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Abstract: Optimization with edge contact avoidance and contact stress minimization is essential for
gear design. Due to the complex geometry of modified helical face gear drives, it is complicated to find
the optimal design parameters with the consideration of issues including loading, assembly errors,
and edge contact. As the finite element method is tedious and time-consuming, an optimization
model with a simplified algorithm of the loaded tooth contact analysis with errors (ELTCA) for
modified helical face gears is presented, and it can programmatically optimize the contact stress
with edge contact avoidance. Firstly, a simplified ETCA algorithm is introduced, which reduces
the five unknowns in the traditional contact equations to three. Secondly, the LTCA is analytically
implemented according to the Hertz theory. Subsequently, an optimization model with the objective
function of avoiding edge contact and reducing maximum contact stress is proposed. Furthermore,
the proposed model is applied to reveal the effects of design parameters and assembly errors on the
optimized contact path and stress. The results show that the optimization model is accurate and
efficient; the design parameters and assembly errors have great effects on the meshing of modified
helical face gears.

Keywords: design optimization; edge contact; contact stress; modified helical face gear; loaded tooth
contact analysis with errors (ELTCA)

MSC: 65E05

1. Introduction

Face gear drives have wide application prospects under the working conditions of
high speed and heavy loads, such as the transmission systems in helicopters and machine
tools, owing to their small size, light weight, low noise, large capacity, and high reliability.
The transmission performances of face gears are closely related to many factors, such as
design, manufacture, and installation. However, edge contact, contact area distribution,
and maximum contact stress can restrict the service life of face gears. Unfortunately, current
gear design methods, including finite element analysis (FEA) and numerical tooth contact
analysis (TCA), do not automatically identify edge contact and minimize the maximum
contact stress, despite the complexity of the process and the high technical experience
requirements of the personnel. Namely, the automatic comparison and optimization of gear
design parameters cannot be realized at present. Therefore, under the condition without
repeated modeling, determining how to automatically avoid edge contact, quickly calculate
the optimal maximum contact stress, output the optimal design parameters, and show the
qualified contact path is of great significance.

In terms of the research on face gear geometry design, many publications can be
referred to. Litvin et al. made outstanding contributions to the theory and application
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of face gears. They deduced the surface equations of the standard face gear [1] and the
face gear with offset [2]; introduced the FEA method of stress analysis [3–6]; presented
the theory of spur face gears in a handbook [7]; and summarized the technologies of
gears, including face gears, in a book [8]. Their work provides significant references for
researchers in the field of gears. In addition, Zhou et al. presented a new closed-form model
for the geometry establishment of face gears without solving nonlinear equations [9], and
the model was applied to the modeling and milling of face gears [10–15]. In addition, they
put forward a time-saving CAD/CAE integration method [16,17] for optimizing design
parameters with FEA. Liu et al. [18] proposed a new type of face gear drive that can achieve
non-uniform transmission ratios. This face gear drive, which consists of an undulating face
gear and a planar noncircular gear, is applied to transmit the angular velocity of change.
Zschippang et al. [19] elaborated a general method for the generation of face gears with
shaft angle, helical angle, and axial offset. In addition, they described the procedure for
determining geometry quality. Tan [20–22] studied the face gear that meshes with a conical
involute pinion and discussed the generation and geometry modeling methods with the
conditions of gear integrity obtained. In order to investigate the strength variation of
face gears, Li et al. [23] constructed an equivalent face gear based on ISO 6336 standard.
Lin et al. [24] researched a non-circular face gear pair and established multiple analytical
models and equations for the classification of transmission patterns, transmission ratios,
and relative motions. Moreover, Lin [25] also provided a discrete algorithm for the curve-
face gear pair and analyzed the limiting points in the determination rule. Zhang et al. [26]
investigated the tooth geometry and contact characteristics of offset-axis face gear drives
in detail by simulating the conjugate motion. Guo et al. [27] simulated the computerized
generation of face gear drives enveloped by circular cutters.

For the purpose of improving the contact performances of face gear drives, the meth-
ods of profile modification are applied in geometry design. Litvin et al. [28] investigated
two kinds of face gear drives generated by modified shapers, including the design, genera-
tion, and stress analysis. They also compared the contact stress of the two kinds of modified
face gears. Meanwhile, they proposed the modification geometry of an asymmetric face
gear and applied a tooth contact analysis (TCA) algorithm to calculate the contact path,
which was verified by the FEA method [29]. Furthermore, they analyzed a helical face
gear that was enveloped by two mismatched parabolic racks corresponding to the pinion
and the shaper from the aspects of design, generation, and stress analysis. Wu et al. [30]
established a model of a parabolically modified face gear to perform TCA and researched
the factors affecting the meshing path. Moreover, they obtained the ideal position of the
contact area. For the aim of investigating the behavior of a transmission composed of a
face gear and a modified pinion, Barone et al. [31] established geometric models based
on enveloping theory and applied FEA models for simulation. Peng et al. [32] provided
the ease-off surface modification to the manufacturing process of face gears to control the
unloaded meshing performance. To reduce the sensitivity of the modified face gear drive to
misalignments, Zanzi et al. [33] worked on an enhanced approach of longitudinal plunging
to generate a double-crowned face gear drive.

