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Abstract: General overlap functions are generalized on the basis of overlap functions, which have
better application effects in classification problems, and the (weak) inflationary BL-algebras as the
related algebraic structure were also studied. However, general overlap functions are a class of
aggregation operators, and their commutativity puts certain restrictions on them. In this article, we
first propose the notion of pseudo general overlap functions as a non-commutative generalization of
general overlap functions, so as to extend their application range, then illustrate their relationship with
several other commonly used aggregation functions, and characterize some construction methods.
Secondly, the residuated implications induced by inflationary pseudo general overlap functions are
discussed, and some examples are given. Then, on this basis, we show the definitions of inflationary
pseudo general residuated lattices (IPGRLs) and weak inflationary pseudo BL-algebras, and explain
that the weak inflationary pseudo BL-algebras can be gained by the inflationary pseudo general
overlap functions. Moreover, they are more extensive algebraic structures, thus enriching the content
of existing non-classical logical algebra. Finally, their related properties and their relations with some
algebraic structures such as non-commutative residuated lattice-ordered groupoids are investigated.
The legend reveals IPGRLs include all non-commutative algebraic structures involved in the article.

Keywords: pseudo general overlap functions; fuzzy implications; inflationary pseudo general resid-
uated lattices; weak inflationary pseudo BL-algebras

MSC: 06D72; 08A72; 68T27

1. Introduction

As a special class of aggregation operators [1], overlap functions [2,3] are mainly used
in applications involving overlap problems, and also play a significant role on the multi-
attribute group decision making and image processing [4–6]. Later, Miguel et al. [7] relaxed
two boundary conditions of overlap functions and studied general overlap functions that
can be used to handle multiple situations. However, they require commutativity in their
definitions, which limits their application in practical problems to a certain extent. On the
other hand, following the research of Paiva et al. [8] on non-associative BL-algebras [9]
based on overlap functions, they put forward the concept of inflationary BL-algebras in [10],
but both of them were gained on commutative residuated lattices. In the paper, we present
pseudo general overlap functions as a non-commutative generalization of general overlap
functions, and discuss their corresponding non-commutative algebraic structures.

It is necessary to affirm our research motivation. (1) As a kind of extension of overlap
functions, general overlap functions are also included in aggregation operators. However,
the original aggregation functions, for example, copulas [11], do not require commutativity,
which signifies that commutativity of general overlap functions is not necessary. (2) In
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non-classical mathematical logic [12], the commonly used conjunctions are t-norms [13,14]
because they can better express the nature of logical “and”. Continuous t-norms are a
special class of general overlap functions, pseudo t-norms have been proposed as their
non-commutative generalization and some results have been obtained [15–17]. In addition,
in recent years, as a non-commutative generalization of overlap functions, pseudo overlap
functions [18,19] have also been studied by some scholars, the facts have also proved that
they are more effective in some practical applications. Batista et al. have also conducted
some related research. Therefore, it is very natural to generalize the general overlap
functions. (3) In practical problems, the classes of objects may have different emphasis; that
is, they are not symmetrical. At this time, it is natural to think about using non-commutative
functions in applications.

In this regard, we detach the commutativity of general overlap functions, give a
construction theorem of pseudo general overlap functions, and explore the relationship
between them and some other aggregation functions. Then, on the basis of the continuity
of the functions, two residuated implications induced by them are discussed. Finally, a
kind of non-commutative residuated lattice is defined; the inflationary pseudo general
residuated lattices and weak inflationary pseudo BL-algebras are investigated.

The content of the article is arranged as below. In the second part, we recall a few
prior pieces of knowledge, including the concepts of general overlap functions, pseudo
overlap functions, fuzzy implications, etc. As for Section 3, we introduce the definition of
pseudo general overlap functions, elaborate some construction methods, and then analyze
their relations with continuous t-norms, continuous copula, pseudo overlap functions, and
general overlap functions. After that, we study the residuated implications induced by
them, and give some specific examples. In Section 4, inflationary pseudo general residuated
lattices and weak inflationary pseudo BL-algebras are described, and the properties satisfied
by them are discussed. Finally, the relationship between (weak) inflationary pseudo BL-
algebras and other algebras such as non-commutative residuated lattice-ordered groupoids
is studied. Conclusions and references are at the end of the paper.

2. Preliminaries

A number of basic notions that will be touched upon are listed.

Definition 1 ([2,8]). Given a binary mapping O on [0, 1], if it meets requirements as below for
arbitrary x, y, z ∈ [0, 1], then it is called an overlap function:

(O1) O is symmetric;
(O2) xy = 0 when and only when O(x, y) = 0;
(O3) xy = 1 when and only when O(x, y) = 1;
(O4) O(y, x) ≥ O(z, x) when y ≥ z;
(O5) O satisfies continuity.

Definition 2 ([7]). Given a binary mapping GO on [0, 1], if it meets requirements as below for
arbitrary x, y, z ∈ [0, 1], then it is called a general overlap function (in short GOF):

(GO1) GO is symmetric;
(GO2) GO(x, 0) = GO(0, y) = 0;
(GO3) GO(1, 1) = 1;
(GO4) GO(y, x) ≥ GO(z, x) when y ≥ z;
(GO5) GO is continuous.

Some examples of two-dimensional general overlap functions are as follows.

Example 1.

(1) Any overlap function is a GOF.
(2) The mapping GO defined as GO(x, y) = max{x2 + y2 − 1, 0} is a GOF rather than an

overlap function.
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(3) The function GO defined as GO(x, y) = 2xy + x2y2 − xy2 − x2y is a GOF and it is also an
overlap function.

Definition 3 ([18,19]). Given a binary mapping PO on [0, 1], if it meets requirements as below for
arbitrary x, y, z ∈ [0, 1], then it is called a pseudo overlap function:

(PO1) xy = 0 when and only when PO(x, y) = 0;
(PO2) xy = 1 when and only when PO(x, y) = 1;
(PO3) PO satisfies monotonic increasing property;
(PO4) PO is countinuous.

Obviously, every overlap function is a pseudo overlap function. Some other common
aggregation operators are defined as below.

Definition 4 ([1,8]). Given a mapping A: [0, 1]n → [0, 1], if it meets requirements as below then
it is called an aggregation function:

(A1) A is non-decreasing about every variable: for arbitrary i ∈ {1, 2, . . . , n}, A(a1, . . . , y, . . . , an) ≥
A(a1, . . . , ai, . . . , an) when y ≥ ai;

(A2) A holds two boundary conditions: (i) A(a1, . . . , an) = 0 when ai = 0(i = 1, . . . , n) and
(ii) A(a1, . . . , an) = 1 when ai = 1(i = 1, . . . , n).

Definition 5 ([12–14]). Given a binary operation T on [0, 1], if it meets requirements as below for
arbitrary x, y, z ∈ [0, 1], then it is called a t-norm:

(T1) T satisfies symmetry;
(T2) T satisfies associativity;
(T3) T is increasing;
(T4) T with 1 as unit element, i.e., T(1, x) = T(x, 1) = 1.

