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Abstract: In this paper, we study a class of predation–prey biological models with random per-
turbation. Firstly, the existence and uniqueness of systematic solutions can be proven according
to Lipschitz conditions, and then we prove that the systematic solution exists globally. Moreover,
the article discusses the long-term dynamical behavior of the model, which studies the stationary
distribution and gradual properties of the system. Next, we use two different methods to give the
conditions of population extinction. From what has been discussed above, we can safely draw the
conclusion that our results are reasonable by using numerical simulation.
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1. Introduction

Along with the remarkable development of science and technology, mathematics is
applied everywhere around us. In this way, it is possible for us to use mathematics to
solve various problems in our daily lives. The application of mathematics in biology is
more significant, in 2015, J. Banasiak [1] solved systems biology problems by establishing
a mathematical framework. He studied multi-scale problems in the complex domains
in biology, which can help us to use mathematical methods to solve biological problems.
By studying population models, we can also effectively predict and control biological
populations. Grunert K [2], Luoyi Wu [3] and Àngel Calsina [4] have conducted research
on this.

Research on biological populations has acquired many good results, which can be
referred to [5–10], the study of biological populations is of great significance to us. By ana-
lyzing the rules of the biological population change and studying the factors affecting the
population change, we can take appropriate measures to control the population number.
In addition, the study of population models can make reasonable predictions for population
numbers, which can provide correct suggestions for industrial and animal protection. Due
to the fact that the number of populations is of great importance to ecosystems, the study
of population models is reasonable.

Predators initially grow when they enter the ecosystem, but they are unlikely to
grow indefinitely due to limiting factors, such as food and habitat space. When the popu-
lation reaches a certain degree, the population reaches saturation, so the introduction of
the saturation factor −y(t)2 + Dy(t) is crucial. The non-monotonic functional predator-
bait model is mainly explored in this paper, the specific mathematical expression is
given below:
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dx
dt

= rx(t)(1− x(t)
k

)− x(t)y(t)
a + x(t) + y(t)

dy
dt

=
ux(t)y(t)

a + x(t) + y(t)
− y(t)2 + Dy(t)

(1)

where x(t) and y(t) are the populations of prey and predators at the time t, the param-
eter r represents the intrinsic growth rate of the prey, k represents the environmental

accommodation,
x(t)y(t)

a + x(t) + y(t)
is the functional response function for both predators and

prey, u represents the maximum growth rate generated by the predation, the parameter
D represents the natural growth rate of the predators, and all the parameters are positive
numbers.

The model has been discussed a lot by plenty of scholars before. However, in spite of
that, the population is influenced not only by the above parameters but also by environ-
mental factors such as climate, pollution and disease, as well as various human factors,
the model is determinstic, so the model (1) may have certain limitations, it is very necessary
to add a certain random perturbation to the original model, this paper mainly analyzes the
influence of white noise [11–13] on the model, so the model (1) becomes:

dx(t) = (rx(t)(1− x(t)
k

)− x(t)y(t)
a + x(t) + y(t)

)dt + σ1x(t)dB1(t)

dy(t) = (
ux(t)y(t)

a + x(t) + y(t)
− y(t)2 + Dy(t))dt + σ2y(t)dB2(t)

(2)

where B1(t) and B2(t) are independent wiener processes, σ1 and σ2 are the strength of
white noise, and they are all non-negative and bounded.

This model can be regarded as a stochastic process, so this system can be studied
through the relevant laws of geometric Brownian motion. According to the modeling
method of reference [14], this model can also be seen as the application of two stochastic
resetting scenarios [15] in the heterogeneous diffusion process, one is a stochastic resetting

with a diffusion coefficient σ2
1 x2

2 , and the other is a stochastic resetting with a diffusion

coefficient σ2
2 y2

2 , so this model can also be considered with the resetting idea, by establishing
the relationship between geometric Brownian motion and stochastic resetting, it facilitates
us to study stochastic processes in different minds.

With further research, there are many models that focus on the role of resetting, es-
pecially in the geometric Brownian movement, related articles can be referred to [16].
Resetting dynamics plays an important role in quantum physics and biophysics, and spe-
cific information can refer to the literature [17–20], resetting also has important applications
in computer fields [21] and economics [22].