Transmission systems composed of face gears are also investigated by scholars. Dong
et al. explored the characteristics of concentric face gear split-torque transmission sys-
tems, for instance, the assembly conditions, power flow directions, load sharing perfor-
mances [34], and the method of mesh stiffness calculation [35]. Mo et al. [36] conducted an
investigation on the load sharing of a power-split system that consists of face gears by using
an analytical method, and the investigation method was applied to study a herringbone
planetary gear system that contains a floating sun gear and flexible support [37].

However, the above studies on TCA of face gears are based on the existing com-
mercial software for FEA [38], or the traditional analytical TCA model is used to solve
the coordinates of contact points. The FEA method not only is time-consuming and may
result in unstable convergence may, but also often requires repeated manual modeling
work. As the traditional TCA model is used to calculate the contact points of the tooth
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surface analytically, the solution of multiple equations is too complex and the stability is
poor. Moreover, neither of the two methods can automatically identify and avoid the edge
contact, achieve the parametric optimization of the maximum contact stress of the tooth
surface, or automatically return the final optimized design parameters. The research on
helical face gears, especially the modified helical ones, is not involved numerically.

In this paper, a simplified algorithm of the tooth contact analysis with errors (ETCA)
of modified helical face gears is provided [14], based on which an automatic optimization
algorithm of the loaded tooth contact analysis with errors (ELTCA) that integrates the
functions of contact stress optimization and edge contact avoidance is proposed. Firstly,
an ETCA algorithm, derived from the traditional algorithm by simplifying the contact
equations and solving the rotation angles of gears separately, is introduced. Secondly,
the coordinates of contact points are obtained with the ETCA algorithm. The geometric
parameters, such as the contact ellipses and curvatures of the contact points, are calculated
based on the coordinates, and the ELTCA algorithm is presented according to the Hertz
theory to calculate the contact stress. The effectiveness of the ELTCA algorithm is verified
through comparison with the finite element simulation. Furthermore, the optimization
model considering the edge contact avoidance and the minimization of maximum contact
stress is established, and it is verified based on the simplified ELTCA algorithm. Finally,
the influence of the geometric parameters and assembly errors on the contact path and the
maximum contact stress is explored by applying the optimization model.

2. A Simplified ETCA Algorithm of Modified Helical Face Gears
2.1. Description of the Tooth Surface and Basic Coordinate Systems

As illustrated in Figure 1a, the modified tooth surface of shaper rs and tooth surface
of pinion r1 are generated by rack cutters with parabolic modification. Likewise, the
tooth surface of modified helical face gear r2w is generated by the shaper [28], as shown
in Figure 1b. The face gear and the pinion rotate around the intersected axes at angular
velocities ω2 and ω1, respectively. Additionally, the shaft angle is γm and the helix angle
is β. In coordinate system Sr in Figure 1a, the vertex of the parabola is point P0, which
is determined by the distance ld and the parameter u0. ld is calculated as 0.5s0·cosαn. The
quadratic coefficient of the parabola is ar, the pressure angle is αn, and the width of the rack
cutter in the normal section is s0. In addition, rp is the reference radius of the shaper, and ϕ1
and ϕs are the rotation angles of the pinion and the shaper, respectively, in the generation
progress. Pr is a moving point on the profile of the rack cutter.

According to the method in [8], the closed-form tooth surface equation of the modified
helical face gear can be presented as{

r2w(ur, ϕs, uz(ur, ϕs)) = M2s(ϕs) · rs(ur, uz(ur, ϕs))

uz(ur, ϕs) =
[(ω2−ωs)×osqu(ur)]·N(ur)

[(ω2−ωs)×Is ]·N(ur)

(1)

where ur is the rack profile parameter, uz is the distance along the z-axis direction, ωs is
the angular velocity of the shaper, Is is the unit vector of the shaper in the axis direction,
and osqu is the distance vector from the coordinate origin os to any point on the shaper
end profile.

Considering that the TCA in this paper contains assembly errors, the error coordinate
system is introduced as shown in Figure 2. The coordinate system S1 (x1, y1, z1) is rigidly
connected to the pinion. Sq (xq, yq, zq), Se (xe, ye, ze) and Sd (xd, yd, zd) are auxiliary coordinate
systems. ∆γm is the error of shaft angle, ∆E is the offset error of the pinion, and ∆q is the
axial displacement error of the face gear. ϕ1 and ϕ2 are the rotation angles of the pinion
and the face gear, respectively. As shown in Figure 2a, the transformation matrix from the
coordinate system S1 to Sf is Mf1. The transformation matrix from coordinate system S2 to
Sf is Mf2. For the sake of simplification, the submatrices of Mf1 and Mf2 are represented by
Tf1 and Tf2, respectively. The center distance between the shaper and the pinion is B, the
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expression of which is mn(Zs−Z1)/(2cosβ); mn is the normal module, and Z1 and Zs are the
tooth numbers of the shaper and the pinion, respectively.
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Figure 1. Generation process diagrams of modified helical face gears: (a) modified rack cutters
envelop modified shapers; (b) helical gears envelop helical face gears.
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2.2. The Simplified ETCA Algorithm

The simplified ETCA algorithm is realized by deriving the representations of the
rotational angles of the two gears in advance and reducing the number of unknowns in
contact equations. Compared with the traditional ETCA algorithm, the algorithm has
various advantages in terms of computational efficiency and convergence [14].