Definition 6 ([11]). Given a binary operator C on [0, 1], if for arbitrary s, s′, t, t′ ∈ [0, 1] satisfying
s ≤ s′ and t ≤ t′, it meets requirements as below, then it is called a copula:

(1) C(s, t) + C(s′, t′) ≥ C(s, t′) + C(s′, t);
(2) C(s, 0) = C(0, t) = 0;
(3) it has 1 as unit element, i.e., C(s, 1) = C(1, s) = s.

Definition 7 ([20]). Given a two-dimensional mapping C on [0, 1], if it meets requirements as
below, then it is called a fuzzy conjunction:

(1) C is non-decreasing about each element;
(2) boundary conditions: C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.

Fuzzy implication is closely related to operations and is defined as below.

Definition 8 ([3,11,20]). Given a binary function I on [0, 1], if it meets requirements as below for
arbitrary a, b, c ∈ [0, 1], then it is called a fuzzy implication:

(I1) decreasing about first element: I(b, c) ≤ I(a, c) when a ≤ b;
(I2) increasing about second variable: I(c, a) ≤ I(c, b) when a ≤ b;
(I3) I(a, b) = 1 when a = b = 0 or a = b = 1, I(1, 0) = 0.

After that, some existing residuated lattice structures are given to facilitate the later content.

Definition 9 ([8,21]). An algebra L = 〈L,∧,∨, ∗,→, 0, 1〉 is defined as a non-associative residu-
ated lattice (also called “commutative residuated lattice-ordered groupoid”) if it meets requirements
as below:

(naR1) (L,∧,∨, 0, 1) is a lattice with 0 as the lower bound and 1 as the upper bound;
(naR2) (L, ∗, 1) is a commutative groupoid and it has 1 as unit element;
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(naR3) x ∗ y ≤ z when and only when x ≤ y→ z for arbitrary x, y, z ∈ L (residuation principle).

Definition 10 ([8,21]). Given a non-associative residuated lattice A, if it meets requirements as
below for arbitrary a, b, x, y ∈ A, then it is called a non-associative BL-algebra (in short naBL-
algebra):

(naBL1) x ∧ y = x ∗ (x → y) (divisibility)
(naBL2) (x → y) ∨ αa

b(y→ x) = 1, where αa
b(y→ x) = (a ∗ b) → (a ∗ (b ∗ (y → x)))

(α-prelinearity)
(naBL3) (x → y) ∨ βa

b(y→ x) = 1, where βa
b(y→ x) = b → (a → ((a ∗ b) ∗ (y → x)))

(β-prelinearity)

Definition 11 ([10]). Given an algebra L = 〈L,∧,∨, ∗,→, 0, 1〉, if it meets requirements as below,
then it is called an inflationary general residuated lattice (in short IGRL), where the operator ∗
satisfies x ≤ x ∗ 1 for arbitrary x ∈ L:

(L1) (L,∧,∨, 0, 1) is a lattice with 0 as the lower bound and 1 as the upper bound;
(L2) (L, ∗) is a commutative groupoid, i.e., L is a nonempty set, the operator ∗ is commutative

on L;
(L3) (∗,→) satisfies the residuation principle.

3. Pseudo General Overlap Functions and Residuated Implications

In this part, we state the related concepts of pseudo general overlap functions and
residuated implications induced by them.

Definition 12. Given a binary mapping PGO on [0, 1], if it meets the following requirements then
it is called a pseudo general overlap function (in short PGOF):

(PGO1) PGO(x, 0) = PGO(0, y) = 0 for arbitrary x, y ∈ [0, 1];
(PGO2) PGO(1, 1) = 1;
(PGO3) PGO is non-decreasing;
(PGO4) PGO is countinuous.

Example 2.

(1) Every GOF and pseudo overlap function is a PGOF.
(2) The function PGO defined by PGO(x, y) = max{xp + yq − 1, 0} where p, q > 0 is a PGOF,

and it is a GOF when p = q.
(3) The function PGO defined by PGO(x, y) = xy(x − x2 − xy + x2y + 1) is a PGOF and is

also a pseudo overlap function, but not a GOF.

(4) The function PGO defined as PGO(x, y) = min{ (x+1)
√

y
2 , y

√
x} is a PGOF, but it is not

a GOF.

Lemma 1. Given a conjunctive continuous commutative aggregation function F on [0, 1], F is
a GOF.

Proof. This is obvious from [7] (Proposition 2).

Theorem 1. Given a t-norm T, if it is continuous, then it meets (PGO1) ∼ (PGO4), i.e., it is
a PGOF.

Proof. By Lemma 1, we can obtain that T is a general overlap function, and then it is
a PGOF.

Since any continuous pseudo-t-norm is a t-norm (see [15]) and any positive continuous
copula is a pseudo overlap function (see [22]), based on the above theorem, we obtain the
following relationship diagram between some operators (see Figure 1).
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Figure 1. Relationship of the several kinds of functions considered in the paper.

Next, we give a construction theorem of pseudo general overlap function similarly.

Theorem 2. The mapping PGO on [0, 1] is a PGOF when and only when there exist binary
operators g, h on [0, 1] with PGO(x, y) = g(x,y)

g(x,y)+h(x,y) satisfying conditions as below:

(1) g(x, z) ≥ g(x, y), g(z, x) ≥ g(y, x) and h(x, z) ≤ h(x, y), h(z, x) ≤ h(y, x) when y ≤ z;
(2) g(x, 0) = g(0, x) = 0 for arbitrary x ∈ [0, 1];
(3) h(1, 1) = 0;
(4) g and h are continuous;
(5) g(x, y) + h(x, y) 6= 0 for arbitrary x, y ∈ [0, 1].

Proof.
(⇒) Assume that PGO is a PGOF, and we make g(x, y) = PGO(x, y), h(x, y) = 1− PGO(x, y);
then PGO(x, y) = g(x,y)

g(x,y)+h(x,y) , (1) ∼ (5) are also obviously established.

(⇐) Suppose that there are binary operators g, h on [0, 1] keeping PGO(x, y) = g(x,y)
g(x,y)+h(x,y)

and they satisfy the conditions (1)∼(5), we verify that PGO is a PGOF. By (2) and (5), if xy =
0, then g(x, y) = 0 and g(x, y) + h(x, y) 6= 0 ⇒ PGO(x, y) = 0, i.e., PGO satisfies (PGO1).
If xy = 1, by (3) and (5), we obtain g(x, y) 6= 0, then PGO(x, y) = g(x,y)

g(x,y) = 1, i.e., PGO

satisfies (PGO2). Suppose that x ≤ y, PGO(z, x)− PGO(z, y) = g(z,x)
g(z,x)+h(z,x) −

g(z,y)
g(z,y)+h(z,y) =

g(z,x)h(z,y)−g(z,y)h(z,x)
[g(z,x)+h(z,x)][g(z,y)+h(z,y)] , by (1), we have that g(z, x) ≤ g(z, y) and h(z, y) ≤ h(z, x) ⇒
g(z, x)h(z, y)− g(z, y)h(z, x) ≤ 0, i.e., PGO(z, x)−PGO(z, y) ≤ 0⇒ PGO(z, x) ≤ PGO(z, y),
analogously, PGO(x, z) ≤ PGO(y, z), so PGO satisfies (PGO3). It is obvious that PGO
satisfies (PGO4) by (4). Therefore PGO is a PGOF.

