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Abstract: We describe the growth dynamics of a stock using stochastic differential equations with
a generalized logistic growth model which encompasses several well-known growth functions as
special cases. For each model, we compute the optimal variable effort policy and compare the
expected net present value of the total profit earned by the harvester among policies. In addition,
we further extend the study to include parameters sensitivity, such as the costs and volatility, and
present an explicitly Crank–Nicolson discretization scheme necessary to obtain optimal policies.
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1. Introduction

Stochastic differential equations (SDEs) can be applied to model several physical,
mechanical, biological, economic, financial, and social events. In [1], readers can find
innovative research dedicated to the study of a stock’s growth dynamic under a randomly
varying environment in order to maximize the profit from harvesting. Such policies are
usually designed to maximize the expected net present value of the total profit over a finite
time horizon T. While policies considering infinite time have been studied, they are not be
discussed here. Because stock size is affected by fishing effort, it seems natural to consider
a controlled effort and use optimal control techniques to maximize profit, which is then
discounted by a social rate. In [2], the authors provide a comprehensive account of optimal
harvesting policies for profit optimization in a deterministic environment. Under general
assumptions, except for near the end of a finite time horizon, T, the optimal policy consists
of harvesting with the highest possible effort when the stock size exceeds a previously
determined threshold and stopping harvesting when the stock is below that level. After
the stock has reached the threshold size, the harvesting rate must be kept constant at an
equilibrium value in order for the stock to remain at that size. When the stock size falls
below the threshold, harvesting should be halted until the stock size reaches the threshold,
which may take several years.

Stochastic optimal control methods have been applied to design optimal harvesting
policies in a randomly varying environment (see for instance [3–5]). The optimal policy
is the same as in the deterministic case. However, because of random fluctuations in the
environment, the stock size continues to fluctuate. The harvesting effort must be adjusted
at every instant to ensure that the stock’s size does not exceed the equilibrium value.
Adjustments to the harvesting effort at every instant are incompatible with the logistics
of fishing. Aside from harvesting absences, which have negative social and economic
consequences (such as unemployment and company subsidies), these policies involve
knowledge of stock size at all times in order to determine the appropriate level of effort.
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The current method of estimating the size of a stock is difficult, costly, time-consuming,
and inaccurate.

One possible way to overcome these social and economic problems is to apply an
optimal policy with variable effort subject to a penalization structure on the control, that
is, to incorporate in the model a term that represents a running energy cost based on
effort. This extra cost term represents a method of penalizing profit values when the
effort abruptly changes from a reference value at each time instant. In [6–8], references
therein, and forthcoming papers from the same authors, readers can see several examples
of the application of such a penalized policy. In [6,9–12], the authors proposed a constant
effort optimal sustainable policy, taking into account the Gompertz and logistic growth
models (with and without Allee effects) to avoid social and economic problems as well as
to estimate the current stock size at each time instant. That policy, however, implies a profit
reduction, which they show to be slight for the models and data considered.

Optimal variable effort policies have been studied considering, among others, a logistic
growth model, as in [3–5], or the Gompertz model, as in [6,10]. An optimal harvesting
policy with a slight generalization of the logistic model, the Pella–Tomlinson model, can be
found in [13].

This paper extends all of the above by considering a truly generalized logistic (GL)
model in terms of stock growth models. From the GL model, we can obtain each of the
growth models mentioned above. We note that each special case retains the sigmoidal
and asymptotic properties of the Verhulst logistic curve (as in [14]). We obtain the optimal
variable effort policy and study the effects of parameter sensitivity. The rest of this paper
is structured as follows: in Section 2, we present the model formulation and the Crank–
Nicolson discretization scheme, then use a dynamic programming method to solve the
optimization variable effort problem. Numerical experiments involving several stock
growth models and parameter sensitivities are discussed in Section 3. Finally, in Section 4
we provide closing remarks.