In Figure 3a, the axes of the pinion and the face gear are L1 and L2, respectively. ∑1
and ∑2 represent the tooth surfaces of the pinion and the face gear, respectively. The unit
axis vectors of the pinion and the face gear are l1 and l2, respectively, as shown in Figure 3b.
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Figure 3. Geometrical relationship of the contact point: (a) contact point; (b) normal vector.

The unit normal vector of point Q1 on the pinion surface is n(1), which is nQ1 in
Figure 3b. The angle between the normal vector and the pinion axis is

α1= a cos
(
nQ1 · l1

)
= a cos

(
n(1) · l1

)
(2)

The point Q1 rotates around the axis L1 at angle ϕ1 and arrives at point P, the unit
normal vector of which is (as shown in Figure 3b)

nr1 = b1 + b2 · cos ϕ1 + b3 · sin ϕ1

b1 =
(

n(1) · l1

)
(1− cos ϕ1)l1

b2 = n(1)

b3 = l1 × n(1)

(3)

Similarly, the unit normal vector of point Q2 on ∑2 is n(2), which is nQ2 in Figure 3b.
According to the relationship of geometry, the angle between axis L1 and the normal

vector of point P on surface ∑2 needs to meet the constraint that is

nr2 · l1 = cos α1 (4)

Then, angle ϕ2 can be obtained as

ϕ2 = a sin
(

cos α1 −
(

n(2) · l2

)
· l1 · l2

)
− ϕ′2

ϕ′2 = a tan 2
(

b2 · l1 −
(

n(2) · l2

)
· l1 · l2, b3 · l1

) (5)

Therefore, the six equations with six unknowns in traditional contact equations can be
simplified as 

r(1)f x (ur1, ϕ1(ur1, ϕs)) = r(2)f x (ur, ϕs, ϕ2(ur, ϕs))

r(1)f y (ur1, ϕ1(ur1, ϕs)) = r(2)f y (ur, ϕs, ϕ2(ur, ϕs))

r(1)f z (ur1, ϕ1(ur1, ϕs)) = r(2)f z (ur, ϕs, ϕ2(ur, ϕs))

(6)

3. ELTCA of Helical Face Gears Based on the Simplified ETCA Algorithm
3.1. The Contact Ellipse and Contact Stress

As illustrated in Figure 4a, Σ1 and Σ2 represent the undeformed surfaces of the pinion
and the face gear, respectively. As the normal force Fn is applied on the tooth surfaces, Σ1
and Σ2 will deform and move to Σ1′ and Σ2′ . Meanwhile, point Z1 on Σ1 has the normal
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displacement u1, and point Z2 on Σ2 has the normal displacement u2. δ1 and δ2 are the
elastic deformations of the tooth surfaces Σ1 and Σ2 on the contact point, respectively, and
their sum δ is the total deformation.
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Additionally, the contact point P in the tangent plane turns into an elliptical area due to
the elastic deformation, and point P is still the center of the ellipse. As shown in Figure 4b,c,
x1 and x2 are the principal directions, and the angle between the two directions is σ. ki1
(i = 1, 2) and ki2 are the principal curvatures of the tooth surface Σi at the point P. Hertz
deduced the formulas of the semi-major axis and the semi-minor axis [39] as follows:

a =
(

1
E∗ ·

3Fn
2πW ·

1
e2 · [K(e)− E(e)]

)1/3

b = a
√

1− e2
(7)

where e is the eccentricity. E* is the equivalent elastic modulus that can be expressed by
Poisson’s ratios ν1 and ν2 as well as the elastic moduli E1 and E2 of the materials of two
gears. K(e) and E(e) are the first and second elliptic integrals, respectively. W is a positive
constant:

W = 0.25 · (k11 + k12 + k21 + k22)

−0.25 · [(k11 − k12)
2 + (k21 − k22)

2

+2 · (k11 − k12)(k21 − k22) cos 2σ]1/2
(8)

The maximum contact stress is

P0 =
3Fn

2π · a · b (9)

3.2. Validation of the Simplified ELTCA Algorithm

In this section, the proposed ELTCA algorithm is compared with the finite element
simulation based on commercial software to verify the contact path, contact area, and
contact stress. The basic design parameters of the modified helical face gear are shown
in Table 1. The established 3D model of the modified helical face gear drive is shown in
Figure 5, and the five-tooth model of the finite element simulation is shown in Figure 6.
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Table 1. Basic design parameters of a helical face gear drive.