Several methods for generating new pseudo general overlap functions from existing
functions are displayed as below.

Proposition 1. Let PGO1, . . . , PGOn be pseudo general overlap functions and w1, . . . , wn be

positive weights satisfying
n
∑

i=1
wi = 1, then the operation PGO(x, y) =

n
∑

i=1
wi · PGOi(x, y) is a

pseudo general overlap function.

Proof. Monotonicity and continuity are obvious. If xy = 0, PGO(x, y) =
n
∑

i=1
wiPGOi(x, y) =

n
∑

i=1
wi · 0 = 0, and if xy = 1, PGO(x, y) =

n
∑

i=1
wi · 1 =

n
∑

i=1
wi = 1. So PGO satisfies (PGO1)

and (PGO2), then PGO is a pseudo general overlap function.
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Proposition 2. Given two pseudo general overlap function PGO1, PGO2, and a continuous
t-norm T, then the operator PGOT formulated as PGOT(x, y) = T(PGO1(x, y), PGO2(x, y)) is
a PGOF.

Proof. We can easily obtain PGO1(x, y) = PGO2(x, y) = 0 when xy = 0, since T has 1 as
identity element, PGOT(x, y) = T(PGO1(x, y), PGO2(x, y)) = T(0, 0) ≤ T(0, 1) = 0, i.e.,
T(0, 0) = 0, so PGOT satisfies (PGO1). If xy = 1, PGO1(x, y) = PGO2(x, y) = 1, then
PGOT(x, y) = T(PGO1(x, y), PGO2(x, y)) = T(1, 1) = 1, so PGOT satisfies (PGO2). Since T
is increasing and continuous, PGOT is also increasing and continuous. It holds that PGOT
satisfies (PGO3) and (PGO4).

We know that t-norms are included in aggregation operators, so we can expand to
obtain the proposition as below.

Proposition 3. Given pseudo general overlap functions PGO1, . . . , PGOn, and A is a continuous
aggregation function, then the mapping PGOA formulated as PGOA(x, y) = A(PGO1(x, y), . . . ,
PGOn (x, y)) is a PGOF.

Proof. We can easily obtain PGOi(x, y) = 0 when xy = 0, for any i ∈ {1, . . . , n}; then
PGOA(x, y) = A(0, . . . , 0) = 0, i.e., PGOA satisfies (PGO1). Similarly, if xy = 1, PGOi(x, y) = 1
for any i ∈ {1, . . . , n}, then PGOA(x, y) = A(1, . . . , 1) = 1, so PGOA satisfies (PGO2). It is
obvious that PGOA is increasing and continuous. Therefore PGOA is a PGOF.

Proposition 4. Given a pseudo general overlap function PGO, and a continuous t-norm T, then
the mapping PGOT defined as PGOT(x, y) = PGO(x, y) · T(x, y) is a PGOF.

Proof. PGOT(x, y) = PGO(x, y) · T(x, y) = 0 · T(x, y) = 0 when xy = 0, if xy = 1, then
PGOT(x, y) = PGO(x, y) · T(x, y) = 1 · T(1, 1) = 1, so we have PGOT satisfies (PGO1) and
(PGO2). It is clear that PGOT satisfies (PGO3) and (PGO4). Therefore PGOT is a pseudo
general overlap function.

Similarly, we can extend the t-norm in the above proposition to the aggregation
function to obtain such a proposition.

Proposition 5. Given a pseudo general overlap function PGO, and a continuous aggregation oper-
ator A, then function PGOA formulated as PGOA(x, y) = PGO(x, y) · A(x, y) is also a PGOF.

Proof. It is obvious that the function PGOA satisfies (PGO3) and (PGO4). Since xy = 0⇒
PGOA(x, y) = 0 · A(x, y) = 0 and PGOA(x, y) = 1 · A(1, 1) = 1 when xy = 1, PGOA also
satisfies (PGO1) and (PGO2). It holds that PGOA is a PGOF.

PGOFs also no longer have unit element, so we have the following definition.

Definition 13. Given a pseudo general overlap function PGO on [0, 1], it is called deflationary
when it satisfies ∀x ∈ [0, 1], PGO(x, 1) ≤ x, PGO(1, x) ≤ x; and it is called inflationary when it
meets ∀x ∈ [0, 1], PGO(x, 1) ≥ x, PGO(1, x) ≥ x.

Example 3.

(1) The pseudo general overlap function PGO defined by PGO(x, y) = max{0, xp + yq− 1} where
p, q > 0; when p, q > 1 it is deflationary, since PGO(x, 1) = xp ≤ x and PGO(1, x) = xq ≤
x. When 0 < p, q < 1, it is inflationary, since PGO(x, 1) = xp ≥ x and PGO(1, x) = xq ≥ x.

(2) The pseudo general overlap function PGO defined by PGO(x, y) = min{ (x+1)
√

y
2 , y

√
x} is

inflationary, since PGO(x, 1) ≥ x and PGO(1, x) ≥ x.

Now we discuss the residuated implications induced by pseudo general overlap
functions. We first give an existing theorem as follows.
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Theorem 3 ([3]). Given a fuzzy conjunction C satisfying C(1, y) > 0 for arbitrary y ∈ (0, 1]. For
any x, y ∈ [0, 1] consider the fuzzy implication IC induced by C as IC(x, y) = sup{z ∈ [0, 1] |
C(x, z) ≤ y}, then statements as below are equivalent:

(1) C satisfies left continuity about the second element;
(2) C and IC meet the residuation property, i.e., C(x, y) ≤ z⇔ IC(x, z) ≥ y;
(3) IC(x, y) = max{z ∈ [0, 1] | C(x, z) ≤ y}.

In fact, we can easily know that not all pseudo general overlap functions satisfy
PGO(1, y) > 0 for any y ∈ [0, 1]; for example, the mapping PGO defined as

PGO(x, y) =

{
0 min{x, y} ≤ 1

4
16
9 (x− 1

4 )(y−
1
4 )

2 + 1
4 otherwise

(1)

is a pseudo general overlap function. However, when y = 0.25 > 0, PGO(1, y) = 0. So we
consider the case in the following lemma.

Lemma 2. Given an inflationary pseudo general overlap function PGO on [0, 1], it is a fuzzy
conjunction satisfying PGO(1, y) > 0 for any y ∈ (0, 1].