2. Optimal Policy with Variable Effort
2.1. Generalized Logistic Growth Model

The logistic growth model was introduced by Verhulst [15] in 1838. After that, accord-
ing to [14], several authors have derived other growth models based on the logistic model.
The generalized logistic (GL) growth model considered here can be found in [14] and is
provided by the ordinary differential equation (ODE):

dX(t) = rXa(t)

(
1−

(
X(t)

K

)b
)c

dt, (1)

with positive parameters a, b and c. While negative parameter values can be considered, the
risk of losing biological meaning is high. The GL model retains the logistic model’s
most important properties, namely, the existence of a horizontal asymptote at X = K,
the possibility of reaching a maximum value, and the presence of an inflection point.
Several other properties and features can be found in [14]. In Equation (1), X(t) represents
the stock size at time instant t, r is the population intrinsic growth rate, and K stands for
the carrying capacity (sometimes known as the saturation level).

In the presence of harvesting and under a stochastic environment, the stock dynamic
can be modeled by the SDE:

dX(t) = rXa(t)

(
1−

(
X(t)

K

)b
)c

dt− qE(t)X(t)dt + σX(t)dW(t), X(0) = x, (2)

where X(t), r and K are defined above, q > 0 is the catchability coefficient, E(t) ≥ 0 is the
harvesting effort (a Markov control), σ > 0 measures the strength of environmental fluctua-
tions, W(t) is a standard Wiener process (see for instance [16]), and x > 0 represents the
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stock size at the initial time 0. Equation (2) is an Itô autonomous SDE and its solution, X(t),

is a homogeneous diffusion process with drift coefficient rXa
(

1−
(

X
K

)b
)c
− qEX and dif-

fusion coefficient σ2X2. In [16,17], after a few adaptations, it is possible to find conditions
that allow for a unique solution to Equation (2), provided that the drift and σX(t) satisfy
certain regularity and growth conditions. Hence, it is sufficient to have 0 ≤ E < r

q

(
1− σ2

2r

)
,

where E(t) ≡ E during a small time interval [t, t + ∆t] (as in Appendix A).
Two quantities of special interest in harvesting are the yield per unit time Y(t) = qE(t)X(t)

and the fishing mortality rate, F(t) = qE(t).
For a triplet (a, b, c), we denote Equation (2) by GL(a, b, c), i.e., the generalized logistic

growth model with parameters a, b, and c. For instance, GL(1, 1, 1) corresponds to the well
known logistic model. Figure 1 shows several curves for the stock growth rate dX(t)/dt as a
function of a stock size X(t) for several particular cases of the GL model (a deterministic
case without harvesting). From [14], and after a few simplifications, we can observe
the following well known models: the GL(1, 1, 1) logistic model, GL(1, 1, 2) Blumberg’s
model (particular case), the GL(1, 2, 1) and GL(1, 2, 2) Richards models, and GL(1, 2, 3),
a particular case of a GL model. Other forms of GL(a, b, c) correspond to models that
are not specified here, such as the Generalized von Bertalanffy model (GL(a, 1− a, 1)),
the Generalized Gompertz model (GL(1, b → 0, c)), and the Hyperbolic model (GL(1−
1/n, 1, 1 + 1/n)).
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Figure 1. Stock growth rate, dX(t)/dt, as a function of stock size, X(t), for several particular cases of
the GL model (deterministic case without harvesting).

2.2. Optimal Policy

A stochastic optimal control problem (SOCP) is the process of determining an optimal
policy with variable effort based on profit optimization. The profit net value earned by the
harvester per unit time, Π(t), can be defined as the difference between sales revenues per
unit time (R(t) = (p1 − p2H(t))H(t) (p1 > 0, p2 ≥ 0)) and harvesting costs per unit time
(C(t) = (c1 + c2E(t))E(t) (c1 > 0, c2 > 0)), i.e.,

Π(t) = R(t)− C(t) = (p1qX(t)− c1)E(t)− (p2q2X2(t) + c2)E2(t).

