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Abstract

:

This paper studies a single-machine problem with resource allocation (  R A  ) and deteriorating effect (  D E  ). Under group technology (  G T  ) and limited resource availability, our goal is to determine the schedules of groups and jobs within each group such that the total completion time is minimized. For three special cases, polynomial time algorithms are given. For a general case, a heuristic, a tabu search algorithm, and an exact (i.e., branch-and-bound) algorithm are proposed to solve this problem.
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1. Introduction


With the development of economy, the research on the group technology (denoted by   G T  ) problem involves a variety of fields, especially in the supply chain management, information processing, computer systems, and other industries (see Ham et al. [1], Wang et al. [2]). Yang [3] and Bai et al. [4] investigated single-machine   G T   scheduling with learning and deterioration effects. Lu et al. [5] studied the single-machine problem with   G T   and time-dependent processing times (i.e., time-dependent scheduling), i.e., the processing time of jobs and setup time of groups are time-dependent. For the makespan minimization subject to release dates, they presented a polynomial time algorithm. Wang et al. [6] examined the single-machine problem with   G T   and shortening job processing times. For the makespan minimization with ready times, they demonstrated that some special cases were optimally solved in polynomial time. Liu et al. [7] studied the single-machine problem with   G T   and deterioration effects (denoted by   D E  ), i.e., the processing time of jobs are time-dependent and setup time of groups are constants. For the makespan minimization with ready times, they proposed a branch-and-bound algorithm. Zhu et al. [8] discussed the single-machine problem with   G T  , resource allocation (denoted by   R A  ), and learning effects. For the weighted sum minimization of makespan and total resource consumption, Zhu et al. [8] proved that the problem remains polynomially solvable. In 2018, Zhang et al. [9] discussed the single-machine problem with   G T   and position-dependent processing times. In 2020, Liao et al. [10] considered the two-competing scheduling problem with   G T   and learning effects. In 2021, Lv et al. [11] addressed single-machine slack due date assignment problems with   G T  ,   R A  , and learning effects. In 2021, Xu et al. [12] investigated the single-machine problem with   G T  , nonperiodical maintenance, and   D E  . For the makespan minimization, they proposed some heuristic algorithms.



Recently, Oron [13] and Li and Wang [14] considered a single-machine scheduling model combining   R A   and   D E  . Later, Wang et al. [15] discussed a scheduling model combining   G T  ,   R A  , and   D E  . Under the single-machine setting, the objective is to minimize the weighted sum of makespan and total resource consumption. Wang et al. [15] showed that some special cases remain polynomially solvable. In 2020, Liang et al. [16] considered the same model as Wang et al. [15] for the general case; they provided heuristic and branch-and-bound algorithms. In 2019, Wang and Liang [17] studied the single-machine problem with   G T  ,   R A  , and   D E   concurrently. For the makespan minimization under the constraint that total resource consumption cannot exceed an upper bound, they proved that some special cases remain polynomially solvable. For the general case, they provided heuristic and branch-and-bound algorithms.



This paper conducts a further study on the problem with   G T  ,   R A  , and   D E  , but the objective cost is to minimize the total completion time under the constraint that total resource consumption cannot exceed an upper bound. For three special cases, polynomial algorithms are given. For the general case, upper and lower bounds of the problem are given, then the branch-and-bound algorithm is proposed. In addition, a tabu search algorithm and numerical simulation analysis are given.



The rest of this paper is organized as follows: Section 2 presents a formulation of the problem. Section 3 gives some basic properties. Section 4 studies some special cases. Section 5 considers the general case, and we propose some algorithms to solve this problem. Section 6 presents the numerical simulations. The conclusions are given in Section 7.




2. Problem Statement


The following notation (see Table 1) will be used throughout this paper. There are   n ˜   independent jobs. In order to exploit   G T   in production (see Ji et al. [18]), all the jobs are classified into   m ˜     m ˜  ≥ 2   groups (i.e.,    Ω 1  ,  Ω 2  , … ,  Ω  m ˜    ) in advance according to their processing similarities. All the jobs in the same group must be processed in succession on a single machine. Assume that the single machine and all jobs are available at time zero. Let    J ˘   h j    be the job j in group   Ω h  , and the number of jobs in group   Ω h   is    n ˜  h  , i.e.,    ∑  h = 1   m ˜     n ˜  h  =  n ˜   . The actual processing time of    J ˘   h j    is:


   p  h j   A p t   =     ς  h j     r ˜   h j     η  + θ t ,  



(1)




where   ς  h j    (resp.     r ˜   h j   ≥ 0  ) is a workload (respective amount of resource) of    J ˘   h j   ,   η > 0   is a constant,   θ ≥ 0   is a common deterioration rate, and   t ≥ 0   is its starting time. The actual setup time of   Ω h   is:


   s h  A p t   =     o h    r ˜  h    η  + μ t ,  



(2)




where   o h   (respectively,    r ˜  h  ) is a workload (amount of resource) of   Ω h  , and   μ ≥ 0   is a common deterioration rate. Obviously, the parameters    n ˜  ,  m ˜   ,   ς  h j   ,    n ˜  h  ,   o h  ,  η ,  θ , and  μ  are given in advance, and the resource allocation    r ˜   h j    and    r ˜  h   are decision variables. Our goal is to find the optimal group schedule    π ¯  Ω *  , job schedule    π ¯  h *     h = 1 , ⋯ ,  m ˜     within   Ω h  , and resource allocation   R *   (i.e.,    r ˜   h j    and    r ˜  h  ) such that a total completion time,


    t c t  ^   (   π ¯  Ω  ,   π ¯  h  | h = 1 , ⋯ ,  m ˜  , R )  =    ∑  h = 1   m ˜      ∑  j = 1    n ˜  h      C ¯   h j     



(3)




is minimized subject to     ∑  h = 1   m ˜    ∑  j = 1    n ˜  h     r ˜   h j    ≤  V ˜  ,   ∑  h = 1   m ˜     r ˜  h   ≤  U ˜   , where   V ˜   and   U ˜   are given constants (there is not any constraint between the    r ˜   h j    variables and the    r ˜  h   variables, and    ∑  h = 1   m ˜    ∑  j = 1    n ˜  h     r ˜   h j     and    ∑  h = 1   m ˜     r ˜  h    are independent from each other). By using the three-field notation (see Gawiejnowicz [19]), the problem can be denoted by