Proof. By definition it is clear that PGO is a fuzzy conjunction. Since PGO is inflationary,
PGO(1, y) ≥ y > 0 for any y ∈ (0, 1].

Evidently, every PGOF is a fuzzy conjunction satisfying continuity according to def-
inition. When the two arguments of an inflationary PGOF are symmetric, it can induce
a residuated implication as an inflationary GOF (see [10]). If the function is no longer
commutative, then we have the following proposition.

Proposition 6. Given the function PGO is an inflationary PGOF, the mappings I(1)PGO, I(2)PGO

defined by I(1)PGO(x, y) = sup{z ∈ [0, 1] | PGO(z, x) ≤ y}, I(2)PGO(x, y) = sup{z ∈ [0, 1] |
PGO(x, z) ≤ y}, respectively, are fuzzy implication, PGO and they satisfy the residuation principle.
In addition, I(1)PGO, I(2)PGO can be marked as follows: I(1)PGO(x, y) = max{z ∈ [0, 1] | PGO(z, x) ≤ y},
I(2)PGO(x, y) = max{z ∈ [0, 1] | PGO(x, z) ≤ y}.

Proof. For arbitrary x, y, z ∈ [0, 1], I(1)PGO(x, z) = sup{z′ ∈ [0, 1] | PGO(z′, x) ≤ z}, I(1)PGO(y, z)
= sup{z′ ∈ [0, 1] | PGO(z′, y) ≤ z}. Since PGO is increasing, it holds that PGO(z′, x) ≤
PGO(z′, y) when x ≤ y. Then PGO(z′, y) ≤ z ⇒ PGO(z′, x) ≤ z, so {z′ ∈ [0, 1] |
PGO(z′, y) ≤ z} ⊆ {z′ ∈ [0, 1] | PGO(z′, x) ≤ z} ⇒ sup{z′ ∈ [0, 1] | PGO(z′, y) ≤ z} ≤
sup{z′ ∈ [0, 1] | PGO(z′, x) ≤ z}, i.e., I(1)PGO(y, z) ≤ I(1)PGO(x, z). Therefore, the func-

tion I(1)PGO is decreasing about the first element. Similarly, we can obtain that the func-

tion I(2)PGO is also decreasing about the first element. On the other hand, I(1)PGO(z, x) =

sup{z′ ∈ [0, 1] | PGO(z′, z) ≤ x} and I(1)PGO(z, y) = sup{z′ ∈ [0, 1] | PGO(z′, z) ≤ y}. Since
PGO(z′, z) ≤ x ≤ y, we have that sup{z′ ∈ [0, 1] | PGO(z′, z) ≤ x} ≤ sup{z′ ∈ [0, 1] |
PGO(z′, z) ≤ y}, i.e., I(1)PGO(z, x) ≤ I(1)PGO(z, y), so the function I(1)PGO is increasing about the

second element. Similarly, we also have that the function I(2)PGO is increasing about the sec-

ond element. Moreover, it holds that I(1)PGO(0, 0) = sup{z ∈ [0, 1] | PGO(z, 0) ≤ 0} =

sup{z ∈ [0, 1] | 0 ≤ 0} = 1, I(1)PGO(1, 1) = sup{z ∈ [0, 1] | PGO(z, 1) ≤ 1} = 1.

I(1)PGO(1, 0) = sup{z ∈ [0, 1] | PGO(z, 1) ≤ 0}, since PGO is inflationary, PGO(z, 1) ≥ z. If

z ∈ (0, 1], PGO(z, 1) > 0. Therefore, I(1)PGO(1, 0) = 0. Similarly, we have that I(2)PGO(0, 0) = 1,

I(2)PGO(1, 1) = 1, I(2)PGO(1, 0) = 0. Therefore the function I(1)PGO and I(2)PGO are fuzzy implication.

By the above theorem and lemma, since PGO is continuous, it is clear that PGO and I(1)PGO,
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I(2)PGO satisfy PGO(x, y) ≤ z iff I(1)PGO(y, z) ≥ x iff I(2)PGO(x, z) ≥ y. Moreover, I(1)PGO(x, y) =

max{z ∈ [0, 1] | PGO(z, x) ≤ y}, I(2)PGO(x, y) = max{z ∈ [0, 1] | PGO(x, z) ≤ y}.

Two fuzzy implications I(1)PGO, I(2)PGO are also called residuated implications (RPGO-
implication) induced by the pseudo general overlap function PGO, and they form adjoint
pairs (PGO, I(1)PGO) and (PGO, I(2)PGO). We give some examples as shown in the table below
(see Table 1).

Table 1. Pseudo general overlap functions and their residuated implications.

Pseudo General Overlap Function Residuated Implications

(1) PGO(x, y) = max{0, xp + yq − 1}, 0 < p, q < 1
I(1)PGO(x, y) =

{
1, xq ≤ y
p
√

y− xq + 1, otherwise
,

I(2)PGO(x, y) =

{
1, xp ≤ y
q
√

y− xp + 1, otherwise

(2) PGO(x, y) = xy(x− x2 − xy + x2y + 1)

I(1)PGO(x, y) =

{
φ(x, y), x > y
1, otherwise

,

I(2)PGO(x, y) =

−1−x+x2+
√

(1+x−x2)2+4(x−1)y
2(x2−x) , x > y

1, otherwise

(3) PGO(x, y) = min{ (x+1)
√

y
2 , y

√
x} I(1)PGO(x, y) =

{
1, x ≤ y
y2

x2 , x > y
, I(2)PGO(x, y) =

{
1, x ≤ y2

y√
x , x > y2

(4) PGO(x, y) = max{min{x, y
2}, x + y− 1}

I(1)PGO(x, y) =

{
max{min{ x

2 , y}, y− x + 1}, x > y
1, otherwise

,

I(2)PGO(x, y) =

{
min{max{y− x + 1, 2− 2x}, 2y, 2x}, x > y
1, otherwise

(5) PGO(x, y) = max{xy2, xy
2 }

I(1)PGO(x, y) =

{
1, max{x2, x

2} ≤ y
min{ 2y

x , y
x2 }, otherwise

,

I(2)PGO(x, y) =

{
1, x ≤ y

min{ 2y
x , max{ 1

2 ,
√

y
x}}, otherwise

(6) PGO(x, y) = max{x2y, x + y− 1}
I(1)PGO(x, y) =

{
min{max{ 1−x

x , y− x + 1},
√

y
x}, x > y

1, otherwise
,

I(2)PGO(x, y) =

{
min{max{y− x + 1, 1

x+1},
y
x2 }, x > y

1, otherwise

Where φ(x, y) = 1
3 + 3

√
−α +

√
α2 + β3 + 3

√
−α−

√
α2 + β3, and

α = −27y+9x(x2−x)−2(x−x2)2

54(x2−x)2 , β = 3x(x2−x)−(x−x2)2

9(x2−x)2 .