To derive a well-posed SOCP in a finite time, we assume that harvesting occurs within
the time interval [0, T]. Future harvester profits are discounted at a rate of δ > 0, for exam-
ple, to accounting for currency depreciation and opportunity costs. The optimal harvesting
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policy maximizes the expected net present value of the total profit. The maximized value
of the expected total discounted profit within the interval [t, T], denoted by J∗(X(t), t), is

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,x

 T∫
t

e−δ(τ−t)Π(τ)dτ

,

for which we use the short notation E[. . . |X(t) = y] = Et,y[. . .]. Finally, the SOCP consists
in obtaining the maximized value for the interval [0, T]:

J∗ ≡ J∗(x, 0) = max
E(τ)

0≤τ≤T

E0,x

 T∫
0

e−δτΠ(τ)dτ

, (3)

considering E(t) as a control subject to the population dynamics provided in Equation (2),
the control restrictions 0 ≤ Emin ≤ E(t) ≤ Emax < ∞, and the terminal condition
J(X(T), T) = 0.

To obtain the maximized Hamilton–Jacobi–Bellman (HJB) equation, the following
SOCP is solved using stochastic dynamic programming (see pp. 259–268 in [18] along
with [19,20]), as detailed in Appendix A:

−∂J∗(X(t), t)
∂t

=

(
p1qX(t)− c1 − (p2q2X2(t) + c2)E∗(t)

)
E∗(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
rXa(t)

(
1−

(
X(t)

K

)b
)c

− qE∗(t)X(t)
)

+
1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t), (4)

which represents the expected total discounted profit. The optimal variable effort is

E∗(t) =


Emin, if E∗u(t) < Emin

E∗u(t), if Emin ≤ E∗u(t) ≤ Emax

Emax, if E∗u(t) > Emax,

where

E∗u(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2(p2q2X(t)2 + c2)
(5)

is the unconstrained effort (as in [21]), which can be denoted by the optimal variable effort
as well.

2.3. Domain Discretization and Finite Difference Approximation

The HJB Equation (4) is a nonlinear parabolic PDE involving a temporal variable and
a spatial variable. Unfortunately, it is impossible to solve it analytically, and thusu we
resort to numerical methods and apply a Crank–Nicolson discretization scheme based on
finite differences. This problem’s natural domain is [0, T]×R; however, to obtain a numerical
solution it is necessary to define a bounded computational domain. As a result, we define the
bounded domain as [0, T]× [0, xmax] with xmax such that the probability of X(t) exceeding
xmax is negligible. Moreover, we consider uniform grids in space and time domains as follows:
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t

x

0 = t0 t1
. . . tj−1 tj tj+1

. . . tn = T

• •

•

•

•

•

J∗i,j

xm

. . .

xi+1

xi

xi−1

. . .

x0

The partitions for space and time are

xi = x0 + i∆x, i = 1, . . . , m, ∆x = xmax/m,

tj = t0 + j∆t, j = 1, . . . , n, ∆t = T/n.

They form a grid of points where J∗i,j := J∗(xi, tj) and E∗i,j := E∗(xi, tj), with 0 ≤ i ≤ m
and 0 ≤ j ≤ n. Because the boundary condition J∗(X(T), T) = 0 is terminal rather than
initial, the computation uses time to move backwards from T to 0.

As in [22], the space derivatives are approximated by central differences obtained by
averaging the regressive and progressive approximations (for 0 ≤ j ≤ n− 1):

∂J∗i,j
∂x

≈ 1
2

(
J∗i+1,j+1 − J∗i−1,j+1

2∆x
+

J∗i+1,j − J∗i−1,j

2∆x

)
, 1 ≤ i ≤ m− 1,

∂2 J∗i,j
∂x2 ≈ 1

2

(
J∗i+1,j+1 − 2J∗i,j+1 + J∗i−1,j+1

∆x2 +
J∗i+1,j − 2J∗i,j + J∗i−1,j

∆x2

)
, 1 ≤ i ≤ m− 1,

∂J∗m,j

∂x
≈ 1

2

(
3J∗m,j+1 − 4J∗m−1,j+1 + J∗m−2,j+1

2∆x
+

3J∗m,j − 4J∗m−1,j + J∗m−2,j

2∆x

)
, i = m,

and

∂2 J∗m,j

∂x2 ≈ 1
2

(
3J∗m,j+1 − 7J∗m−1,j+1 + 5J∗m−2,j+1 − J∗m−3,j+1

∆x2

)

+
1
2

(
3J∗m,j − 7J∗m−1,j + 5J∗m−2,j − J∗m−3,j

∆x2

)
, i = m. (6)

The time derivative is approximated using a two time instant scheme:

∂J∗i,j
∂t
≈

J∗i,j+1 − J∗i,j
∆t

, 0 ≤ i ≤ m, 0 ≤ j ≤ n− 1.