Parameter Value

Normal module mn (mm) 6.35
Tooth number of pinion Z1 25

Tooth number of face gear Z2 160
Tooth number of shaper Zs 28

Pressure angle αn (◦) 25
Shaft angle γm (◦) 100
Helical angle β (◦) 15

The outer radius of face gear L2 (mm) 600
The inner radius of face gear L1 (mm) 510
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The parameter u0 is set as 1.2 mm, and the parameter ar is equal to 0. Both the pinion
and the face gear are made of steel material with the properties of the elasticity modulus
E = 2.068 × 105 N/mm2 and Poisson’s ratio v = 0.29. The face gear forced by a load torque
T = 1600 N·m is driven by the pinion.

The contact area obtained by finite element simulation is shown in Figure 7, and the
contact area calculated by the ELTCA model in this paper is shown in Figure 8. The contact
stress comparisons obtained by the two methods are shown in Table 2.
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Table 2. Contact stress comparison between the finite element simulation and the ELTCA.

Contact Point
Number

Long Axes
a/Short Axes b

(mm)

Analytical
Stress Value

(MPa)

Finite Element
Method Stress
Value (MPa)

Relative
Error (%)

1 22.956016/0.579899 799.23 707.4 11.49
2 22.968336/0.570494 812.07 724.9 10.73
3 22.983611/0.560628 825.91 749.4 9.26
4 23.001982/0.550285 840.87 762.8 9.28
5 23.023616/0.539449 857.08 778.6 9.15
6 23.048712/0.528098 874.69 788.7 9.83
7 23.077492/0.516207 893.88 803.8 10.07
8 23.110200/0.503753 914.86 806.1 11.89
9 23.147144/0.490703 937.89 828.2 11.69
10 23.188683/0.477022 963.29 838.3 12.97
11 23.235227/0.462669 991.45 895.5 9.67
12 23.287283/0.447597 1022.86 992.4 2.97
13 23.345481/0.431744 1058.16 1148 −8.49

Figures 7 and 8 show that the contact areas obtained by the two methods are basically
the same, and the contact paths formed by instantaneous maximum contact stress points
are also consistent. As shown in Table 2, the contact stresses of the 13 contact points
calculated by the analytical method and the finite element simulation are close to each
other numerically. The maximum relative error between the two methods is 12.97%; since
the influence of the wheel body, web, and other structures is not considered here, the
calculation accuracy of the ELTCA algorithm is acceptable.

4. A Comprehensive Optimization Model of the Contact Stress Based on the
Simplified ELTCA
4.1. The Optimization Model of the Contact Stress

In the Hertz theory, the maximum contact stress is formulated as Equation (9). How-
ever, this formula is not suitable for the case of edge contact, nor can it be applied to
optimize the contact calculation, for example by filtering tooth surface parameters and
reducing the maximum contact stress.

The optimization model is proposed based on the following ideas:
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(i) The edge contact should be avoided.
(ii) The maximum contact stress should be minimized by optimizing the modifica-

tion parameters.

As shown in Figure 9a, point PIJ (I∈[1, M], J∈ [1, N]) is sampled from the cross-section
of the face gear blank, and the sampling points correspond to the M × N points on the
tooth surface of the modified helical face gear.

1 

 

 

Figure 9. Tooth surface discretization and loaded contact pattern evaluation: 

(a) discretized points; (b) contact pattern with edge contact; (c) acceptable 

loaded contact pattern. 
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Figure 9. Tooth surface discretization and loaded contact pattern evaluation: (a) discretized points;
(b) contact pattern with edge contact; (c) acceptable loaded contact pattern.

If edge contact occurs (as shown in Figure 9b), at least one point will fall on the
boundary line of tooth surfaces. Accordingly, the value of I is equal to M, or the value of J is
equal to N. For purpose of avoiding edge contact, the following restrictions should be met.

s.t. 1 < I∗ < M
1 < J∗ < N

(10)

The objective function of contact stress optimization is to minimize the value of contact
stress. Based on the constraints in Equation (10), the optimal load contact pattern (LCP)
can be simulated automatically in the program through cyclic comparison so that the
corresponding optimization parameters arM and u0M can be calculated. The optimization
model is formulated as

f (ar, u0) =
3Fn

2πa(ar ,u0)b(ar ,u0)

(arM, u0M) = arg min f (ar, u0)
(11)

Finally, according to the optimal modification coefficients arM and u0M, the contact
stress can be calculated as

f (arM, u0M) =
3Fn

2πa(arM, u0M)b(arM, u0M)
(12)
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To realize the programming of the optimization algorithm, the global optimization
algorithm that integrates the grid searching with the downhill simplex method is employed
in the solving process. The solving procedure can be summarized in the following steps as
demonstrated in Figure 10.
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Figure 10. Flow chart of the optimization algorithm.

Step 1 is to initialize the search range and the step size in grid searching. The search
range of the parabolic offset distance is set as u0∈[−1, 2], and the step size is 0.1. The search
range of the parabolic coefficient is set as ar∈[−0.01, 0.01], and the step size is 0.001.

Step 2 is to calculate the objective function of modification parameters in each group
as well as store the value of the function and corresponding parameters that meet the
constraints of Equation (10). A group of modification parameters that minimize the value
of the objective function is selected as the initial value of the optimization algorithm of the
downhill simplex.

Step 3 is to initialize the position and the size of simplex vertices. The initial size of
the simplex is set as 0.1, and the number of iterations is set as 40.