White noise plays a crucial role in biological population research, and the introduction
of white noise makes the model more reasonable in the actual situation. Moreover, the
study of white noise has profound significance in population control and pest elimination.
Through the control of noise intensity, it can achieve the purpose of population control,
which is of great significance in ecological balance. Moreover, the purpose of eliminating
pests can be achieved by reasonable control of noise intensity, correlational research is
discussed in this paper.

In Section 2, firstly, the article explains that the solution of the system 2 exists locally
and is unique according to the Lipshiz conditions [23–25], secondly, we show using proof
by contradiction to prove that the solution exists globally.

In Section 3, the thesis mainly explores the properties of the solution. Firstly, the paper
studies the long-term dynamical behavior of the system and gives a sufficient condition for
the existence of a stationary distribution [26,27]. Secondly, the gradual stabilization of the
solution is proved in the article, it proves that the solution of the system oscillates at the
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internal equilibrium state [28] of the corresponding deterministic system. Finally, the paper
gives numerical simulations of the stationary distribution.

In Section 4, the paper explores the extinction of the populations with two methods.
The first way is to achieve pest control purposes by controlling the intensity and size of the
random perturbations, and another is to control the pests by natural predation.

In Section 5, we have summarized the full text. First, the advantages and disadvantages
of the article are analyzed, and I put forward the relevant requirements and expectations
for myself, hoping that I could make progress in future scientific research and study.

2. Global Existence and Uniqueness of the Solution

Before discussing the various properties of the system, first judges whether the system
solution exists, if so, whether the system solution exists is global. In this section, the
article focuses on the global existence and uniqueness of the solution by constructing an
auxiliary function.

Theorem 1. For any initial condition(x(0), y(0)), system (2) must exists a unique solution
(x(t), y(t)), and the solution exists globally.

Proof of Theorem 1. We observe that parameters of the system do not satisfy the Lipschitz
condition, first, we discuss the following system of equations:

dp(t) = [r−
σ2

1
2
− rep(t)

k
− eq(t)

a + ep(t) + eq(t)
]dt + σ1dB1t

dq(t) = [D−
σ2

2
2
− eq(t) +

uep(t)

a + ep(t) + eq(t)
]dt + σ2dB2t

(3)

For any initial value p(0) = ln x(0)), q(0) = ln y(0), system (3) has a unique solution
(p(t), q(t)) at t ∈ [0, τe), τe is blasting time, according to the Ito formula, system 2 has a
unique solution(x(t), y(t)) = (ep(t), eq(t)). The next step is to prove that the solution exists
globally, that is τe → ∞ a.s. Let m0 be big enough, the initial condition (x(0), y(0)) belongs
to the interval [ 1

m0
, m0], for any positive number m ≥ m0, define the stopping time [29]:

τm = in f {t ∈ [0, τe) : x(t) /∈ [
1

m0
, m0] or y(t) /∈ [

1
m0

, m0]} (4)

It is easy to see that τm is rising monotonically, stipulate τ∞ = lim
t→+∞

τm, in the following

proof, we prove that τ∞ = +∞ a.s.
Proof by contradiction: Suppose τ∞ = +∞ does not hold, there must be a finite

positive value T and 0 < ε < 1, the following results hold true

P(τm ≤ T) ≥ ε (5)

Construct a Lyapunov function [30–32] V1(x, y) = (x + 1− ln x) + c(y + 1− ln y), and
c is a positive parameter that is determined in the proof, apparently V1 is a map from R+

2 to
R+, according to the Ito formula:

dV1(x, y) = LV1(x, y)dt + (1− 1
x
)σ1xdB1(t) + (c− c

y
)σ1ydB2(t) (6)

where
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LV1(x, y) = (1− 1
x
)(rx− rx2

k −
xy

a+x+y ) +
σ2

1 x2

2x2 + (c− c
y )(

uxy
a+x+y + Dy− y2) +

cσ2
2 y2

2y2

= rx− r
k x2 − xy

a+x+y − r + r
k x + y

a+x+y +
σ2

1
2

+ cuxy
a+x+y + cDy− cy2 − cux

a+x+y − cD + cy +
cσ2

2
2

≤ (r + r
k )x + ( 1

a + cD + c)y +
cu− 1

a + x + y
xy + λ

where λ =
σ2

1
2 +

cσ2
2

2 , take c =
1
u

, obviously, z < 2(z + 1− ln z) is established by the relation

of derivatives and extremvalues in the interval (0,+∞), so above formula becomes

LV1(x, y) ≤ (r +
r
k
)x + (

1
a
+ cD + c)y + λ

≤ β(x + cy) + λ

≤ 2β[x + 1− ln x + c(y + 1− ln y)] + λ

= 2βV1(x, y) + λ

(7)

where β = max{r + r
k , 1

ac + D + 1}, substitute (7) to Formula (6), next both sides of the
upper formula simultaneously integrate in the interval [0, τm], and take the expectation.