2.4. Numerical Solution

Using the above approximations, the discretized version of the HJB Equation (4) is
(for 0 ≤ j ≤ n− 1)
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−
J∗i,j+1 − J∗i,j

∆t
= (p1qxi − c1)E∗i,j+1 − (p2q2x2

i + c2)E∗2i,j+1 − δ

(
J∗i,j+1

2
+

J∗i,j
2

)

+
1
2

(
J∗i+1,j+1 − J∗i−1,j+1

2∆x
+

J∗i+1,j − J∗i−1,j

2∆x

)(
f (xi)− qE∗i,j+1

)
xi

+
1
4

(
J∗i+1,j+1 − 2J∗i,j+1 + J∗i−1,j+1

∆x2 +
J∗i+1,j − 2J∗i,j + J∗i−1,j

∆x2

)
σ2x2

i ,

for 1 ≤ i ≤ m− 1,

and

−
J∗m,j+1 − J∗m,j

∆t
= (p1qxm − c1)E∗m,j+1 − (p2q2x2

m + c2)E∗2m,j+1 − δ

(
J∗m,j+1

2
+

J∗m,j

2

)

+
1
2

(
3J∗m,j+1 − 4J∗m−1,j+1 + J∗m−2,j+1

2∆x
+

3J∗m,j − 4J∗m−1,j + J∗m−2,j

2∆x

)

×
(

f (xm)− qE∗m,j+1

)
xm +

1
4

(
3J∗m,j+1 − 7J∗m−1,j+1 + 5J∗m−2,j+1 − J∗m−3,j+1

∆x2

+
3J∗m,j − 7J∗m−1,j + 5J∗m−2,j − J∗m−3,j

∆x2

)
σ2x2

m, i = m,

with f (xi) = rxa−1
i

(
1−

( xi
K
)b
)c

, i = 1, . . . , m in both expressions.
The discretized version of the unconstrained optimal effort (5) is

E∗u,i,j =

(
p1 −

∂J∗i,j
∂x

)
qxi − c1

2
(

p2q2x2
i + c2

) =

(
p1 − 1

2

(
J∗i+1,j+1−J∗i−1,j+1

2∆x +
J∗i+1,j−J∗i−1,j

2∆x

))
qxi − c1

2
(

p2q2x2
i + c2

) ,

for 1 ≤ i ≤ m− 1, and

E∗u,m,j =

(
p1 −

∂J∗m,j
∂x

)
qxm − c1

2(p2q2x2
m + c2)

=

(
p1 − 1

2

(
3J∗m,j+1−4J∗m−1,j+1+J∗m−2,j+1

2∆x +
3J∗m,j−4J∗m−1,j+J∗m−2,j

2∆x

))
qxm − c1

2(p2q2x2
m + c2)

, (7)

for i = m.
The discretized version of the HJB equation can be written as a system of m equations

(for 0 ≤ j ≤ n− 1)
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(
( f (xi)− qE∗i,j+1)xi∆t