  1   p  h j   A p t   =     ς  h j     r ˜   h j     η  + θ t ,  s h  A p t   =     o h    r ˜  h    η  + μ t ,    ∑  h = 1   m ˜      ∑  j = 1    n ˜  h      r ˜   h j    ≤  V ˜  ,    ∑  h = 1   m ˜      r ˜  h   ≤  U ˜  ,  G T     t c t  ^  ,  








where 1 denotes the single machine, the middle field is the job and group characteristics, and    t c t  ^   is the objective function (this problem is abbreviated as   P   t c t  ^   ). Wang et al. [15] and Liang et al. [16] considered the problem


  1   p  h j   A p t   =     ς  h j     r ˜   h j     η  + θ t ,  s h  A p t   =     o h    r ˜  h    η  + μ t ,  G T    α 1  ×  C max  +  α 2    ∑  h = 1   m ˜      ∑  j = 1    n ˜  h      r ˜   h j   +  α 3    ∑  h = 1   m ˜      r ˜  h  ,  








where    α l  ≥ 0   (  l = 1 , 2 , 3  ) is a given constant and    C max  = max  {   C ¯   h j   | h = 1 , … ,  m ˜  ; j = 1 , … ,   n ˜  h  }   . Wang and Liang [17] studied the problem


  1   p  h j   A p t   =     ς  h j     r ˜   h j     η  + θ t ,  s h  A p t   =     o h    r ˜  h    η  + μ t ,    ∑  h = 1   m ˜      ∑  j = 1    n ˜  h      r ˜   h j    ≤  V ˜  ,    ∑  h = 1   m ˜      r ˜  h   ≤  U ˜  ,  G T    C max  .  












3. Basic Results


For a given schedule  Π , stemming from Wang et al. [15] and Liang et al. [16], by a mathematical induction, we have


      C ¯    1   1      =        o  1     r ˜   1     η  +     ς   1   1      r ˜    1   1      η  + θ     o  1     r ˜   1     η  =     ς   1   1      r ˜    1   1      η  +   1 + θ       o  1     r ˜   1     η  ,        C ¯    1   2      =      C ¯    1   1    +     ς   1   2      r ˜    1   2      η  + θ   C ¯    1   1          =        ς   1   2      r ˜    1   2      η  +   1 + θ       ς   1   1      r ˜    1   1      η  +    1 + θ   2      o  1     r ˜   1     η  ,       ⋮        C ¯    1     n ˜  1       =      ∑  j = 1    n ˜   1         1 + θ         n ˜   1   − j        ς   1   j      r ˜    1   j      η  +    1 + θ     n ˜   1        o  1     r ˜   1     η  ,        C ¯    2   1      =      C ¯    1     n ˜  1     +     o  2     r ˜   2     η  + μ   C ¯    1     n ˜  1     +     ς   2   1      r ˜    2   1      η  + θ     C ¯    1     n ˜  1     +      o  2     r ˜   2      η  + μ   C ¯    1     n ˜  1             =      ∑  j = 1    n ˜   1        1 + μ       1 + θ             n ˜   1   − j + 1           ς   1   j      r ˜    1   j      η  +   1 + μ      1 + θ      n ˜   1   + 1       o  1     r ˜   1     η          +   1 + θ       o  2     r ˜   2     η  +     ς   2   1      r ˜    2   1      η  ,        C ¯    2   2      =      C ¯    2   1    +     ς   2   2      r ˜    2   2      η  + θ   C ¯    2   1          =      ∑  j = 1    n ˜   1        1 + μ       1 + θ         n ˜   1   − j + 2         ς   1   j      r ˜    1   j      η  +   1 + μ      1 + θ      n ˜   1   + 2       o  1     r ˜   1     η          +    1 + θ   2      o  2     r ˜   2     η  +   1 + θ       ς   2   1      r ˜    2   1      η  +     ς   2   2      r ˜    2   2      η  ,       ⋮        C ¯    2     n ˜  2       =      ∑  j = 1    n ˜   1        1 + μ       1 + θ       n ˜   1   +   n ˜   2   − j        ς   1   j      r ˜    1   j      η  +   1 + μ      1 + θ      n ˜   1   +   n ˜   2         o  1     r ˜   1     η          +   ∑  j = 1    n ˜   2         1 + θ       n ˜   2   − j       ς   2   j      r ˜    2   j      η  +    1 + θ     n ˜   2        o  2     r ˜   2     η  ,       ⋮        C ¯    [  m ˜  ]   [   n ˜  m  ]      =      ∑  h = 1   m ˜      ∑  j = 1    n ˜   [ h ]       ( 1 + μ )    m ˜  − h     ( 1 + θ )    ∑  l = h   m ˜     n ˜   [ l ]   − j       ς  [ h ] [ j ]     r ˜   [ h ] [ j ]     η          +   ∑  h = 1   m ˜      ( 1 + μ )    m ˜  − h     ( 1 + θ )    ∑  l = h   m ˜     n ˜   [ l ]         o  [ h ]     r ˜   [ h ]     η  .     











According to the above equations, we have


      t c t  ^    =      ∑  i = 1   m ˜      ∑  j = 1    n ˜  h      C ¯   [ i ] [ j ]         =      ∑  h = 1   m ˜       ∑  j = 1    n ˜  h        ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]             ς  [ i ] [ j ]     r ˜   [ i ] [ j ]     η              +   ∑  h = 1   m ˜        ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]            o  [ h ]     r ˜   [ h ]     η  .     



(4)







Lemma 1.