4. Inflationary Pseudo General Residuated Lattices and Weak Inflationary Pseudo
BL-Algebras

In this part, we extend the inflationary general residuated lattices to the inflationary
pseudo general residuated lattices, defined as below.

Definition 14. Given an algebra A = 〈L,∧,∨, ∗,→, , 0, 1〉, where ∗ is a non-commutative
inflationary binary operator, i.e., 1 ∗ x ≥ x and x ∗ 1 ≥ x, if it meets requirements as below then it
is an inflationary pseudo general residuated lattice (in short IPGRL):

(A1) 〈L,∧,∨, 0, 1〉 is a lattice with 0 as the lower bound and 1 as the upper bound;
(A2) 〈L, ∗〉 is a groupoid;
(A3) x ∗ z ≤ y when and only when z ≤ x → y, z ∗ x ≤ y when and only when z ≤ x y, for

arbitrary x, y, z ∈ L (two-residuation principle).
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Remark 1. Given an IPGRL L, (A3) can also be marked as x ∗ y ≤ z when and only when
y ≤ x → z when and only when x ≤ y z for arbitrary x, y, z ∈ L.

Example 4. Given an inflationary PGOF ∗,→, and are residuated implications induced from
∗, i.e., x → y = max{z ∈ [0, 1] | x ∗ z ≤ y}, x  y = max{z ∈ [0, 1] | z ∗ x ≤ y}, then
L = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉 is an IPGRL.

Next, we discuss some properties satisfied by IPGRLs.

Proposition 7. Given an IPGRL L = 〈L,∧,∨, ∗,→, , 0, 1〉, for arbitrary a, b, c ∈ L, it satisfies:

(A4) a ∗ (a→ b) ≤ b, (a b) ∗ a ≤ b;
(A5) a ∗ b ≤ a ∗ c and b ∗ a ≤ c ∗ a when b ≤ c;
(A6) a→ b ≤ a→ c and a b ≤ a c when b ≤ c;
(A7) c→ a ≤ b→ a and c a ≤ b a when b ≤ c;
(A8) (a ∨ b) ∗ c = (a ∗ c) ∨ (b ∗ c), c ∗ (a ∨ b) = (c ∗ a) ∨ (c ∗ b);
(A9) (a ∨ b)→ c = (a→ c) ∧ (b→ c), (a ∨ b) c = (a c) ∧ (b c);
(A10) a→ (b ∧ c) = (a→ b) ∧ (a→ c), a (b ∧ c) = (a b) ∧ (a c);
(A11) a ≤ b (a ∗ b), a ≤ b→ (b ∗ a);
(A12) a ∗ 0 = 0 ∗ a = 0;
(A13) a→ 1 = a 1 = 1;
(A14) a ≤ b when a→ b = 1 or a b = 1;
(A15) a ≤ b iff a and b are comparable and a → (b ∗ 1) = 1 iff a and b are comparable and

a (1 ∗ b) = 1;
(A16) 1 ∗ a = a ∗ 1 = a when and only when a ∧ b ≥ a ∗ b and a ∧ b ≥ b ∗ a;
(A17) If ∗ is associative, then (a→ b) ∗ (b→ c) ≤ a→ c and (b c) ∗ (a b) ≤ a c.

Proof.

(A4) By (A3), a → b ≤ a → b ⇒ a ∗ (a → b) ≤ b; similarly, a  b ≤ a  b, then
(a b) ∗ a ≤ b;

(A5) Since a ∗ c ≤ a ∗ c, by (A3), it is clear that b ≤ c→ (c ∗ b); then a ≤ c→ (c ∗ b) when
a ≤ b, so c ∗ a ≤ c ∗ b. Similarly, since b ∗ c ≤ b ∗ c, it holds that a ≤ b ≤ c (b ∗ c);
then a ∗ c ≤ b ∗ c;

(A6) If a ≤ b, by (A4) it is clear that c ∗ (c → a) ≤ a ≤ b, by (A3) it holds that c → a ≤
c→ b; similarly, (c a) ∗ c ≤ a ≤ b; then c a ≤ c b;

(A7) If a ≤ b, by (A4) and (A5), a ∗ (b→ c) ≤ b ∗ (b→ c) ≤ c; then by (A3) it is clear that
b→ c ≤ a→ c. Similarly, (b c) ∗ a ≤ (b c) ∗ b ≤ c, so b c ≤ a c;

(A8) The former has been proved in detail in [10], here we only prove the latter. Because
a ≤ a ∨ b and b ≤ a ∨ b, by (A5), c ∗ a ≤ c ∗ (a ∨ b) and c ∗ b ≤ c ∗ (a ∨ b), so
c ∗ (a ∨ b) ≥ (c ∗ a) ∨ (c ∗ b). On the other hand, c ∗ a ≤ (c ∗ a) ∨ (c ∗ b) and
c ∗ b ≤ (c ∗ a) ∨ (c ∗ b), so by (A3) it holds that a ≤ c → [(c ∗ a) ∨ (c ∗ b)] and
b ≤ c → [(c ∗ a) ∨ (c ∗ b)], so a ∨ b ≤ c → [(c ∗ a) ∨ (c ∗ b)]. Therefore c ∗ (a ∨ b) ≤
[(c ∗ a) ∨ (c ∗ b)]. Then c ∗ (a∨ b) = (c ∗ a) ∨ (c ∗ b);

(A9) Since a ≤ a ∨ b and b ≤ a ∨ b, by (A7) it holds that (a ∨ b) → c ≤ a → c and
(a∨ b)→ c ≤ b→ c, so (a∨ b)→ c ≤ (a→ c) ∧ (b→ c). Analogously, it holds that
(a∨ b) c ≤ a c and (a∨ b) c ≤ b c; then (a∨ b) c ≤ (a c)∧ (b c).
On the other hand, assume that p ≤ a → c and p ≤ b → c; then by (A3), a ∗ p ≤ c
and b ∗ p ≤ c. By (A8) it is clear that (a ∨ b) ∗ p = (a ∗ p) ∨ (b ∗ p) ≤ c ⇒ p ≤
(a ∨ b) → c according to (A3). So (a → c) ∧ (b → c) ≤ (a ∨ b) → c. Similarly,
(a c) ∧ (b c) ≤ (a∨ b) c.

(A10) Since b ∧ c ≤ b and b ∧ c ≤ c, by (A6) we have that a → (b ∧ c) ≤ a → b and a →
(b∧ c) ≤ a→ c, so a→ (b∧ c) ≤ (a→ b) ∧ (a→ c). Similarly, a (b∧ c) ≤ a b
and a (b∧ c) ≤ a c; then a (b∧ c) ≤ (a b) ∧ (a c). On the other hand,
the certificate is the same as above;
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(A11) Since a ∗ b ≤ a ∗ b, then a ≤ b (a ∗ b) by (A3); similarly, because b ∗ a ≤ b ∗ a, we
can easily obtain a ≤ b→ (b ∗ a);

(A12) Since a→ 0 ≥ 0 and a 0 ≥ 0, by (A3), it is clear that a ∗ 0 ≤ 0 and 0 ∗ a ≤ 0. Since
a ∗ 0 ≥ 0 and 0 ∗ a ≥ 0, it is clear that a ∗ 0 = 0 ∗ a = 0;

(A13) Since a ∗ 1 ≤ 1, by (A3) we have that 1 ≤ a → 1, but a → 1 ≤ 1, so a → 1 = 1.
Similarly, 1 ∗ a ≤ 1⇒ 1 ≤ a 1⇒ a 1 = 1. Therefore, a→ 1 = a 1 = 1.