Step 4 is to calculate the objective function value of each simplex vertex. Through
four methods of reflection, reflection and expansion, contraction, and multidimensional
contraction, new vertices are obtained to form a new simplex by replacing the worst point
in the original simplex.

Step 5 is to repeat Step 4 until the residual requirements are met.

4.2. Contact Path and Contact Stress Calculation Based on the Optimization Model

The basic design parameters of the helical face gear drive in this section are the same
as those in Section 3.2. As described in Section 4.1, the two coefficients u0 and ar that
determine the geometry of the parabola of the modified shaper are the main optimization
parameters. Within the given intervals of the modification coefficients u0∈[−1, 2] and
ar∈[−0.01, 0.01], the calculated optimal parameters as well as the minimum value of the
maximum contact stress are presented in Table 3.

The minimum value of the maximum contact stress is 758.36 Mpa and is shown as a
black point in Figure 11, the corresponding parameter u0 which determines the position
of the parabola apex is 1.6406 mm, and the quadratic coefficient ar is −0.001125. In other
words, the maximum contact stress without edge contact is not less than 758.36 MPa as each
group of modification parameters is in the intervals of u0∈[−1, 2] and ar∈[−0.01, 0.01].
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Table 3. Results of the optimization calculation for the modified helical face gear.

Parameter Value

Optimal parabola offset distance u0 (mm) 1.6406
Optimal quadratic coefficient ar −0.001125

The optimized value of maximum contact
stress P0_min (MPa) 758.36
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Based on the optimization model, the contact path on the tooth surface of the face gear
corresponding to the parameters in Table 1 can be obtained, as shown in Figure 11.

The edge contact has been avoided, and the contact area and contact path have
also changed. Compared with the result before optimization (as shown in Figure 8), the
optimized contact area and contact path are more inclined, and the contact path is longer,
which is conducive to improving the contact ratio and transmission stability. Moreover, the
contact area is further away from the inner portion of the face gear, reducing the risk of
edge contact.

4.3. Verification of the Optimization Model

In order to further verify the effect of the proposed optimization model, some numeri-
cal calculations are carried out. The optimization effect to be verified includes three aspects:
avoiding edge contact, minimizing the maximum contact stress, and efficiency.

As shown in Figure 11, the effect of the proposed model in avoiding edge contact is
obvious. To verify the effect of the proposed model in minimizing the maximum contact
stress, the contact stress values of different parameters in the intervals of u0∈[−1, 2]
and ar∈[−0.01, 0.01] are calculated by permutation and combination and are shown in
Tables 4 and 5.

Table 4. Contact stress of different parabola offset distances u0.

Contact Case
Number u0 (mm) ar

Maximum Contact
Stress (MPa)

1 −1 −0.001125 Edge contact
2 0.7 −0.001125 Edge contact
3 1.5 −0.001125 Edge contact
4 1.64 −0.001125 758.36
5 1.70 −0.001125 758.52
6 1.75 −0.001125 758.66
7 1.80 −0.001125 758.77
8 1.85 −0.001125 758.93
9 1.90 −0.001125 759.07

10 2 −0.001125 759.34

All values of the maximum contact stresses in Tables 4 and 5, except for the cases of
edge contact (which will not be displayed in the optimization results), are greater than
758.36 MPa, which means that the optimization algorithm minimizes the maximum contact
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stress. According to the data in Tables 4 and 5, when the value of parameter u0 becomes
relatively small, or the absolute value of coefficient ar becomes relatively large, edge contact
is easily prone to emerge.

Table 5. Contact stress of different parabolic parameters ar.

Contact Case
Number u0 (mm) ar

Maximum Contact
Stress (MPa)

1 1.6406 −0.01 Edge contact
2 1.6406 −0.002 Edge contact
3 1.6406 −0.0015 Edge contact
4 1.6406 −0.001 765.81
5 1.6406 −0.0005 777.38
6 1.6406 0 790.78
7 1.6406 0.002 841.65
8 1.6406 0.0022 844.77
9 1.6406 0.003 Edge contact
10 1.6406 0.008 Edge contact

The parameter ranges are u0∈[−1, 2] and ar∈[−0.01, 0.01]. The step size of parameter
u0 is 0.1, and the step size of parameter ar is 0.001. Thus, there are 31 × 21 groups of
modification parameters as a selection. For each group of parameters, the maximum value
of the contact stress is selected from the values of contact stress at all contact points. The
minimum is selected from these maximum values as the result of optimization that demotes
the optimal values. In Tables 4 and 5, 21 sets of data are presented which are the most
representative of the two dimensions. Hence, these sets of data supporting the conclusion
are considered credible. According to Table 6, the proposed optimization model improves
the efficiency by 10%, and the simplified TCA equation makes the algorithm more stable
and less sensitive to the initial values of the numerical calculation.

Table 6. Comparison of the computation efficiency of two optimization models.