For a given schedule Π of   P   t c t  ^   , the optimal resource allocation    R *      π ¯  Ω  ,   π ¯  h   | h = 1 , ⋯ ,   m ˜      is


       r ˜   *    [ h ] [ j ]   =        ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +     ∑  k = h + 1   m ˜        ( 1 + μ )   k − h      ∑  l = 1    n ˜   [ k ]        ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]       (  ς  [ h ] [ j ]   )  η       1  η + 1         ∑  h = 1   m ˜         ∑  j = 1    n ˜  h          ∑  l = j    n ˜   [ h ]         ( 1 + θ )    l − j    +     ∑  k = h + 1   m ˜        ( 1 + μ )   k − h      ∑  l = 1    n ˜   [ k ]        ( 1 + θ )   l − j −   n ˜   [ k ]   +    ∑  ξ = h  k      n ˜   [ ξ ]       (  ς  [ h ] [ j ]   )  η        1  η + 1     ×  V ˜   



(5)




for   h = 1 , ⋯ ,  m ˜  ; j = 1 , ⋯ ,   n ˜  i   , and


       r ˜   *    [ h ]   =         ∑  k = h   m ˜        ( 1 + μ )   k − h      ∑  l = 1    n ˜   [ k ]        ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]       (  o  [ h ]   )  η       1  η + 1        ∑  h = 1   m ˜        ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]       (  o  [ h ]   )  η       1  η + 1     ×  U ˜   



(6)




for   h = 1 , ⋯ ,  m ˜   .





Proof. 

Obviously, Equation (4) is a convex function with respect to    r ˜    h   j     and    r ˜   h   . It is obvious that in the optimal solution all resources should be consumed, i.e.,     ∑  h = 1   m ˜    ∑  j = 1    n ˜  h      r ˜    h   j    −  V ˜  = 0   and    ∑  h = 1   m ˜     r ˜   h   −  U ˜  = 0  . As in Wang and Liang [17], Shabtay and Kaspi [20], and Wang and Wang [21], for a given schedule, the optimal resource allocation of the problem   P   t c t  ^    can be solved by the Lagrange multiplier method. The Lagrangian function is


     Q  κ , υ , R    =     ∑  h = 1   m ˜    ∑  j = 1    n ˜  h     C ¯    h   j     + κ    ∑  h = 1   m ˜    ∑  j = 1    n ˜  h      r ˜    h   j    −  V ˜   + υ   ∑  h = 1   m ˜     r ˜   h   −  U ˜        =     ∑  h = 1   m ˜       ∑  j = 1    n ˜  h        ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]             ς  [ h ] [ j ]     r ˜   [ h ] [ j ]     η        +   ∑  h = 1   m ˜        ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]            o  [ h ]     r ˜   [ h ]     η       +   κ     ∑  h = 1   m ˜      ∑  j = 1   n ˜       r ˜    h   j    −  V ˜   + υ    ∑  h = 1   m ˜      r ˜   h   −  U ˜   ,     



(7)




where   κ ≥ 0   and   υ ≥ 0   are the Lagrangian multipliers. Differentiating Equation (7) with respect to    r ˜    h   j     and  κ , then


       ∂  Q  κ , υ , R     ∂   r ˜    i   j          =    δ − η     ∑  l = j    n ˜   [ i ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]                    ×     ζ   h   j     η      r ˜    h   j      η + 1            =   0    



(8)




and


    ∂  Q  κ , υ , R     ∂ κ   =    ∑  h = 1   m ˜      ∑  j = 1    n ˜  h       r ˜    h   j    −  V ˜  = 0 .  



(9)




By using Equations (8) and (9), it follows that


    r ˜    h   j    =     η     ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]         κ    1  ( η + 1 )    ×    ζ   h   j      η  η + 1     



(10)




and


   κ  1  η + 1    =     ∑  h = 1   m ˜    ∑  j = 1    n ˜  h      η     ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − i     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]           ζ   h   j     η    1  η + 1      V ˜   .  



(11)




From Equations (10) and (11), then


      r ˜    h   j   *    =           ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]       (  ς  [ h ] [ j ]   )  η       1  η + 1        ∑  h = 1   m ˜       ∑  j = 1    n ˜  h        ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]       (  ς  [ h ] [ j ]   )  η        1  η + 1     ×  V ˜  .     











Similarly, Equation (6) can be obtained.    □





By Lemma 1, substituting Equations (5) and (6) into     t c t  ^  =   ∑  h = 1   m ˜    ∑  j = 1    n ˜  h     C ¯   h j     , we have


       t c t  ^    =      ∑  h = 1   m ˜       ∑  j = 1    n ˜  h        ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]             ς  [ h ] [ j ]     r ˜   [ h ] [ j ]     η         +    ∑  h = 1   m ˜        ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]            o  [ h ]     r ˜   [ h ]     η        =       V ˜    − η        ∑  h = 1   m ˜       ∑  j = 1    n ˜  h           ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  ς  [ h ] [ j ]   )   η  η + 1         η + 1          +     U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1    .     



(12)







Lemma 2.

For   P   t c t  ^   , the optimal job schedule    π ¯  h *   within group    Ω h    h = 1 , ⋯ ,  m ˜      is the non-decreasing order of   ζ  h  j    , i.e.,    ζ  h  1    ≤  ζ  h  2    ≤ ⋯  ζ  h    n ˜  h      .





Proof. 

From Equation (12), for group   Ω  h   , the objective cost is:


     ∑  j = 1    n ˜  h           ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  ς  [ h ] [ j ]   )   η  η + 1      =   ∑  j = 1    n ˜  h     x  [ h ] [ j ]    y  [ h ] [ j ]   ,  








where    x  [ h ] [ j ]   =       ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      and    y  [ h ] [ j ]   =   (  ς  [ h ] [ j ]   )   η  η + 1     . The term   x  [ h ] [ j ]    is a monotonically decreasing function of j, by the HLP rule (Hardy et al. [22], i.e., the term     ∑  j = 1    n ˜  h     x  [ h ] [ j ]    y  [ h ] [ j ]     is minimized if sequence    x  [ h ] [ 1 ]   ,  x  [ h ] [ 2 ]   , … ,    x   [ h ]   [   n ˜  h  ]     is ordered non-decreasingly and sequence    y  [ h ] [ 1 ]   ,  y  [ h ] [ 2 ]   , … ,  y   [ h ]   [   n ˜  h  ]      is ordered non-increasingly or vice versa), for the group    Ω  h     h = 1 , ⋯ ,  m ˜     , if   ζ  h j    is a non-decreasing order, i.e.,    ζ  h  1    ≤  ζ  h  2    ≤ ⋯  ζ  h    n ˜  h      , the result can be obtained.    □






4. Special Cases


By Lemma 2, for group   Ω h  , the optimal schedule    π ¯   h  *   is the non-decreasing order of   ζ  h  j    , i.e.,    ζ  h  1    ≤  ζ  h  2    ≤ ⋯  ζ  h    n ˜  h      . From Equation (12), let


  X =    U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1    








and


  Y =     V ˜    − η        ∑  h = 1   m ˜       ∑  j = 1    n ˜  h           ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  ς  [ h ] [ j ]   )   η  η + 1         η + 1    .  