(A14) If a→ b = 1, then 1 ≤ a→ b, by (A3), a ∗ 1 ≤ b, since ∗ is inflationary, a ≤ a ∗ 1 ≤ b,
so a ≤ b. In the same way if a b = 1, then 1 ≤ a b⇒ 1 ∗ a ≤ b⇒ a ≤ 1 ∗ a ≤ b;
thus a ≤ b.

(A15) We can easily obtain a ≤ b ⇒ a ∗ 1 ≤ b ∗ 1 and 1 ∗ a ≤ 1 ∗ b by (A5); then
1 ≤ a → (b ∗ 1) and 1 ≤ a  (1 ∗ b) according to (A3), since a → (b ∗ 1) ≤ 1
and a  (1 ∗ b) ≤ 1, so a → (b ∗ 1) = a  (1 ∗ b) = 1. On the other hand, if
a  (1 ∗ b) = 1 then 1 ∗ a ≤ 1 ∗ b, since a and b are comparable, a ≤ b. Similarly,
a→ (b ∗ 1) = 1⇒ a ∗ 1 ≤ b ∗ 1, according to a and b being comparable, it also holds
that a ≤ b.

(A16) For arbitrary a, b ∈ L, if 1 ∗ a = a ∗ 1 = a, by (A5), a ∗ b ≤ a ∗ 1 = a and a ∗ b ≤
1 ∗ b = b, b ∗ a ≤ 1 ∗ a = a and b ∗ a ≤ b ∗ 1 = b, so a ∗ b ≤ a ∧ b and b ∗ a ≤ a ∧ b.
On the other hand, if a ∗ b ≤ a∧ b and b ∗ a ≤ a∧ b, it is clear that a ∗ 1 ≤ a∧ 1 = a
and 1 ∗ a ≤ a ∧ 1 = a. Because ∗ is inflationary, we can obtain that a ∗ 1 ≥ a and
1 ∗ a ≥ a. Thus, a ∗ 1 = a = 1 ∗ a.

(A17) By (A4) and (A5), a ∗ (a → b) ∗ (b → c) ≤ b ∗ (b → c) ≤ c. According to the
residuation property, a ∗ [(a → b) ∗ (b → c)] ≤ c ⇔ (a → b) ∗ (b → c) ≤ a → c.
Similarly, when [(b  c) ∗ (a  b)] ∗ a = (b  c) ∗ [(a  b) ∗ a], we have that
(b c) ∗ (a b) ≤ a c.

Theorem 4. Given an IPGRL L = 〈L,∧,∨, ∗,→, , 0, 1〉, for arbitrary x, y ∈ L, it holds that
x → y = ∨{z ∈ L | x ∗ z ≤ y} and x  y = ∨{z ∈ L | z ∗ x ≤ y} when 〈L,∧,∨, 0, 1〉 is a
complete lattice. Moreover, 1→ x ≤ x and 1 x ≤ x.

Proof. By (A4), x ∗ (x→ y) ≤ y, so (x→ y) ∈ {z ∈ L | x ∗ z ≤ y}. Since x ∗ z ≤ y when and
only when z ≤ x→ y, i.e., x→ y = max{z ∈ L | x ∗ z ≤ y}, so x→ y = ∨{z ∈ L | x ∗ z ≤ y}.
Similarly, since (x  y) ∗ x ≤ y ⇒ (x  y) ∈ {z ∈ L | z ∗ x ≤ y}, z ∗ x ≤ y when and
only when z ≤ x  y, then x  y = max{z ∈ L | z ∗ x ≤ y} = ∨{z ∈ L | z ∗ x ≤ y}.
Secondly, according to the above, we can obtain 1 → x = ∨{z ∈ L | 1 ∗ z ≤ x} and
1  x = ∨{z ∈ L | z ∗ 1 ≤ x}. Since 1 ∗ x ≥ x and x ∗ 1 ≥ x for arbitrary x ∈ L, it holds
that z ≤ 1 ∗ z (z ∗ 1) ≤ x, i.e., ∨{z ∈ L | 1 ∗ z ≤ x} ≤ x and ∨{z ∈ L | z ∗ 1 ≤ x} ≤ x. So
1→ x ≤ x and 1 x ≤ x.

Then the notion and some properties of weak inflationary pseudo BL-algebras are
presented. We first give the definition of weak inflationary BL-algebra.

Definition 15. Given an algebra L = 〈L,∧,∨, ∗,→, 0, 1〉, if it is an IGRL and satisfies the
following requirements then it is called a weak inflationary BL-algebra (in short weak IBL-algebra):

(1) If y ≤ x, y = x ∗ (x → y) (general divisibility);
(2) (x → (y ∗ 1)) ∨ (y→ (x ∗ 1)) = 1 (general prelinearity).

In fact, weak inflationary BL-algebras are a non-associative algebraic structure includ-
ing BL-algebras (see [9]), which can be gained by the inflationary general overlap functions
with unit element 1. (If an inflationary GOF satisfies the divisibility, it is equivalent to it
having 1 as unit element.) Some scholars have also conducted generalization research on
the basis of pseudo BL-algebras [23]. Then, based on inflationary pseudo general resid-
uated lattices and considering the two residuated implications induced by inflationary
PGOFs, we introduce a new kind of algebraic structure in which operator is non-associative,
non-commutative, and does not have unit element.
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Definition 16. Given an IPGRL L = 〈L,∧,∨, ∗,→, , 0, 1〉, if it meets the following require-
ments then it is a weak inflationary pseudo BL-algebra (in short WIPBL):
(WIPBL1) y = x ∗ (x → y) = (x y) ∗ x when y ≤ x (general two-divisibility);
(WIPBL2) (x → (y ∗ 1)) ∨ (y → (x ∗ 1)) = (x  (1 ∗ y)) ∨ (y  (1 ∗ x)) = 1 (general
two-prelinearity).

After that, we certify that there is a one-to-one correspondence between the inflationary
PGOFs and the WIPBLs.

Lemma 3. Given the function PGO is an inflationary PGOF on [0, 1], PGO satisfies general
two-divisibility and general two-prelinearity.

Proof. We might as well write the function PGO as ∗, and→ and represent two residu-
ated implications induced by PGO.