4∆x
−

σ2x2
i ∆t

4∆x2

)
J∗i−1,j +

(
1 +

δ∆t
2

+
σ2x2

i ∆t
2∆x2

)
J∗i,j

−
(
( f (xi)− qE∗i,j+1)xi∆t

4∆x
+

σ2x2
i ∆t

4∆x2

)
J∗i+1,j

=(
−( f (xi)− qE∗i,j+1)xi∆t

4∆x
+

σ2x2
i ∆t

4∆x2

)
J∗i−1,j+1 +

(
1− δ∆t

2
−

σ2x2
i ∆t

2∆x2

)
· J∗i,j+1

+

(
( f (xi)− qE∗i,j+1)xi∆t

4∆x
+

σ2x2
i ∆t

4∆x2

)
J∗i+1,j+1

+(p1qxi − c1)E∗i,j+1∆t− (p2q2x2
i + c2)E∗2i,j+1∆t, 1 ≤ i ≤ m− 1,

and

σ2x2
m∆t

4∆x2 · J
∗
m−3,j −

(
( f (xm)− qE∗m,j+1)xm∆t

4∆x
+

5σ2x2
m∆t

4∆x2

)
· J∗m−2,j

+

(
( f (xm)− qE∗m,j+1)xm∆t

∆x
+

7σ2x2
m∆t

4∆x2

)
· J∗m−1,j

+

(
1 +

δ∆t
2
−

3( f (xm)− qE∗m,j+1)xm∆t

4∆x
− 3σ2x2

m∆t
4∆x2

)
· J∗m,j

= −σ2x2
m∆t

4∆x2 · J
∗
m−3,j+1 +

(
( f (xm)− qE∗m,j+1)xm∆t

4∆x
+

5σ2x2
m∆t

4∆x2

)
· J∗m−2,j+1

−
(
( f (xm)− qE∗m,j+1)xm∆t

∆x
+

7σ2x2
m∆t

4∆x2

)
· J∗m−1,j+1

+

(
1− δ∆t

2
+

3( f (xm)− qE∗m,j+1)xm∆t

4∆x
+

3σ2x2
m∆t

4∆x2

)
· J∗m,j+1

+(p1qxm − c1)E∗m,j+1∆t− (p2q2x2
m + c2)E∗2m,j+1∆t, i = m.

The system can be written using the appropriate matrices A, B, and C in the form

AJ∗− = BJ∗+ + C,

with

J∗− =
[

J∗0
∣∣ J∗1

∣∣ · · · ∣∣ J∗n−1
]
, J∗+ =

[
J∗1

∣∣ J∗2
∣∣ · · · ∣∣ J∗n

]
, and

J∗j =
[

J∗0,j J∗1,j · · · J∗m,j

]T
, 0 ≤ j ≤ n,

where T is the transpose operator. Solving the system, we obtain the optimal solution for
the grid points. Polynomial interpolation between the values at the neighbouring points
of X in the partition x0, x1, . . . , xm yields the optimal solution when the stock is at a given
value X at a time tk.

3. Results

To compute J∗, that is, the profit earned by the harvester during the interval [0, T], we
performed 1000 Monte Carlo simulations for the stock, the effort, and the profit. The stock
dynamics were simulated based on a Euler scheme. In [2,21], we discovered a fairly
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complete set of parameter values (namely, r, K, q, p1, p2, c1, and c2) for the Pacific halibut
(Hippoglossus hippoglossus). The other parameters (Emin, Emax, σ, x, δ, n, m and xmax), for
which we had no data, were empirically chosen to be reasonable, and the time horizon was
set at T = 25 years. It is important to keep in mind that n and m were chosen from a pool of
several trials in order for the algorithm to reach convergence. We were unable to estimate
any parameters due to the lack of historical data, namely, stock size and harvesting effort.
Table 1 contains the complete set of parameter values.

Table 1. Parameter values used to run the simulations. The definition of an SFU (Standardized
Fishing Unit) is explained in [21].

Parameter Description Value Unit

r Intrinsic growth rate 0.71 year−1

K Carrying capacity 80.5× 106 kg
q Catchability coefficient 3.30× 10−6 SFU−1 year−1

Emin Minimum fishing effort 0 SFU
Emax Maximum fishing effort 0.9 r/q SFU

σ Strength of environmental fluctuations 0.15 year−1/2

x Initial population size 0.25K kg
δ Discount factor 0.03 year−1

p1 Linear price coefficient 1.59 $kg−1

p2 Quadratic price coefficient 0 $year× kg−2

c1 Linear cost coefficient 96× 10−6 $SFU−1 year−1

c2 Quadratic cost coefficient 10−7 $SFU−2 year−1

T Time horizon 25 year
n Number of time sub-intervals 100

xmax Maximum stock size 2K kg
m Number of sub-intervals for the space state (b) 100

The models chosen to obtain the optimal policies were the ones referenced before as
particular cases of the GL growth model in Section 2.1. For each one, we ran 1000 simula-
tions to obtain the optimal effort and optimal profit. The results are listed in Table 2.