Computation Environment The Computation Time of
the Conventional Model

The Computation Time of
the Proposed Model

MATLAB R2014a Run on a
computer with 64-bit Intel

Core i5-8400M 2.81 GHz CPU
and 8 GB main memory

14.78 s 13.24 s

MATLAB R2014a Run on a
laptop with 64-bit AMD

A8-4500M 1.9 GHz CPU and 4
GB main memory

75.27 s 63.26 s

5. Discussion

In this section, the optimization model is applied to further analyze the effects of
design parameters and assembly errors on the contact path and the contact stress.

5.1. The Effect of Modification on Contact Stress and Contact Path

As known to all, the purpose of the modification of gears is to improve contact
performance. By comparing the contact performances of a modified face gear and an
unmodified one, the influence of the modification on gear transmission can be studied.
When the quadratic coefficient ar of the modification parabola is equal to 0, the enveloped
helical face gear can be regarded as a standard gear without modification. According to the
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design parameters in Table 1, the contact path of the standard helical face gear is presented
in Figure 12.
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According to the constraints in Equation (10), the edge contact could be avoided even
if there is no modification. The optimized result of the maximum contact stress of the
unmodified helical face gear is shown in Table 7 based on Equation (12).

Table 7. Optimization result of the helical face gear without modification.

Parameter Value

Optimal parabola offset distance u0 (mm) -
Optimal quadratic coefficient of the parabola ar 0

The minimum value of maximum contact stress P0m (MPa) 790.78

As shown in Figures 11 and 12, the contact path of the unmodified helical face gear
tends to be a straight line, while the contact path with modification is a smooth curve. The
position of the maximum contact stress changes slightly. In addition, the contact area of the
modified helical face gear is more inclined than that of the unmodified one and is closer to
the inner portion of the face gear. The maximum contact stress of the unmodified helical
face gear is 790.78 MPa, and that of the modified one is 758.36 MPa. Thus, the conclusion
can be drawn that the modification expands the contact path and reduces the maximum
contact stress, which indicates the necessity of the parabolic modification of the helical
face gear.

5.2. The Effect of the Tooth Number Difference between a Shaper and a Pinion on Contact Stress
and Contact Path

According to the meshing theory of the face gear drive, the tooth number of a shaper is
1 to 3 larger than that of a pinion. The surface geometry of the pinions with different tooth
numbers is extremely distinct, which results in the fact that the geometry of the contact
ellipses varies when the pinions are contacting with helical face gears. The optimization
results for the face gear drives with different tooth numbers are listed in Table 8.

Table 8. Optimization results for different tooth numbers.

Case Zs/Z1
Tooth

Difference u0 (mm) ar P0m (MPa)

1 28/25 3 1.6406 −0.001125 758.36
2 28/26 2 1.7295 −0.000757 686.51
3 27/25 2 1.0063 −0.000815 703.72
4 28/27 1 0.0344 −0.000266 591.56
5 27/26 1 1.2893 −0.000336 609.60
6 26/25 1 1.5438 −0.000250 634.50

Figure 13 shows the contact paths on the tooth surface of the face gear under different
tooth-number differences between the pinion and the shaper, namely cases 1, 2, and 4 in
Table 8. The three curves in Figure 13 are all generated by the 28-tooth shaper. Thus, the
influence of the minor change in modification parameters on the tooth geometry of the face
gear is ignored.
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Figure 13. Contact paths of different tooth-number differences between the shaper and the pinion.

Results in Table 8 denote that the optimal modification coefficients of helical face gears
continuously vary as the tooth numbers of the shaper and the pinion distinctly change. The
optimal maximum contact stress is 758.36 MPa when the tooth number difference between
the shaper and the pinion is 3. When the tooth number difference is 2, the contact stresses
are 686.51 MPa and 703.72 MPa. As for the cases where the tooth number difference is
1, the stresses are 591.56 MPa, 609.60 MPa, and 634.5 MPa, respectively. As a result, the
greater the tooth number difference is, the larger the optimal maximum contact stress is.

The contact paths of the modified helical face gears are different when the tooth
number difference changes under the condition that the tooth number of the shaper is
identical, as Figure 13 shows. As the tooth number difference increases, the contact path
slightly moves towards the outer portion of the face gear. Additionally, the point of the
maximum contact stress on the surface of the face gear remains the same tooth height.

5.3. The Effect of Pressure Angle αn on Contact Stress and Contact Path

The inclination of the involute is related to the pressure angle which influences the
contact path and the contact stress of face gear drives by changing the direction of the
contact force. Some pressure angles as well as the corresponding optimization results are
listed in Table 9.

Table 9. Optimization results for different pressure angles αn.

αn (◦) u0 (mm) ar P0m (MPa)

22.5 1.3344 −0.001125 811.27
20 −0.9965 0.000501 912.73

17.5 Edge contact
14.5 Edge contact

The contact paths corresponding to different pressure angles in Table 9 are shown
in Figure 14. In Tables 4 and 9, as the pressure angle αn decreases from 25◦ to 20◦, the
optimal modification parameters change constantly, and the optimal maximum contact
stress increases from 758.36 MPa to 912.73 MPa. Within the given ranges of modification
parameters, namely u0∈[−1, 2] and ar∈[−0.01, 0.01], the edge contact is inevitable if the
pressure angle is equal to or less than 17.5◦. Hence, the smaller the pressure angle within
the certain range is, the greater the optimal maximum contact stress is.