In this section, we study some special cases (i.e., the cases of parameters   ς  h j   ,   o h  , and    n ˜  h   have some relationship, then X (Y) is minimized or a constant) which can be solved in polynomial time. The special cases stemmingfrom the parameters   ς  h j   ,   o h  , and    n ˜  h   have some relationship.



4.1. Case 1


If    o h  = o   and     n ˜  h  =   n ˜   m ˜   =  n ¨     ( h = 1 , ⋯ ,  m ˜  )  , from Equation (12), it follows that


          U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1         =       U ˜    − η    o η       ∑  h = 1   m ˜          ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1   n ¨      ( 1 + θ )   l +  ( k − h )   n ¨         1  η + 1       η + 1       








is a constant (i.e.,    U ˜  , o , η , μ , θ ,  n ¨   , and   m ˜   are given constants, and this term is independent of these parameters). Let


   Y  h ρ   =      1 ,      if   Ω h   is  assigned  to  ρ th  position        0 ,      otherwise        



(13)




and


    Θ  h ρ   =   ∑  j = 1   n ¨           ∑  l = j   n ¨       ( 1 + θ )    l − j    +    ∑  k = ρ + 1   m ˜       ( 1 + μ )   k − ρ     ∑  l = 1   n ¨      ( 1 + θ )   l − j +  ( k − ρ )   n ¨         1  η + 1      (  ς  h  j    )   η  η + 1      .  



(14)







The optimal group schedule can be translated into the following assignment problem:


     Min        ∑  h = 1   m ˜      ∑  ρ = 1   m ˜     Θ  h ρ    Y  h ρ       



(15)






     s . t .        ∑  ρ = 1   m ˜     Y  h ρ   = 1 , h = 1 , … ,  m ˜  ,     



(16)






         ∑  h = 1   m ˜     Y  h ρ   = 1 , ρ = 1 , … ,  m ˜  ,     



(17)






        Y  h ρ   = 0   or   1 , h , ρ = 1 , … ,  m ˜  .     



(18)







Thus, for the special case    o h  = o   and     n ˜  h  =   n ˜   m ˜   =  n ¨     ( h = 1 , ⋯ ,  m ˜  )  , the problem   P   t c t  ^    can be solved by:



Theorem 1.

If    o h  = o   and     n ˜  h  =   n ˜   m ˜   =  n ¨     h = 1 , ⋯ ,  m ˜   ,   P   t c t  ^    is solvable by Algorithm 1 in   O    n ˜  3     time.










	Algorithm 1: Case 1



	
	
Step 1. For group   Ω h    h = 1 , … ,  m ˜   , optimal job schedule    π ¯   h  *   can be determined by Lemma 2, i.e.,    ς  h  1    ≤  ς  h  2    ≤ ⋯  ς  h    n ˜  h      .



	
Step 2. Calculate   Θ  h ρ     h , ρ = 1 , … ,  m ˜   , and determine optimal group schedule    π ¯   Ω  *   by using Equations (15)–(18).



	
Step 3. Optimal resource allocations    r ˜   h j  *   and    r ˜   h  *   are calculated by Equations (5) and (6) (see Lemma 1).











Proof. 

Time of Step 1 is   O   ∑  h = 1  m     n ˜  h  log   n ˜  h    ≤ O  (  n ˜  log  n ˜  )   . Steps 3 needs   O   n ˜     time. For an assignment problem, Step 2 needs   O    m ˜  3   ≤ O    n ˜  3     time. Thus, the total time is   O    n ˜  3    .    □






4.2. Case 2


If    ς  h j   = ς   and     n ˜  h  =   n ˜   m ˜   =  n ¨   ,   h = 1 , ⋯ ,  m ˜   ,   j = 1 , 2 , ⋯ ,   n ˜  h   , we have:



Lemma 3.

For   P   t c t  ^   , if    ς  h j   = ς   and     n ˜  h  =   n ˜   m ˜   =  n ¨     h = 1 , ⋯ ,  m ˜  ; j = 1 , ⋯ ,   n ˜  h   , then the optimal group schedule    π ¯   Ω  *   is the non-decreasing order of   o h  , i.e.,    o  ( 1 )   ≤  o  ( 2 )   ≤ … ≤  o  (  m ˜  )    .





Proof. 

From Equation (12), if    ς  h j   = ς   and     n ˜  h  =   n ˜   m ˜   =  n ¨   ,


          V ˜    − η        ∑  h = 1   m ˜       ∑  j = 1    n ˜  h           ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  ς  [ h ] [ j ]   )   η  η + 1         η + 1         =       V ˜    − η     ς  η       ∑  h = 1   m ˜       ∑  j = 1   n ¨          ∑  l = j   n ¨       ( 1 + θ )    l − j    +    ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1   n ¨      ( 1 + θ )   l − j +  ( k − h )   n ¨         1  η + 1        η + 1       








is a constant (i.e.,    V ˜  , ς , η , μ , θ ,  n ¨   , and   m ˜   are given constants, and this term is independent of these parameters).



From Equation (12) and the above analysis, it can be proved that minimizing    t c t  ^   is equal to minimizing the following expression:


              U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]          1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1           =       U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1   n ¨      ( 1 + θ )   l −  n ¨  +   ∑  ξ = h  k    n ¨         1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1           =        U ˜    − η        ∑  h = 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1   n ¨      ( 1 + θ )   l +  ( k − h )   n ¨         1  η + 1      (  o  [ h ]   )   η  η + 1        η + 1    .     



(19)







Similar to Lemma 2,       ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1   n ¨      ( 1 + θ )   l +  ( k − h )   n ¨        1  η + 1     is a monotonically decreasing function of h, and by the HLP rule (Hardy et al. [22]), Equation (19) can be minimized by arranging groups in the non-decreasing order of   o h  ; this completes the proof.    □





Thus, for the special case    ς  h j   = ς   and     n ˜  h  =   n ˜   m ˜   =  n ¨     i = 1 , ⋯ ,  m ˜  ; j = 1 , ⋯ ,   n ˜  h   , the problem   P   t c t  ^    can be solved by:



Theorem 2.