Table 2. Optimal profit and standard deviation values for the particular cases of the GL growth
model in Section 2.1. Values are in millions of US dollars. SD represents standard deviation.

Model Representation J* SD

GL(1, 1, 1) 374.148 32.351
GL(1, 1, 2) 214.864 32.205
GL(1, 2, 1) 565.456 38.365
GL(1, 2, 2) 432.174 30.185
GL(1, 2, 3) 366.377 25.182

It can be observed from Table 2 that the highest profit, USD 565.456 M, comes from
the application of model GL(1, 2, 1), followed by models GL(1, 2, 2), GL(1, 1, 1), GL(1, 2, 3),
and GL(1, 1, 2), in decreasing order. This is not a surprise, as GL(1, 2, 1) is, according to
Figure 1, the one with a higher growth rate. Model GL(1, 1, 2) yields the lowest profit value,
USD 214.864 M, and is the model with the lowest growth rate, as seen in Figure 1. In terms
of standard deviation, the highest value is related to model GL(1, 2, 1) and the lowest is
related to model GL(1, 2, 3). The remaining models have identical values.

For the models presented in Table 2, Figures 2–4 depict what could happen when
applying the optimal harvesting policy to such growth models. The thin lines represent
one possible reality in each image that a harvester would experience (one of the 1000 sim-
ulations). The thicker lines represent the mean of 1000 simulations, which is a good
approximation of the expected value appearing in the expression (3). For each model,
a trajectory and sample mean for the stock size X(t), yield Y(t) = qE(t)X(t), fishing mor-
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tality F(t) = qE(t), and optimal profit per unit time can be found. Conclusions based on
Figures 2–4 are similar to the results presented in Table 2. Indeed, model GL(1, 2, 1) shows
the largest stock size compared with other models, implying higher fishing mortality.
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Figure 2. Stock, fishing mortality, yield, and profit sample paths (thinner line) and mean (ticker line)
obtained by the application of models GL(1, 1, 1) (top panel) and GL(1, 1, 2) (bottom panel). Unit
values are described in Table 1.
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Figure 3. Stock, fishing mortality, yield, and profit sample paths (thinner line) and mean (ticker line)
obtained by the application of models GL(1, 2, 1) (top panel) and GL(1, 2, 2) (bottom panel). Unit
values are described in Table 1.
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Figure 4. Stock, fishing mortality, yield, and profit sample paths (thinner line) and mean (ticker line)
obtained by the application of model GL(1, 2, 3). Unit values are described in Table 1.

Sensitivity Analysis

We now examine the implications of changing the values of δ, c1, c2, and σ from the
ones in Table 2 used for the simulations. To perform a sensitivity analysis, we chose the
GL(1, 2, 3) model and ran simulations identical the the ones before while changing each
parameter one at a time. A summary of the alternative parameter values and the obtained
profit per unit time is provided in Table 3.

Table 3. Alternative parameter values for model GL(1, 2, 3). The parameters used to perform the
sensitivity analysis were δ, c1, c2 and σ. Profit and standard deviation values are in millions of US
dollars. SD represents standard deviation.

Parameter Value J* SD Parameter Value J* SD

δ 0.03 366.377 25.182 c2 10−7 366.377 25.182
0.10 183.553 14.512 10−5 362.629 25.107
0.15 126.953 11.153 10−3 187.007 13.932

c1 96× 10−6 366.377 25.182 σ 0.15 366.377 25.182
96× 10−4 366.355 25.181 0.30 354.345 49.656
96× 10−2 364.146 25.048 0.45 270.540 81.259