E
∫ τm

0
dV1(x, y) ≤ E

∫ τm

0
[λ + 2βV(x, y)]dt

that is
EV1(x(τm), y(τm)) ≤ V1(x0, y0) + λT + 2β

∫ τm

0
EV1(x, y)dt (8)

according to Gronwall’s inequation

EV1(x(τm), y(τm)) ≤ [V1(x0, y0) + λT]e
∫ τm

0 2βdt

≤ [V1(x0, y0) + λT]e2βT

= γ

When m > m0, take event Ωm, according to the hypothesis (5), then P(Ωm) ≥ ε > 0,
while ω ∈ Ωm, according to the expectation definition has the following results:

γ ≥ E[IΩm V1(x(τm), y(τm))] ≥ ε[m + 1− ln m +
1
u
(m + 1− ln m)]

then take the limit on both sides
γ ≥ ∞

there is a contradiction, so γ = +∞ a.s., so T = +∞, so solutions exist globally.

3. The Nature of the Solution
3.1. Existence and Ergodicity of the Stationary Distribution

In this section, we mainly discuss the long-term kinetic behavior of predators and prey,
we study the weak stability of the system, when the parameters of the system meet certain
conditions, the populations are long-term lasting, and the population number will be stable
around a determined value, the existence of the stationary distribution of the model (2) is
discussed below.

Theorem 2. Any initial value condition(x0, y0), if r− 1− σ2
1 > 0 and D− σ2

2 > 0 hold true, a
stationary distribution µ(·) exists in system (2), and the stationary distribution µ(·) is ergodic.
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Proof of Theorem 2. Define a Lyapunov function V2(x, y) = x + xδ + y + yδ, the δ is a
constant to be determined later, obviously, V3(x, y) is a positive definite function, according
to the Ito formula

dV2(x, y) = LV2(x, y)dt + (1 + δxδ−1)σ1xdB1(t) + (1 + δyδ−1)σ2ydB2(t) (9)

where

LV2(x, y) =(x + δxδ)(r− rx
k
− y

a + x + y
) +

1
2

δ(δ− 1)σ2
1 xδ

+ (y + δyδ)(
ux

a + x + y
− y + D) +

1
2

δ(δ− 1)σ2
2 yδ

=rx− r
k

x2 − xy
a + x + y

+ rδxδ − rδ

k
xδ+1 − δxδy

a + x + y
+

1
2

δ(δ− 1)σ2
1 xδ

+
uxy

a + x + y
− y2 + Dy +

δuxyδ

a + x + y
− δyδ+1 + Dδyδ +

1
2

δ(δ− 1)σ2
2 yδ

So just make δ < 0, let δ = −1, the above formula sub changes to

LV2(x, y) ≤− r
k

x2 + rx− r
x
+

r
k
+

1
x
+

σ2
1
x
− y2 + (u + D)y− D

y
+ 1 +

σ2
2

y

=− r
k

x2 + rx−
r− 1− σ2

1
x

− y2 + (u + D)y−
D− σ2

2
y

+ (
r
k
+ 1)

For any small amount ε1 and ε2, consider the following set

U = {(x, y) ∈ R2
+|ε1 < x <

1
ε1

, ε2 < y <
1
ε2
}

then for the set E = R2
+\U, LV equals to negative infinite constant holds, so there is a

positive constant M, make the LV < −M established at set E, so system (2) possesses a
stationary distribution µ(·). In addition, there is a constant N

N = min{α2
1x2, α2

2y2, (x, y) ∈ E} > 0

for any η, there is the following result

2

∑
i,j=1

aijηiηj = α2
1x2η2

1 + α2
2y2η2

2 ≥ N||η||2

so the stationary distribution µ(·) is ergodic.