If    ς  h j   = ς   and     n ˜  h  =   n ˜   m ˜   =  n ¨      h = 1 , ⋯ ,  m ˜   ,   P   t c t  ^    is solvable by Algorithm 2 in   O (  n ˜  log  n ˜  )   time.










	Algorithm 2: Case 2



	
	
Step 1. For group   Ω h    h = 1 , ⋯ ,  m ˜   , optimal job schedule can be obtained in any order.



	
Step 2. Optimal group schedule   π Ω *   is the non-decreasing order of   o h  .



	
Step 3. Optimal resource allocations    r ˜   h j  *   and    r ˜   h  *   are calculated by Equations (5) and (6) (see Lemma 1).












4.3. Case 3


For any groups   Ω x   and   Ω y  , if    o x  ≤  o y    implies     n ˜  x  ≥   n ˜  y   , we have:



Lemma 4.

For any groups   Ω x   and   Ω y   of   P   t c t  ^   , if    o x  ≤  o y    implies     n ˜  x  ≥   n ˜  y   , the optimal group schedule    π ¯   Ω  *   is non-decreasing order of   o h  .





Proof. 

Similar to the proof of Liang et al. [6] (see Equation (12)).    □





For this special case, i.e., for any groups   Ω x   and   Ω y  , if    o x  ≤  o y    implies     n ˜  x  ≥   n ˜  y   ,   P   t c t  ^    can be solved by:



Theorem 3.

For any groups   Ω x   and   Ω y  , if    o x  ≤  o y    implies     n ˜  x  ≥   n ˜  y   ,   P   t c t  ^    is solvable by Algorithm 3 in   O   n ˜  log  n ˜     time.










	Algorithm 3: Case 3



	
	
Step 1. For group   Ω h    h = 1 , … ,  m ˜   , the optimal job schedule    π ¯   h  *   can be determined by Lemma 2, i.e.,    ς  h  1    ≤  ς  h  2    ≤ ⋯  ς  h    n ˜  h      .



	
Step 2. The optimal group schedule   π Ω *   is the non-decreasing order of   o h  .



	
Step 3. The optimal resource allocations    r ˜   h j  *   and    r ˜   h  *   are calculated by Equations (5) and (6) (see Lemma 1).













5. A General Case


For   P   t c t  ^   , we cannot find a polynomially optimal algorithm, and the complexity of determining the optimal group schedule is still an open problem; we conjecture that this problem is NP-hard. Thus,   B & B   (i.e., branch-and-bound, where we need a lower bound and a upper bound) and heuristic algorithms might be a good way to solve   P   t c t  ^   .



5.1. Upper Bound


For the    t c t  ^   minimization, any feasible solution can be proposed as a upper bound (denoted by   U B  ). Similar to Section 3, the group sorting method can be used as the heuristic and then this solution is improved by using the pairwise interchange method.



For a better comparison, an alternative or complementary to Algorithm 4 is proposed, a tabu search (denoted by    t s  ︷  ) algorithm (i.e., Algorithm 5) can be used to solve   P   t c t  ^   .    






	Algorithm 4: Upper Bound



	
	
Step 1. For group   Ω h     h = 1 , ⋯ ,  m ˜    , an internal optimal job schedule   π h *   (Lemma 2) is:    ς  h  1    ≤  ς  h  2    ≤ ⋯  ς  h    n ˜  h      .



	
Step 2. Groups are scheduled by the non-decreasing order of   o h  , i.e.,    o  ( 1 )   ≤  o  ( 2 )   ≤ … ≤  o  (  m ˜  )    .



	
Step 3. Groups are scheduled by the non-increasing order of    n ˜  h  , i.e.,     n ˜   < < 1 > >   ≥   n ˜   < < 2 > >   ≥ ⋯ ≥   n ˜   < <  m ˜  > >    .



	
Step 4. From Steps 2 and 3, the smallest value    t c t  ^   (see Equation (12)) is selected as an original group schedule    π ¯  Ω  .



	
Step 5. Set   k = 1  .



	
Step 6. Set   s = k + 1  .



	
Step 7. The new group schedule can be obtained by exchanging the kth and sth groups (denoted as    π ¯  Ω *  ), and when    t c t  ^   of    π ¯  Ω *   is smaller than    π ¯  Ω  ,    π ¯  Ω   is updated by    π ¯  Ω *  .



	
Step 8. If   s <  m ˜   , then set   s = s + 1  , go to step 7.



	
Step 9. If   k <  m ˜  − 1  , then set   k = k + 1  , go to step 6; otherwise, STOP. Output the group schedule    π ¯  Ω *   of the best group schedule found by the heuristic algorithm and its objective value    t c t  ^  .



	
Step 10. According to Lemma 1, calculate the resource allocation by Equations (5) and (6).


















	Algorithm 5:    t s  ︷  



	
	
Step 1. For group    Ω h    h = 1 , ⋯ ,  m ˜     , an internal optimal job schedule   π h *   can be obtained by Lemma 2, i.e.,    ς  h  1    ≤  ς  h  2    ≤ ⋯  ς  h    n ˜  h      .



	
Step 2. Let the tabu list be empty and the iteration number be zero.



	
Step 3. Choose an initial group schedule by the Steps 2–4 of Algorithm 4, calculate its value    t c t  ^   (see Equation (12)) and set the current group schedule as the best solution    π ¯   Ω  *  .



	
Step 4. Search the associated neighborhood of the current group schedule and resolve if there is a group schedule    π ¯   Ω   * *    with the smallest objective value in associated neighborhood and it is not in the tabu list, where the neighborhood is generated by the random exchange of any two groups.



	
Step 5. If     t c t  ^   (   π ¯   Ω   * *   )  <   t c t  ^   (   π ¯   Ω  *  )   , then let    π ¯   Ω  *  =    π ¯   Ω   * *   . Update the tabu list and the iteration number.



	
Step 6. If there is not a group schedule in associated neighborhood but it is not in the tabu list or the maximum number of iterations is reached, output the local optimal group schedule    π ¯  Ω   and     t c t  ^   (   π ¯  Ω  )   . Otherwise, update tabu list and go to Step 4.



	
Step 7. According to Lemma 1, calculate the resource allocation by Equations (5) and (6).