(i) Since ∗ is inflationary, y ≤ x ∗ 1 when y ≤ x. Moreover, y ≥ 0 = x ∗ 0, so there
is t ∈ [0, 1] satisfying y = x ∗ t. Then we gain y ≥ x ∗ t, and t ≤ x → y according to
residuation property (A3). Thus by (A5), y = x ∗ t ≤ x ∗ (x → y). On the other hand, by
(A4), x ∗ (x → y) ≤ y. So x ∗ (x → y) = y. Analogously, (x  y) ∗ x = y when y ≤ x.
Therefore PGO meets (WIPBL1).

(ii) Since [0, 1] is linearly ordered, it holds that x ≤ y or y ≤ x for any x, y ∈ [0, 1].
When x ≤ y, by (A15), x → (y ∗ 1) = 1 and x (1 ∗ y) = 1, that is, (x → (y ∗ 1)) ∨ (y →
(x ∗ 1)) = (x (1 ∗ y)) ∨ (y (1 ∗ x)) = 1. Otherwise, y ≤ x⇒ y→ (x ∗ 1) = 1 as well
as y (1 ∗ x) = 1, i.e., PGO meets (WIPBL2).

Therefore PGO satisfies general two-divisibility and general two-prelinearity.

Proposition 8. Given the algebra A = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉, A is a WIPBL when ∧ is the
minimization operator, ∨ is the maximization operator, ∗ is an inflationary PGOF,→ and are
residuated implications induced by ∗.

Proof. We can easily obtain A = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉 is a IPGRL; then by Lemma 3 it
is clear that A is a WIPBL.

Example 5. Given the algebra L = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉, where x∧ y = min{x, y}, x∨ y =

max{x, y}, x ∗ y = min{ (x+1)
√

y
2 , y

√
x}, x  y =

{
1, x ≤ y
y2

x2 , x > y
and x → y =

{
1, x ≤ y2

y√
x , x > y2

as (3) as shown in Table 1. It is clear that L satisfies (A1) ∼ (A3), i.e., it is an IPGRL. If

y ≤ x, x → y = y√
x , and x  y = y2

x2 ; then x ∗ (x → y) = min{
(x+1)

√
y√
x

2 , y} = y (since

y ≤ x ⇒ (y +
√

x)2 ≤ (x + 1)2 ⇒ (y +
√

x)2 − (y−
√

x)2 < (x + 1)2 ⇒ 4y
√

x < (x +

1)2 ⇒ 2
√

y
√

x < x + 1 ⇒ y <
(x+1)

√
y√
x

2 ), and (x  y) ∗ x = min{
(

y2

x2 +1)
√

x
2 , y} = y (since

(x−
√

xy)2 + y2(1− x) = x2 + y2− 2xy
√

x ≥ 0⇒
√

xy2 + x2√x ≥ 2x2y⇒ y ≤
(

y2

x2 +1)
√

x
2 ),

so L satisfies general two-divisibility. Moreover, since (x → (y ∗ 1)) ∨ (y → (x ∗ 1)) = (x →√
y) ∨ (y →

√
x) = 1, (x  (1 ∗ y)) ∨ (y  (1 ∗ x)) = (x  y) ∨ (y  x) = 1, L satisfies

general two-prelinearity. Thus the algebra L is a WIPBL.

A few natures met by WIPBLs are shown as follows.

Proposition 9. Given WIPBL L = 〈L,∧,∨, ∗,→, , 0, 1〉, it satisfies requirements as below for
arbitrary a, b, c ∈ L:

(WIPBL3) (a b) ∗ a ≤ a and a ∗ (a→ b) ≤ a if b ≤ a;
(WIPBL4) b ≤ a→ b and b ≤ a b if 1 ∗ a = a ∗ 1 = a and b ≤ a;
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(WIPBL5) a → b ≤ (b → c)  (a → c) and a  b ≤ (b  c) → (a  c) if a ∗ (b ∗ c) =
(a ∗ b) ∗ c and c ≤ b ≤ a;

(WIPBL6) a → b ≤ (c → a) → (c → b) and a  b ≤ (c  a)  (c  b) if a ∗ (b ∗ c) =
(a ∗ b) ∗ c and b ≤ a ≤ c;

(WIPBL7) a→ b ≤ (c ∗ a)→ (c ∗ b) and a b ≤ (a ∗ c) (b ∗ c) if a ∗ (b ∗ c) = (a ∗ b) ∗ c
and b ≤ a;

(WIPBL8) (b→ c) ∗ a ≤ b→ (c ∗ a) and a ∗ (b c) ≤ b (a ∗ c) if a ∗ (b ∗ c) = (a ∗ b) ∗ c
and c ≤ b.

Proof.

(WIPBL3) Since weak inflationary pseudo BL-algebra satisfies general two-divisibility, then
(a b) ∗ a = b ≤ a when b ≤ a, similarly, a ∗ (a→ b) ≤ a.

(WIPBL4) If b ≤ a, b = a ∗ (a → b) = (a  b) ∗ a. By (A16), 1 ∗ a = a ∗ 1 = a ⇒
a ∗ (a→ b) ≤ a∧ (a→ b) ≤ a→ b, so b ≤ a→ b. Analogously, we can obtain
b ≤ a b.

(WIPBL5) According to general two-divisibility and (A5), if c ≤ b ≤ a, then a ∗ (a →
b) ∗ (b → c) = b ∗ (b → c) = c ≤ c. Then by (A3) and associativity, it holds
that (a→ b) ∗ (b→ c) ≤ a→ c⇒ a→ b ≤ (b→ c) (a→ c). Analogously,
when a ∗ (b ∗ c) = (a ∗ b) ∗ c, we have that a b ≤ (b c)→ (a c).

(WIPBL6) According to two-divisibility and (A5), if b ≤ a ≤ c, then (a∧ c) ∗ (a→ b) ≤
a∗ (a→ b) = b ≤ b, and a∧ c = a = c) ∗ (c→ a), so [c∗ (c→ a)] ∗ (a→ b) ≤ b.
If a ∗ (b ∗ c) = (a ∗ b) ∗ c, then c ∗ [(c → a) ∗ (a → b)] = [c ∗ (c → a)] ∗ (a →
b) ≤ b, by (A3) (c → a) ∗ (a → b) ≤ c → b ⇒ a → b ≤ (c → a) → (c → b).
Analogously, a b ≤ (c a) (c b).

(WIPBL7) Since weak inflationary pseudo BL-algebra satisfies two-divisibility, a ∗ (a→
b) = b ≤ b if b ≤ a. By (A5), c ∗ [a ∗ (a→ b)] ≤ c ∗ b, thus (c ∗ a) ∗ (a→ b) ≤ c ∗
b according to the associativity. By (A3), it holds that a→ b ≤ (c ∗ a)→ (c ∗ b).
Similarly, (a b) ∗ a = b ≤ b⇒ (a b) ∗ a ∗ c ≤ b ∗ c⇒ a b ≤ (a ∗ c) 
(b ∗ c).