Brief summary: According to the proof of Theorem 2, when the system parameters
meet the above condition, the system (2) has a stationary distribution, so both of the
populations have always been positive, it indicates that all populations of the system (2)
will persist.

3.2. The Progressive Nature of the System (2) at the Internal Equilibrium Point (x1, y1) in the
System (1)

If (x1, y1)is the internal equilibrium state of the system (1), we can clearly see that
(x1, y1) is not the solution of a system (2), so what is the relationship between (x1, y1) and
the solution of a stochastic system(2)? Next, the solution of the system (2) proceeds near
the internal equilibrium state (x1, y1) of the deterministic system (1) is studied.
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Theorem 3. For any initial value condition(x0, y0), if r
k −

y1
a(a+x1+y1)

> 0, then the solution of
the stochastic system (2) has the following properties

lim
t→∞

sup
1
t
· E
∫ t

0
[(x− x1)

2 + (y− y1)
2]ds ≤ w

h

both w and h are positive constants, they are given specifically later.

Proof of Theorem 3. Define a function V3(x, y) = (x− x1− x1 ln x
x1
)+λ1(y− y1− y1 ln y

y1
)

= V31(x, y) + λ1V32(x, y), where λ1 is a positive constant to be determined, obviously
R+

2 → R+.
Paramount consideration V31(x, y), according to the Ito formula.

LV31(x, y) = (x− x1)(r− r
k x− y

a+x+y ) +
x1σ2

1
2

= (x− x1)[
r
k x1 +

y1
a+x1+y1

− r
k x− y

a+x+y ] +
x1σ2

1
2

= (x− x1)[− r
k (x− x1) +

ay1+y1x−ay−x1y
(a+x1+y1)(a+x+y) ] +

x1σ2
1

2

= −a(y−y1)(x−x1)+y1(x−x1)
2−x1(y−y1)(x−x1)

(a+x1+y1)(a+x+y) − r
k (x− x1)

2 +
x1σ2

1
2

(10)

Then discuss V32(x, y), according to the Ito formula

LV32(x, y) = (y− y1)(
ux

a + x + y
− y− ux1

a + x + y
− y1) +

y1σ2
2

2

= (y− y1)(
ux(a + x1 + y1)− ux1(a + x + y)

a + x + y
− (y− y1)) +

y1σ2
2

2

= (y− y1)(
au(x− x1)− u(x1y− y1x)
(a + x + y)(a + x1 + y1)

− (y− y1)) +
y1σ2

2
2

= (y− y1)(
au(x− x1)− u(x1(y− y1)− y1(x− x1))

(a + x + y)(a + x1 + y1)
− (y− y1)) +

y1σ2
2

2

=
(au + uy1)(x− x1)(y− y1)− ux1(y− y1)

2

(a + x + y)(a + x1 + y1)
− (y− y1)

2 +
y1σ2

2
2

(11)

Thus

LV3(x, y) ≤− (
r
k
− y1

a(a + x1 + y1)
)(x− x1)

2 − λ1(y− y1)
2

+
−a− x1 + λ1au + λ1uy1

(a + x + y)(a + x1 + y1)
(x− x1)(y− y1) +

x1σ2
1

2
+

y1σ2
2

2

(12)

so just take λ1 = a+x1
au+uy1

, h = min{ r
k −

y1
a(a+x1+y1)

, λ1} > 0, bring them into the Formula (12),
both sides are integrated in the interval t ∈ (0, t), and then take the expectation.

E[V(x, y)]−V(0, 0) ≤ −hE
∫ t

0
[(x− x1)

2 + (y− y1)
2]ds + wt

where w =
x1σ2

1
2 +

y1σ2
2

2 , so

lim
t→∞

sup
1
t
· E
∫ t

0
[(x− x1)

2 + (y− y1)
2]ds ≤ w

h
(13)

so the Theorem 3 is proved.



Mathematics 2022, 10, 3238 7 of 12

Brief summary: If the system (2) parameters satisfy the above condition, both preda-
tors and prey are persistent, and the solution of the system (2) will fluctuate up and down
near the internal equilibrium state of its corresponding deterministic system. We can also
get a conclusion, the system (2) is deterministic when the perturbation coefficient σi are
zero i = 1, 2, and the system is randomly stable.