Increasing the value of δ has a large effect on the profit value and implies a decrease
of about 50%. This is to be expected, as the increase in δ represents a depreciation in the
value of the currency. A greater depreciation (δ = 0.15) implies a greater loss of profit.
The initial value of c1 is shallow, and thus the increase to 96× 10−4 is negligible. However,
increasing that value to 96× 10−2 reduces the profit, as expected. An increase in c2 has
implications for profit reduction, and may imply a 50% profit reduction. We note that c2
represents unexpected costs (unspecialized gear and/or vessels) typically associated with
extra costs. The influence of stochastic fluctuations is analysed by changing values of σ.
A rise in stochastic fluctuations, i.e., σ = 0.30 or σ = 0.45, has a huge influence on profit.
The values of the standard deviation show such implications.
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4. Conclusions

In this paper, we have worked with a stochastic differential equation generalized
logistic stock growth model. From this model, we show how to obtain particular models
typically used for harvesting problems. We have formulated a stochastic optimal control
problem to obtain the optimal variable effort policy. We deduced the HJB equation using
dynamic programming techniques and showed its solution through numerical methods by
applying a Crank–Nicolson discretization scheme. We have applied the optimal policy for
several particular models, considering realistic parameter values estimated from real stock.
We conclude that models with a higher growth rate imply higher profit values, as expected.
In addition, we examined the sensitivity of the expected total discounted profit to the
discount factor, cost parameters, and stochastic environmental fluctuations.
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Appendix A

To obtain the Hamilton–Jacobi–Bellman Equation (4), appropriate assumptions must
be made and the following approximations must be used for small values of ∆t > 0, which
leads to error terms of o(∆t) as ∆t→ 0, while being careful to use Itô calculus, i.e., a second
order Taylor expansion in x:

(A) ∆t is a small positive quantity;
(B) e−δ∆t ≈ 1− δ∆t;
(C) X(t + ∆t) ≈ X(t) + ∆X(t);
(D) ∆X(t) ≈ f (X(t))X(t)∆t− qE(t)X(t)∆t + σX(t)∆W(t);
(E) J∗(X(t + ∆t), t + ∆t) is known;
(F) during time interval [t, t + ∆t], the control E(t) is constant.

Now, we consider the current value form of Equation (3):

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

 T∫
t

e−δ(τ−t)
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

,

and divide the integrand function in two parts as follows, with t + ∆t < T:

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

+

T∫
t+∆t

e−δ((τ−t)+∆t−∆t)
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

]
.

Using assumption (B), we can write

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

+ (1− δ∆t)
T∫

t+∆t

e−δ((τ−(t+∆t))
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

]
+ o(∆t).

Applying Bellman’s principle of optimality (see [18–20]), we have
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J∗(X(t), t) = max
E(τ)

t≤τ≤t+∆t

Et,X(t)

[ t+∆t∫
t

e−δ(τ−t)
(

p1qX(τ)− c1 − (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

+ (1− δ∆t) max
E(τ)

t+∆t≤τ≤T

∫ T

t+∆t
e−δ((τ−(t+∆t))

(
p1qX(τ)− c1

− (p2q2X2(τ) + c2)E(τ)
)

E(τ)dτ

]
+ o(∆t).

Alternatively, using assumptions (C) and (F),

J∗(X(t), t) = max
E(τ)

t≤τ≤T

Et,X(t)

[(
p1qX(t)− c1 − (p2q2X2(t) + c2)E(t)

)
E(t)∆t

+ (1− δ∆t)J∗(X(t) + ∆X(t), t + ∆t)
]
+ o(∆t). (A1)

The Taylor series of J∗(X(t) + ∆X(t), t + ∆t) about (X(t), t) provides

J∗(X(t) + ∆X(t), t + ∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t +

∂J∗(X(t), t)
∂X(t)

∆X(t)

+
1
2

∂2 J∗(X(t), t)
∂X2(t)

(∆X(t))2 + o(∆t). (A2)

Writing f (X(t)) = rXa−1(t)
(

1−
(

X(t)
K

)b
)c

and replacing ∆X(t) in (A2) with the

approximation in (D), we have

J∗(X(t) + ∆X(t), t + ∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))X(t)∆t− qE(t)X(t)∆t + σX(t)∆W(t)

)
+

1
2

∂2 J∗(X(t), t)
∂X2(t)

(
f (X(t))X(t)∆t− qE(t)X(t)∆t + σX(t)∆W(t)

)2

+ o(∆t).