5.2. Lower Bound


Let     π ¯  Ω  =     π ¯   Ω p   ,   π ¯   Ω u       be a group schedule, where    π ¯   Ω p    (respectively    π ¯   Ω u   ) is the scheduled (respectively unscheduled) part, and there are r groups in    π ¯   Ω p   . From Equation (12) and Lemma 4, the lower bound (denoted by   L B  ) of   P   t c t  ^    is


  L B  =     V ˜    − η           ∑  h = 1  r      ∑  j = 1    n ˜  h               ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +   ∑  k = h + 1  r      ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l − j −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]      +         ∑  k = r + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   < < k > >       ( 1 + θ )   l − j −   n ˜   < < k > >   +   ∑  ξ = h  r     n ˜   [ ξ ]   +   ∑  ξ = r + 1  k     n ˜   < < ξ > >             1  η + 1      (  ς   [ h ]   j    )   η  η + 1            +   ∑  h = r + 1   m ˜       ∑  j = 1    n ˜  h               ∑  l = j    n ˜   [ h ]        ( 1 + θ )    l − j    +         ∑  k = h + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   < < k > >       ( 1 + θ )   l − j −   n ˜   < < k > >   +   ∑  ξ = h  k     n ˜   < < ξ > >             1  η + 1      (  ς   ( h )   j    )   η  η + 1            η + 1      +    U ˜    − η           ∑  h = 1  r             ∑  k = h  r      ( 1 + μ )   k − h     ∑  l = 1    n ˜   [ k ]       ( 1 + θ )   l −   n ˜   [ k ]   +   ∑  ξ = h  k     n ˜   [ ξ ]     +          ∑  k = r + 1   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   < < k > >       ( 1 + θ )   l −   n ˜   < < k > >   +   ∑  ξ = h  r     n ˜   [ ξ ]   +   ∑  ξ = r + 1  k     n ˜   < < ξ > >               1  η + 1       (  o  [ h ]   )   η  η + 1             ∑  h = r + 1   m ˜           ∑  k = h   m ˜       ( 1 + μ )   k − h     ∑  l = 1    n ˜   < < k > >       ( 1 + θ )   l −   n ˜   < < k > >   +   ∑  ξ = h  k     n ˜   < < ξ > >          1  η + 1      (  o  ( h )   )   η  η + 1           η + 1    ,  



(20)




where    ς  h  1    ≤  ς  h  2    ≤ ⋯  ς  h    n ˜  h      ,    o  ( r + 1 )   ≤  o  ( r + 2 )   ≤ … ≤  o  (  m ˜  )     and     n ˜   < <  r + 1  > >   ≥   n ˜   < <  r + 2  > >   ≥ ⋯ ≥   n ˜   < <  m ˜  > >     (remark:   o  h    and    n ˜   < < h > >    (  h = r + 1 , … ,  m ˜   ) do not necessarily correspond to identical group).



From the   U B   (see Algorithm 4) and   L B   (see Equation (20)), a standardized   B & B   algorithm can be given.





6. Computational Result


A series of computational experiments were performed to evaluate the effectiveness of the   U B  ,   B & B  , and    t s  ︷   algorithms, and the    t s  ︷   algorithm was terminated after 2000 iterations. The proposed algorithms were coded in the C++ language and performed on a desktop computer with CPUInter®Corei5-10500 3.10 GHz, 8 GB RAM on Windows® 10 operating system. The following parameters were randomly generated:     ζ  h j     is uniformly distributed in   1 , 100  ;   o h   is uniformly distributed in   1 , 50  ;  θ  and  μ  are uniformly distributed in   0 , 0.5  ,   0.5 , 1  ;    U ˜  =  V ˜  = 500  ;    n ˜  = 100 , 150 , 200 , 250 , 300  ;    m ˜  = 12 , 13 , 14 , 15 , 16   (at least one job per group);   η = 2  . For each combination (  n ˜  ,   m ˜  , and   θ ( μ )  ), there were 10 randomly generated replicas and the maximum    c p u  ^   time for each instance was set to 3600 s. For the   B & B   algorithm, average and maximum    c p u  ^   time (in seconds), and average and maximum node numbers were given. The error bound of   U B   and    t s  ︷   algorithms is given by:


      t c t  ^   Y  −   t c t  ^   O p t      t c t  ^   O p t    ,  








where   Y ∈ {  U B ,   t s  ︷   }  ,     t c t  ^   Y    is a value    t c t  ^   by Y, and     t c t  ^   ( O p t )    is an optimal value by a   B & B   algorithm. The computational results are given in Table 2 and Table 3. From Table 2 and Table 3, it is easy to see that the   B & B   can solve up to 300 jobs in a reasonable amount of time, and   U B   performs very well compared to    t s  ︷   in terms of error bound. When    n ˜  ≤ 300  , the maximum error bound is less than   0.001559   (i.e., relative error   ≤ 0.1559 %  ).




7. Conclusions


This paper investigated the group problem with deterioration effects and resource allocation. The goal was to determine    π ¯  Ω *  ,    π ¯  h *     h = 1 , ⋯ ,  m ˜     in   Ω h   and   R *   such that    t c t  ^   is minimized under     ∑  i = 1   m ˜    ∑  j = 1    n ˜  h     r ˜   i j    ≤  V ˜    and     ∑  i = 1   m ˜     r ˜  i   ≤  U ˜   . For some special cases, we demonstrated that this problem remains polynomially solvable. For the general case, we proposed some algorithms to solve this problem. As a future extension, it is interesting to deal with group scheduling with two scenarios based on processing times (see Wu et al. [23]) and delivery times (see Qian and Zhan [24]).
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Table 1. Symbols.






Table 1. Symbols.