3.3. Numerical Simulation

According to the milsteins discretization method [33–35], the following discretization
equations are obtained

xi+1 = xi + (rxi(1−
xi
k
)− xiyi

a + xi + y1
)∆t + σ1xi

√
∆tξ1 +

1
2

σ2
1 xi(ξ

2
1 − 1)∆t

yi+1 = yi + (
uxiyi

a + xi + yi
− y2

i + Dy)∆t + σ2xi
√

∆tξ2 +
1
2

σ2
2 xi(ξ

2
2 − 1)∆t

(14)

Let initial value x0 = 1, y0 = 12, and take the parameter r = 10, a = 10, σ1 = 1, σ2 = 1,
u = 0.3, D = 5, ∆ = 200

216 , k = 1, then 10− 1− 12 = 8 > 0, 5− 12 = 4 > 0, thus the values
satisfy the conditions of Theorem 2, the numerical simulation are as follows, see Figure 1.

Figure 1. Stationary distribution of the model (2).

By observing Figure 1, it shows that the system does have a stationary distribution,
populations x(t) and y(t) are persistent, and they fluctuate up and down around the
determined values, so the conclusion of the Theorem 2 is correct.

4. The Final Behavior of the Population
4.1. Environmental Forces to Eliminate Insect Pests

In nature, the number of pests will be affected by various factors such as climate,
infectious diseases, so environmental factors can affect the number of pests, the next
subsection discusses adjusting the stochastic disturbance coefficient to eliminate pests.

Theorem 4. For any initial value condition x0 > 0, if r− σ2
1
2 < 0, then lim

t→∞
x(t) = 0, the pests

can be eliminated.
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Proof of Theorem 4. Observe the first formula of the system (2), we have following results

dx(t) ≤ (rx(t)(1− x(t)
k

))dt + σ1x(t)dB1(t)

consider the following formuladψ(t) = (rψ(t)(1− ψ(t)
k

)dt + σ1ψ(t)dB1(t)

ψ(0) = x(0)
(15)

according to the principle of comparison

x(t) ≤ ψ(t) a.s.

the solution of Equation (15) is that

ψ(t) =
e(r−

σ2
1
2 )t+σ1B1(t)

1
ψ(0) +

r
k

∫ t
0 e

(r−
σ2

1
2

)s+σ1B1(s)
ds

(16)

when r− σ2
1
2 < 0, both sides are simultaneously divided t, and take the limit

lim
t→∞

x(t) ≤ lim
t→∞

ψ(0)e(r−
σ2

1
2 )t+σ1B1(t) = 0

so lim
t→∞

x(t) = 0 .

Brief summary: According to the conclusion x(t) ≤ ψ(t) = ψ(0)e(r−
σ2

1
2 )t+σ1B1(t),

it shows that the number of pests can be controlled by reasonably controlling the strength
of the stochastic disturbance, and if σ1 is large enough, the purpose of pest eradication will
be achieved.

4.2. The Extinction of the Populations

Theorem 2 shows that both predators and bait can survive in the system (2) when
the parameters meet certain conditions. Theorem 4 shows that it can control and even
eliminate pests by controlling the size of the σ1. We should also focus on the conditions in
which both populations become extinct, and specific proof is given in this section.

Theorem 5. For any initial value condition(x0, y0), if r− σ2
1
2 < 0 and (r− σ2

1
2 )(u + D− σ2

2
2 )−

(r+u+D)2

4 > 0, then both predators and prey become extinct, that is lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0 .

Proof Theorem 5. Define a Lyapunov function V4(x, y) = ln(x + y), according to the
Ito formula

dV4(x, y) = LV4(x, y)dt +
1

x + y
σ1xdB1(t) +

1
x + y

σ2ydB2(t) (17)

where
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LV4(x, y) = x
x+y (r−

rx
k −

y
a+x+y )−

σ2
1 x2

2(x+y)2 +
y

x+y (
ux

a+x+y + D− y)− σ2
2 y2

2(x+y)2

=
x(x+y)(r− rx

k −
y

a+x+y )+y(x+y)( ux
a+x+y +D−y)− σ2

1 x2

2 −
σ2

2 y2

2
(x+y)2

=
rx2− rx3

k −
x2y

a+x+y +rxy− rx2y
k −

xy2
a+x+y +

ux2y
a+x+y +Dxy−xy2+

uxy2
a+x+y +Dy2−y3

(x+y)2

+
− σ2

1 x2

2 −
σ2

2 y2

2
(x+y)2

= g(x,y)
(x+y)2

(18)

where

g(x, y) = rx2 − rx3

k −
x2y

a+x+y + rxy− rx2y
k −

xy2

a+x+y + ux2y
a+x+y + Dxy− xy2 + uxy2

a+x+y

+Dy2 − y3 − σ2
1 x2

2 −
σ2

2 y2

2

≤ (r− σ2
1
2 )x2 + (r + u + D)xy + (u + D− σ2

2
2 )y2

= f (x, y)