After a few simplifications, we can write

J∗(X(t) + ∆X(t), t + ∆t) = J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))− qE(t)

)
X(t)∆t

+
∂J∗(X(t), t)

∂X(t)
σX(t)∆W(t) +

1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t)(∆W(t))2

+
∂2 J∗(X(t), t)

∂X2(t)

(
f (X(t))− qE(t)

)
σX2(t)∆W(t)∆t + o(∆t). (A3)



Mathematics 2022, 10, 3098 14 of 15

Replacing J∗(X(t) + ∆X(t), t + ∆t) from (A3) in (A1) provides

J∗(X(t), t) = max
E(t)

Et,X(t)

[(
p1qX(t)− c1 − (p2q2X2(t) + c2)E(t)

)
E(t)∆t

+ (1− ∆dt)
(

J∗(X(t), t) +
∂J∗(X(t), t)

∂t
∆t

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))− qE(t)

)
X(t)∆t

+
∂J∗(X(t), t)

∂X(t)
σX(t)∆W(t) +

1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t)(∆W(t))2

+
∂2 J∗(X(t), t)

∂X2(t)

(
f (X(t))− qE(t)

)
σX2(t)∆W(t)∆t + o(∆t)

)]
.

We can deduce from the Wiener process properties that Et,X(t)[∆W(t)] = 0 and
Et,X(t)[(∆W(t))2] = ∆t. Thus, rearranging the latter equation provides

0 = max
E(t)

{(
p1qX(t)− c1 − (p2q2X2(t) + c2)E(t)

)
E(t)∆t− δJ∗(X(t), t)∆t +

∂J∗(X(t), t)
∂t

∆t

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))− qE(t)

)
X(t)∆t +

1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t)∆t + o(∆t)

}
. (A4)

Dividing (A4) by ∆t and allowing ∆t→ 0 results in

−∂J∗(X(t), t)
∂t

= max
E(t)

{(
p1qX(t)− c1 − (p2q2X2(t) + c2)E(t)

)
E(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))− qE(t)

)
X(t) +

1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t)
}

, (A5)

where J∗(X(t), t) represents the expected value of the maximized accumulated discounted
profit earned from the start of harvesting at time t to the end at time T.

The above Hamilton–Jacobi–Bellman equation is the solution to the stochastic control
problem stated in Section 2.

The optimal variable effort is obtained from the HJB Equation (A5). Here, we denote
by D a function that represents the control switching term in (A5), that is,

D(E) =
(

p1qX(t)− c1 − (p2q2X2(t) + c2)E(t)
)
E(t)− ∂J∗(X(t), t)

∂X(t)
qE(t)X(t), (A6)

and denote the unconstrained effort resulting from the maximization in Equation (A6) as
E∗u(t). Thus, by solving the equation dD(E)/dE = 0 with respect to E, we obtain E∗u(t):

E∗u(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2(p2q2X2(t) + c2)
.

The maximized HJB equation is obtained by representing the constrained optimal
effort as E∗(t) and replacing E(t) with E∗(t) in Equation (A5):

−∂J∗(X(t), t)
∂t

= (p1qX(t)− c1)E∗(t)− (p2q2X2(t) + c2)E∗2(t)− δJ∗(X(t), t)

+
∂J∗(X(t), t)

∂X(t)

(
f (X(t))− qE∗(t)

)
X(t) +

1
2

∂2 J∗(X(t), t)
∂X2(t)

σ2X2(t),
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where the effort is provided by

E∗(t) =


Emin, i f E∗u(t) < Emin

E∗u(t), i f Emin ≤ E∗u(t) ≤ Emax

Emax, i f E∗u(t) > Emax,

and with

E∗u(t) =

(
p1 − ∂J∗(X(t),t)

∂X(t)

)
qX(t)− c1

2(p2q2X(t)2 + c2)

being the unconstrained effort.
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