	Notation
	Meaning





	  n ˜   (resp.   m ˜  )
	number of jobs (respective groups)



	   Ω h   
	group h



	    J ˘   h j    
	job j at group   Ω h  



	    n ˜  h   
	number of jobs belonging to   Ω h  , i.e.,    ∑  h = 1   m ˜     n ˜  h  =  n ¯   



	   ς  h j    
	workload of    J ˘   h j    (a positive value which represents job parameter)



	    r ˜   h j    
	amount of resource assigned to    J ˘   h j   



	   p  h j   A p t    
	actual processing time of    J ˘   h j   



	   o h   
	workload of   Ω h   (a positive value which represents group parameter),



	
	  h = 1 , 2 , ⋯ ,  m ˜   ,



	    r ˜  h   
	amount of resource allocated to   Ω h  



	   s h  A p t    
	actual setup time of   Ω h  



	    C ¯   h j    
	completion time of    J ˘   h j   



	   [ j ]   
	jth position in a schedule



	     t c t  ^  =   ∑  i = 1   m ˜    ∑  j = 1    n ˜  h     C ¯   i j      
	total completion time



	    π ¯  Ω   
	group schedule



	    π ¯  h   
	job schedule in   Ω h  



	  Π  
	schedule of jobs and groups, i.e.,   Π =    π ¯  Ω  ,   π ¯  h   | h = 1 , ⋯ ,   m ˜    
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Table 2. Results of algorithms for   θ , μ ∼  0 , 0.5   .






Table 2. Results of algorithms for   θ , μ ∼  0 , 0.5   .





	

	

	
   B & B   -   cpu ^    (s)

	
Node Number of    B & B   

	
  UB  -   cpu ^    (s)

	
Error Bound of

 UB 

	
   ts ︷   -   cpu ^    (s)

	
Error Bound of

  ts ︷  




	
   n ˜   

	
   m ˜   

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max






	

	
12

	
135.024

	
221.776

	
1,809,907.670

	
2,159,443

	
0.016

	
0.017

	
0.000095

	
0.000187

	
20.779

	
20.851

	
3.834449

	
7.624277




	

	
13

	
487.759

	
689.564

	
3,549,270.333

	
5,082,238

	
0.026

	
0.027

	
0.000156

	
0.000268

	
27.917

	
27.931

	
1.732993

	
2.020046




	
100

	
14

	
922.643

	
1522.268

	
13,107,200.333

	
15,310,034

	
0.039

	
0.040

	
0.000801

	
0.000857

	
36.547

	
36.851

	
2.649336

	
3.713691




	

	
15

	
2194.031

	
2700.565

	
27,285,725.333

	
29,086,172

	
0.06

	
0.066

	
0.000958

	
0.001559

	
46.688

	
46.716

	
2.817131

	
3.046495




	

	
16

	
3600

	
3600

	
31,359,296.667

	
35,393,226

	
0.089

	
0.091

	
0

	
0

	
59.426

	
59.502

	
4.264297

	
5.401098




	

	
12

	
207.987

	
342.972

	
2,341,793.000

	
3,117,957

	
0.018

	
0.019

	
0.000027

	
0.000078

	
20.801

	
21.24

	
1.514108

	
1.621744




	

	
13

	
542.599

	
801.597

	
6,761,302.333

	
9,380,526

	
0.024

	
0.025

	
0

	
0

	
27.637

	
27.713

	
1.385886

	
2.443091




	
150

	
14

	
945.239

	
1546.23

	
12,394,620.667

	
16,056,940

	
0.038

	
0.039

	
0.000023

	
0.000062

	
36.417

	
36.447

	
2.669022

	
3.621472




	

	
15

	
2253.448

	
2792.626

	
21,252,555.333

	
28,365,609

	
0.058

	
0.059

	
0.000044

	
0.000083

	
46.842

	
46.884

	
2.305773

	
2.829561




	

	
16

	
3600

	
3600

	
3,216,807.333

	
35,946,209

	
0.084

	
0.086

	
0.000078

	
0.000165

	
59.635

	
59.732

	
2.348701

	
3.032307




	

	
12

	
244.069

	
401.384

	
2,977,588.333

	
4,496,930

	
0.019

	
0.024

	
0

	
0

	
20.679

	
20.701

	
1.159309

	
1.440431




	

	
13

	
603.216

	
898.287

	
7,165,875.333

	
9,493,651

	
0.025

	
0.026

	
0.000035

	
0.000071

	
27.631

	
27.626

	
1.273332

	
1.786464




	
200

	
14

	
998.154

	
1702.5569

	
10,620,850.667

	
18,113,633

	
0.039

	
0.04

	
0

	
0

	
36.339

	
36.386

	
1.895725

	
2.250205




	

	
15

	
2256.669

	
2899.45

	
25,283,619.350

	
29,882,329

	
0.058

	
0.059

	
0.000336

	
0.000512

	
46.892

	
46.941

	
1.741518

	
2.476327




	

	
16

	
3600

	
3600

	
30406061.000

	
34993966

	
0.083

	
0.084

	
0

	
0

	
59.634

	
59.691

	
2.173201

	
3.408911




	

	
12

	
315.999

	
511.48

	
4,632,641.000

	
7,187,564

	
0.018

	
0.019

	
0.000726

	
0.000937

	
20.606

	
20.611

	
0.849315

	
1.063118




	

	
13

	
649.96

	
998.95

	
7,359,686.667

	
9,993,712

	
0.026

	
0.026

	
0.000012

	
0.000053

	
27.674

	
27.727

	
1.177795

	
1.975853




	
250

	
14

	
1052.236

	
1798.635

	
10,615,423.970

	
15,492,118

	
0.038

	
0.040

	
0.000225

	
0.000429

	
35.369

	
36.441

	
2.132518

	
5.285686




	

	
15

	
2348.584

	
3022.158

	
23,198,516.333

	
26,916,519

	
0.061

	
0.063

	
0

	
0

	
46.182

	
46.886

	
2.195878

	
3.378249




	

	
16

	
3600

	
3600

	
31,985,126.350

	
39,841,545

	
0.085

	
0.087

	
0.000047

	
0.000096

	
59.642

	
60.662

	
1.080341

	
2.231895




	

	
12

	
372.965

	
602.478

	
6,529,516.270

	
8,874,654

	
0.019

	
0.021

	
0.000264

	
0.000418

	
20.228

	
21.678

	
2.132238

	
3.441628




	

	
13

	
700.648

	
1096.126

	
9,534,255.360

	
10,346,347

	
0.028

	
0.029

	
0

	
0

	
27.432

	
28.344

	
3.041866

	
4.726763




	
300

	
14

	
1125.267

	
1900.597

	
18,285,356.330

	
20,378,676

	
0.042

	
0.043

	
0.000241

	
0.000358

	
35.636

	
36.359

	
2.508975

	
3.354484




	