When the pressure angle αn decreases from 25◦ to 20◦ (as shown in Figures 11 and 14),
the contact area on the surfaces of the face gears that adopt optimal modification parameters
gradually moves to the inner portion of the face gears, the shapes of the contact area change
from oblique distribution to longitudinal distribution, and the contact path also changes
from oblique lines of the tooth root to vertical lines. Meanwhile, the point of the maximum
contact stress keeps working in the middle of the contact path. Therefore, the angle of 25◦

is the most appropriate of the given pressure angles, which is why many aviation gears are
designed with a pressure angle of 25◦.
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5.4. The Effect of Helical Angle β on Contact Stress and Contact Path

The helical angle determines the helical torsion degree of the tooth around the gear
axis, which inevitably affects the distribution of the contact area on the tooth surface. As a
result, helical angles can further change the contact path and contact stress. Some optimized
maximum contact stresses of modified helical face gears with different helical angles are
shown in Table 10.

Table 10. Optimization results for different helical angles β.

β (◦) u0 (mm) ar P0m (MPa)

0 −0.3000 0 805.53
5 −0.5468 −0.000279 806.78
10 1.8453 −0.001063 755.02
21 1.9775 0.001951 845.13

To obtain the influence laws of helical angles on the contact characteristics of face
gears, the contact paths and contact areas corresponding to different helical angles are
compared and shown in Figure 15.

According to the results in Tables 4 and 10, as the helical angle β increases from 0◦ to
21◦, the optimal modification parameters and the values of the optimal maximum contact
stress gradually vary. When the helical angle β is between 10◦ and 15◦, the optimal modifi-
cation coefficient u0 is close to the maximum value of the given range, that is, u0∈[−1, 2].
The parameter ar is close to the minimum value in the given range of ar∈[−0.01, 0.01],
while the optimal result of the maximum contact stress is around the minimum value of
755.02 MPa. According to Figures 11 and 15, the following conclusions can be drawn as
the helical angle β increases from 0◦ to 21◦: (i) The position of the contact area on the tooth
surface of the face gear moves inward gradually. (ii) The tilt of the contact area increases
gradually. (iii) The contact path gradually changes from a vertical line of the tooth root to an
inclined line which will improve the contact ratio. (iv) The point of the maximum contact
stress on the face gear surface slightly shifts towards the tooth height. Therefore, it can be
concluded that the helical angle has a significant influence on the contact characteristics.
As for the modified helical face gear drives with the parameters listed in Table 1, the helical
angles of 10◦ to 15◦ are considered relatively ideal parameters with the comprehensive
consideration of the contact stress and the distribution of the contact area.
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5.5. The Effect of Shaft Angle γm on Contact Stress and Contact Path

In Table 11, different shaft angles and the corresponding optimal maximum contact
stresses are illustrated.

Table 11. Optimization results for different shaft angles γm.

γm (◦) u0 (mm) ar P0m (MPa)

80 −0.8136 −0.000585 688.07
90 −0.8453 −0.000950 757.42

110 −0.0505 −0.000688 685.11

Similarly, the contact paths and contact areas that are associated with the shaft angles
in Table 11 are separately shown in Figure 16.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 22 
 

 

 

 

 

Figure 16. Contact diagrams of different shaft angles (above: γm = 80°; middle: γm = 90°; below: γm = 110°). 

The data in Tables 4 and 11 indicate that the tooth surfaces of the modified face gears 

with different shaft angles are dramatically distinct, and so are the corresponding optimal 

modification parameters. If the shaft angle is close to 90°, the value of the maximum con-

tact stress reaches the maximum, which is about 760 MPa. According to Figures 11 and 

16, as the shaft angle changes from 80° to 110°, the positions of the contact path and the 

maximum contact stress point on the tooth surface of the face gear do not change obvi-

ously. However, the shapes of the contact area are much too diverse. Generally, the contact 

length would increase as soon as the contact area is tilted, which is beneficial for improving 

the contact ratio. According to a previous comprehensive analysis of contact stress and con-

tact area, the recommended value of shaft angle γm for this design is about 100°. 

The influence laws of the shaft angle error Δγm on the contact path and the contact 

stress are consistent with those of the shaft angle γm, which will not be repeatedly men-

tioned here. 

5.6. The Effects of Assembly Errors △q and △E on Contact Stress and Contact Path 

It cannot be ignored that assembly errors have a great impact on the contact charac-

teristics of the modified helical face gear, the investigation of which provides significant 

references for the practical assembly. In Table 12, axial displacement errors and the corre-

sponding optimal maximum contact stresses are listed, and the contact paths in Figure 17 

correspond to the parameters in Table 12. 

Table 12. Optimization results for different axial displacement errors △q. 

△q (mm) u0 (mm) ar P0m (MPa) 

0 1.6406 −0.001125 758.36 

0.03 −0.8997 −0.001 751.38 

0.05 −0.2787 −0.001117 746.55 

0.08 −0.7123 −0.001086 742.19 

  

Figure 16. Contact diagrams of different shaft angles (above: γm = 80◦; middle: γm = 90◦; below:
γm = 110◦).