(WIPBL8) By (A5), (b ∧ c) ∗ a ≤ c ∗ a. Since c = b ∗ (b → c) when c ≤ b, [b ∗ (b →
c)] ∗ a = b ∗ [(b→ c) ∗ a] ≤ c ∗ a, by (A3), (b→ c) ∗ a ≤ b→ (c ∗ a). Similarly,
if a ∗ (b ∗ c) = (a ∗ b) ∗ c, we obtain a ∗ (b c) ≤ b (a ∗ c).

Proposition 10. Each commutative WIPBL is a weak inflationary BL-algebra.

Proof. Assume that A = 〈L,∧,∨, ∗,→, , 0, 1〉 is a WIPBL, we only need to confirm that
A is commutative when and only when x → y = x  y, for arbitrary x, y ∈ A. For any
x, y, z ∈ A, if A is commutative, x ∗ z = z ∗ x, then by (A3), x ≤ z → y iff z ∗ x ≤ y, that
is, x ∗ z ≤ y ⇔ x ≤ z  y, so z → y = z  y. Moreover, if z → y = z  y, we have
that x ≤ z → y iff x ≤ z y, by (A3), z ∗ x ≤ y iff x ∗ z ≤ y, i.e., z ∗ x = x ∗ z; therefore A
is commutative.

In addition, inflationary pseudo BL-algebras are introduced by us, and they can be
regarded as a noncommutative generalization of inflationary BL-algebras; they are also a
subclass of WIPBLs, defined as below.

Definition 17. Given an IPGRL L = 〈L,∧,∨, ∗,→, , 0, 1〉, if for arbitrary x, y ∈ L the
following statements hold then it is called an inflationary pseudo BL-algebra (in short IPBL):

(IPBL1) x ∧ y = x ∗ (x → y) = (x y) ∗ x (two-divisibility);
(IPBL2) (x → (y ∗ 1)) ∨ (y→ (x ∗ 1)) = (x (1 ∗ y)) ∨ (y (1 ∗ x)) = 1.

Example 6. Given the function PGO (∗) formulated as PGO(x, y) = max{x+ y− 1, min{ y
2 , x}},

the residuated implications I(1)PGO( ), I(2)PGO(→) induced by it as (4) as shown in Table 1. It is
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clear that the algebra L = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉 satisfies (IPBL1) and (IPBL2), i.e., L is an
inflationary pseudo BL-algebra.

We can easily know that an inflationary pseudo BL-algebra must be a weak inflationary
pseudo BL-algebra, and vice versa. For example, the weak inflationary pseudo BL-algebra
L given in Example 5 above is not an IPBL, since x ∗ (x → y) = 1

4 6= x ∧ y = 1
9 when we

take x = 1
9 and y = 1

4 .
In fact, we can obtain that inflationary pseudo BL-algebras can be obtained from the

inflationary PGOFs with unit element 1; the details are as follows.

Proposition 11. Given the algebra L = 〈[0, 1],∧,∨, ∗,→, , 0, 1〉, where ∧ is the minimization
operator, ∨ is the maximum operator, ∗ is an inflationary PGOF with unit element 1,→ and are
residuated implications induced by ∗. Then L is an inflationary pseudo BL-algebra.

Proof. By Proposition 7 we obtain that the algebra L is a weak inflationary pseudo BL-
algebra, i.e., y = x ∗ (x→ y) = (x y) ∗ x when y ≤ x and (x→ (y ∗ 1))∨ (y→ (x ∗ 1)) =
(x  (1 ∗ y)) ∨ (y  (1 ∗ x)) = 1. If the operator ∗ has 1 as unit element, then by (A15)
x ≤ y ⇒ x → (y ∗ 1) = 1 and x  (1 ∗ y) = 1 ⇒ x → y = 1 and x  y = 1, so
x ∗ (x → y) = (x  y) ∗ x = x = x ∧ y; that is, L satisfies two-divisibility. Thus L is an
inflationary pseudo BL-algebra.

Finally, the definition of non-commutative residuated lattice-ordered groupoids is
given as below so that we can analyze the relationship between several classes of noncom-
mutative algebraic structures.

Definition 18. Given a lattice L = 〈L,∧,∨, ∗,→, , 0, 1〉, if it meets requirements as below for
arbitrary x, y, z ∈ L, then it is called a non-commutative residuated lattice-ordered groupoid (in
short RLG):

(RLG1) (L,∧,∨, 0, 1) has 0 as the lower bound and 1 as the upper bound;
(RLG2) (L, ∗) is a groupoid and has 1 as unit element;
(RLG3) L satisfies the two-residuation principle.

It is not difficult to find that WIPBLs and IPBLs are included in class IPGRL, and the
intersection of WIPBLs and RLGs is the inflationary pseudo BL-algebras. Then the relation
diagram between several types of algebras is as follows (see Figure 2).

Figure 2. Relationship of the several kinds of non-commutative algebras considered in the paper.

5. Conclusions

In the article we first introduce a class of pseudo general overlap functions as a
non-commutative generalization of general overlap functions, including pseudo overlap
functions, continuous t-norms, and GOFs. Thus, the limitation of commutativity is can-
celled and the application range of functions is broadened. Moreover, their construction
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theorem and the methods of constituting pseudo general overlap functions through contin-
uous aggregation functions are given. Then we prove that the inflationary pseudo general
overlap functions and their induced fuzzy implications satisfy the residuation property. Fur-
ther, we propose the concept of IPGRL, generalize the IGRL to a non-commutative case, and
discuss their properties. In addition, on the basis of inflationary pseudo general residuated
lattices, we also extend the weak inflationary BL-algebras to be non-commutative, present
weak inflationary pseudo BL-algebras satisfying general two-divisibility and general two-
prelinearity, and verify that they can be obtained from pseudo general overlap functions.
Moreover, inflationary pseudo BL-algebras are also studied as a non-commutative general-
ization of inflationary BL-algebras. Finally, a diagram revealing the relationship between
several classes of lattice structures is shown in Figure 2; it is convenient to research other
related algebraic structures later.

As the next research content, the properties of pseudo general overlap functions
and their application in practical problems are worth discussing. In fact, from another
point of view, the pseudo general overlap functions can also be regarded as the pseudo
overlap functions with relaxed boundary conditions. Moreover, filters of IPGRLs and
non-commutative residuated lattice-ordered groupoids can also be studied. It is worth
mentioning that the operators corresponding to the (weak) inflationary pseudo BL-algebras
introduced in this paper require complete continuity; that is, they are continuous for each
variable, but , the operators can induce residuated implication as long as they meet the left
continuity, so we can make further generalization about this. Besides, there is a class of
MTL-algebras [24] on bounded lattices with a wider range than BL-algebras. Similarly, we
can also investigate its corresponding non-commutative generalization. Furthermore, the
fusions of pseudo general overlap functions, fuzzy rough sets, and related non-classical
logic algebras (see [25–27]) are also interesting topics worthy of research.
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