best forecasting performance compared with other
state-of-the-art forecasting algorithms. Khan et al. [204] proposed a new method based
on a hybrid accelerated cuckoo particle swarm optimization (HACPSO) algorithm, which
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provided communication for looking for a better place having the best nest with greater
survivability for cuckoo birds. The results demonstrated that the HACPSO algorithm per-
formed better compared with other algorithms. Li et al. [205] proposed an improved bird
swarm algorithm optimization least squares support vector machine (IBSA-LSSVM) model
that predicts the remaining life of lithium–ion batteries. The Lévy flight is introduced into
the bird swarm algorithm (IBSA) to avoid the IBSA getting into the local optimal solution.

4. Conclusions and Future Directions

This paper systematically summarized and studied Lévy flight-based metaheuristic
algorithms. We searched through Google Scholar with the keyword “Lévy flight” and
found papers related to metaheuristic algorithms. A total of 159 representative papers
from 1 January 2006 to 20 March 2020 are selected for our survey from the various papers
collected for this study. Through the summary analysis of these papers, we found that the
development trend and space of Lévy flight-based metaheuristic algorithms is promising.
A large number of researchers used Lévy flight to improve the intelligent optimization
algorithms. Lévy flight has achieved good results in many metaheuristic algorithms
and engineering applications. However, we still consider that some problems are worth
studying during the next few years.

(1) The current Lévy flight-based metaheuristic algorithms have achieved signifi-
cant optimization effects in various aspects, yet most researchers have only focused on
the optimization effects of the Lévy flight-based metaheuristic algorithms. There is not
sufficient explanation for the theoretical analysis of Lévy flight-based metaheuristic algo-
rithms. Therefore, strengthening the theoretical analysis of Lévy flight-based metaheuristic
algorithms and the mathematical model will remain a challenge in future research.

(2) Lévy flight is employed to solve unsolved optimization problems, especially multi-
objective optimization problems need to be studied in more depth.

(3) Lévy flight can be combined with the learning metaheuristic algorithm method [206].
(4) Lévy flight-based intelligent optimization has a lower proportion of engineering

applications than the others. This is undoubtedly a shortcoming of Lévy flight-based
intelligent optimization. Therefore, expanding Lévy flight-based metaheuristic algorithms
for more engineering applications is also an important challenge.

(5) Lévy flight-based metaheuristic algorithms have achieved some notable accomplish-
ments for solving continuous and discrete optimization problems. Therefore, designing
suitable optimization operators and expanding the application scope of Lévy flight in
computer vision should be considered in future research [207,208].

(6) Lévy flight-based metaheuristic algorithms have a lower proportion of combining
with machine learning methods than the others.
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