Mathematics 2022, 10, 3102 17 of 20

The data in Tables 4 and 11 indicate that the tooth surfaces of the modified face gears
with different shaft angles are dramatically distinct, and so are the corresponding optimal
modification parameters. If the shaft angle is close to 90◦, the value of the maximum contact
stress reaches the maximum, which is about 760 MPa. According to Figures 11 and 16, as
the shaft angle changes from 80◦ to 110◦, the positions of the contact path and the maximum
contact stress point on the tooth surface of the face gear do not change obviously. However,
the shapes of the contact area are much too diverse. Generally, the contact length would
increase as soon as the contact area is tilted, which is beneficial for improving the contact
ratio. According to a previous comprehensive analysis of contact stress and contact area,
the recommended value of shaft angle γm for this design is about 100◦.

The influence laws of the shaft angle error ∆γm on the contact path and the con-
tact stress are consistent with those of the shaft angle γm, which will not be repeatedly
mentioned here.

5.6. The Effects of Assembly Errors4q and4E on Contact Stress and Contact Path

It cannot be ignored that assembly errors have a great impact on the contact charac-
teristics of the modified helical face gear, the investigation of which provides significant
references for the practical assembly. In Table 12, axial displacement errors and the corre-
sponding optimal maximum contact stresses are listed, and the contact paths in Figure 17
correspond to the parameters in Table 12.

Table 12. Optimization results for different axial displacement errors4q.

4q (mm) u0 (mm) ar P0m (MPa)

0 1.6406 −0.001125 758.36
0.03 −0.8997 −0.001 751.38
0.05 −0.2787 −0.001117 746.55
0.08 −0.7123 −0.001086 742.19
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Figure 17. Contact paths for different values of the axial displacement error.

Similarly, the different cases of the modified helical face gear drive with offset errors
4E are presented in Table 13 and Figure 18.

Table 13. Optimization results for different values of pinion-offset error4E.

4E (mm) u0 (mm) ar P0m (MPa)

0.02 −0.1190 −0.001081 756.51
0.08 0.6547 −0.001063 767.60
0.15 0.8649 −0.000758 680.87
0.25 1.1063 −0.000813 797.86
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Figure 18. Contact paths of the modified helical face gears with different pinion-offset errors.

As Table 12 indicates, as the axial displacement error4q gradually increases from 0 to
0.08 mm, the optimal modification coefficient u0 changes from 1.6406 mm to −0.7123 mm.
Accordingly, the quadratic coefficient ar also changes from −0.001125 to −0.001086, and
the optimized maximum contact stress is close to 758.36 MPa. As shown in Figure 17, the
contact paths on the tooth surface of the face gear evidently move toward the middle area
as the assembly error grows, which decreases the risks of edge contact. The points of the
maximum contact stress on the gear surface do not change significantly and remain at the
same tooth height. Thus, in actual installations, the displacement error4q is recommended
to be controlled within the range of 0.08 mm, and the contact performance of the modified
face gear is relatively ideal.

As shown in Table 13, the pinion offset4E greatly influences the optimal modification
coefficients and the contact stresses of the modified face gear drive. As the offset value
grows from 0.02 mm to 0.25 mm, the optimum modification parameter u0 correspondingly
varies from −0.1190 mm to 1.1063 mm, and the coefficient ar also changes from −0.001081
to −0.000813, which results in the fluctuation of the maximum contact stresses. Figure 18
reveals that the gradual increase in the offset values causes the contact paths to move to
the inner portion of the face gear and also causes the point of the maximum contact stress
to move along the direction of tooth height. In other words, the addition of offset 4E
increases the risks of edge contact. When the offset4E is equal to 0.15 mm, the maximum
contact stress is 680.87 MPa, which is the smallest in the given range. In this case, the
contact path is reasonable. In summary, the recommended value of the offset error4E is
0.15 mm, taking into account the inevitability of assembly errors.

6. Conclusions

An ELTCA model for optimizing contact stress and edge contact is presented and
verified in this paper. Based on the above research, the following conclusions can be drawn.

(1) The proposed ELTCA optimization model can determine the optimal modifica-
tion parameters for avoiding edge contact and minimizing the maximum contact
stress programmatically.

(2) The parabolic modification of the helical face gear is beneficial for improving the
contact performance, expanding the contact areas, and reducing the maximum con-
tact stress.

(3) The tooth number difference between the shaper and the pinion has great effects
on the optimal modification parameters. The increase in tooth number difference
contributes to an increase in the values of the maximum contact stress. However, the
change in the relative position of the point of maximum contact stress on the contact
path is small.

(4) The pressure angle αn, the shaft angle γm, and the helical angle β affect the contact path
and the maximum contact stress in different degrees of influence. For specific design
parameters of helical face gear drives, these three kinds of angles have relatively ideal
values or ranges, which can optimize the contact stress and contact path.
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Within a small range, the axial displacement error4q can improve the contact perfor-
mance, while the pinion offset4E worsens the contact performance. The influence of the
shaft angle error4γm on the contact performance is similar to that of shaft angle γm, but
the influence degree is distinct.
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