	
15

	
2411.266

	
3098.486

	
23,166,586.555

	
29,786,776

	
0.061

	
0.063

	
0.000074

	
0.000085

	
45.856

	
46.612

	
1.456993

	
2.018688




	

	
16

	
3600

	
3600

	
33,064,597.980

	
36,268,497

	
0.086

	
0.088

	
0

	
0

	
59.202

	
60.342

	
2.665422

	
3.625572
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Table 3. Results of algorithms for   θ , μ ∼  0.5 , 1   .
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   B & B   -   cpu ^    (s)

	
Node Number of    B & B   

	
  UB  -   cpu ^    (s)

	
Error Bound of

 UB 

	
   ts ︷   -   cpu ^    (s)

	
Error Bound of

  ts ︷  




	
   n ˜   

	
   m ˜   

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max

	
Mean

	
Max






	

	
12

	
111.759

	
203.165

	
1,772,325.333

	
2,006,440

	
0.018

	
0.022

	
0.000342

	
0.000361

	
20.636

	
20.663

	
2.151314

	
2.733541




	

	
13

	
514.284

	
720.05

	
5,192,266.570

	
8,375,900

	
0.036

	
0.057

	
0.000023

	
0.000097

	
27.71

	
27.724

	
2.302026

	
2.604564




	
100

	
14

	
899.152

	
1511.534

	
10,440,786.667

	
15,534,053

	
0.041

	
0.044

	
0.000056

	
0.000089

	
38.454

	
41.59

	
3.211589

	
4.194101




	

	
15

	
2231.154

	
2691.187

	
21,511,386.670

	
28,404,113

	
0.062

	
0.071

	
0

	
0

	
47.426

	
47.484

	
3.053645

	
3.928604




	

	
16

	
3600

	
3600

	
32,304,624.333

	
34,845,329

	
0.086

	
0.087

	
0.000154

	
0.000203

	
60.495

	
60.688

	
4.714135

	
6.396946




	

	
12

	
197.605

	
301.479

	
2,269,584.670

	
3,575,833

	
0.017

	
0.018

	
0.000977

	
0.000995

	
20.896

	
20.912

	
1.417686

	
1.890114




	

	
13

	
570.153

	
807.542

	
6,764,995.435

	
10,027,994

	
0.025

	
0.026

	
0.000089

	
0.0000138

	
28.125

	
28.213

	
1.023524

	
1.151338




	
150

	
14

	
966.147

	
1632.498

	
10,816,813.000

	
17,165,408

	
0.039

	
0.04

	
0.000135

	
0.000185

	
36.918

	
36.995

	
1.383139

	
1.714258




	

	
15

	
2265.154

	
2823.396

	
64,825,309.666

	
20,264,395

	
0.07

	
0.094

	
0

	
0

	
47.613

	
47.704

	
1.918044

	
3.053374




	

	
16

	
3600

	
3600

	
33,081,125.000

	
38,287,571

	
0.086

	
0.091

	
0.000235

	
0.000304

	
59.542

	
59.622

	
2.339585

	
3.275121




	

	
12

	
251.663

	
412.269

	
3,364,810.333

	
4,354,750

	
0.016

	
0.017

	
0.000322

	
0.000358

	
20.588

	
20.619

	
0.679119

	
1.162433




	

	
13

	
632.148

	
910.214

	
7,692,721.250

	
12,135,354

	
0.038

	
0.064

	
0.000014

	
0.000039

	
27.675

	
27.737

	
0.843637

	
0.974668




	
200

	
14

	
1021.267

	
1741.637

	
10,359,758.667

	
18,262,014

	
0.040

	
0.041

	
0

	
0

	
36.342

	
37.353

	
1.094559

	
1.495353




	

	
15

	
2303.264

	
2935.348

	
24,840,981.000

	
29,871,474

	
0.057

	
0.058

	
0.000055

	
0.000083

	
46.872

	
46.91

	
1.243455

	
1.642072




	

	
16

	
3600

	
3600

	
36,074,135.333

	
39,275,374

	
0.083

	
0.084

	
0

	
0

	
59.671

	
59.794

	
1.942357

	
2.492556




	

	
12

	
310.286

	
507.549

	
3,193,303.333

	
5,195,728

	
0.017

	
0.018

	
0

	
0

	
20.627

	
20.651

	
0.578495

	
1.212256




	

	
13

	
669.297

	
1032.756

	
7,887,726.555

	
13,510,556

	
0.025

	
0.026

	
0.000327

	
0.000449

	
27.716

	
28.722

	
0.971304

	
1.540024




	
250

	
14

	
1077.954

	
1901.25

	
11,022,935.550

	
20,161,905

	
0.042

	
0.043

	
0.000087

	
0.000126

	
38.265

	
41.688

	
1.464696

	
2.107542




	

	
15

	
2363.186

	
3102.583

	
24,480,723.980

	
32,108,671

	
0.08

	
0.092

	
0.000355

	
0.000421

	
47.464

	
48.424

	
1.073162

	
1.436231




	

	
16

	
3600

	
3600

	
35,416,920.000

	
37,899,764

	
0.092

	
0.096

	
0.000039

	
0.000058

	
60.474

	
61.622

	
1.607212

	
2.647154




	

	
12

	
372.261

	
611.365

	
4,028,462.640

	
6,779,955

	
0.021

	
0.022

	
0.000022

	
0.000073

	
20.858

	
21.996

	
0.770591

	
1.264125




	

	
13

	
726.314

	
1143.348

	
8,899,027.570

	
13,410,513

	
0.036

	
0.057

	
0

	
0

	
28.135

	
29.234

	
1.661815

	
2.354942




	
300

	
14

	
1132.706

	
2008.646

	
14,693,257.000

	
23,608,109

	
0.059

	
0.061

	
0.0000068

	
0.000112

	
36.936

	
38.599

	
0.702051

	
1.018678




	

	
15

	
2546.264

	
3348.345

	
30,358,453.333

	
35,337,815

	
0.084

	
0.085

	
0

	
0

	
47.341

	
48.502

	
1.670674

	
2.166306




	

	
16

	
3600

	
3600

	
35,362,523.000

	
39,764,582

	
0.086

	
0.092

	
0.000034

	
0.000086

	
58.245

	
60.262

	
1.247154

	
1.626366
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