(19)

where f (x, y) =
[

x y
]
B
[

x
y

]
, it is a quadratic type, and B is a 2× 2 matrix as follows

B2×2 =

 r− σ2
1
2

r + u + D
2

r + u + D
2

u + D− σ2
2
2


because the question set conditions

r−
σ2

1
2

< 0

(r−
σ2

1
2
)(u + D−

σ2
2

2
)− (r + u + D)2

4
> 0

thus the B is a negative definite matrix, and the eigenvalues of the matrix B are all negative,

then there must be a reversible matrix P, makes the B = P−1
[

λ1 0
0 λ2

]
P established, so

the f (x, y) can also be represented by the following way

f (x, y) = λ1x2
1 + λ2y2

1

where λ1, λ2 are the two eigenvalues of the matrix B, and λ1 < 0, λ2 < 0, in that way

f (x, y) = λ1x2
1 + λ2y2

1

≤ λix2 + λjy2

≤ λmax(x2 + y2)

(20)

where λmax = max{λi, λj} < 0, i, j = 1 or 2, combined with conclusions (18)–(20), the
following result holds

LV4(x, y) ≤ λmax(x2 + y2)

(x + y)2 ≤ λmax(x2 + y2)

2(x2 + y2)
=

λmax

2
< 0 (21)
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bring (21) into the Formula (17), and then both sides simultaneously integrate in the
interval (0, t).

ln(x + y) ≤ ln(x0, y0) +
λmax

2
t +

∫ t

0

1
x + y

σ1xdB1(t) +
∫ t

0

1
x + y

σ2dB2(t)

then the both sides are simultaneously divided by the time t, and take the limit on t.

lim
t→∞

1
t

ln(x + y) ≤ λmax

2
+ lim

t→∞

1
t

∫ t

0

1
x + y

σ1xdB1(t) + lim
t→∞

1
t

∫ t

0

1
x + y

σ2ydB2(t) (22)

according to the strong number law [36] of the martingale

lim
t→∞

1
t

∫ t

0

1
x + y

σ1xdB1(t) = 0 a.s.

lim
t→∞

1
t

∫ t

0

1
x + y

σ1ydB1(t) = 0 a.s.
(23)

bring (23) into Formula (22)

lim
t→∞

sup
1
t

ln(x + y) ≤ λmax

2
< 0 a.s.

since both x(t) and y(t) are non-negative, so

lim
t→∞

x(t) = 0 a.s.

lim
t→∞

y(t) = 0 a.s.
(24)

Brief summary: Through the discussion and study of this subsection, when the
parameters meet the above conditions, both the predator and the predation become extinct
with probability 1. We observe that when other parameters are determined if the two-
parameter perturbation coefficient σ1 and σ2 are large enough, both groups become extinct,
which is the same as the conclusion of Theorem 4.

4.3. Numerical Simulation

Theorem 5 shows that the system populations perish when the parameters meet the
above conditions. In order to verify the correctness of the theorem, take the parameter set
x0 = 8, y0 = 5, r = 0.1, k = 10, σ1 = 0.8, u = 0.1, a = 10, D = 0.2, σ2 = 1, ∆ = 200

216 , it has

0.1− 0.82

2 = −0.22 < 0 and (0.4− 0.82

2 ) × (0.1 + 0.2− 0.82

2 ) − (0.1+0.1+0.2)2

4 = 0.004 > 0,
conditions satisfy the Theorem 5, numerical simulations are shown in Figure 2.

Figure 2. Model (2) population extinction behavior.
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5. Conclusions

In the course of the research on biological mathematics, population size does play
an important role in ecosystems. The paper studies a non-linear predation–prey model,
in which the number of populations will be affected by mortality rate, growth rate and
many other factors, and the population will be affected by the environmental factors,
because the environment is always changing, in this paper, we consider the influence of
white noise on model.

The paper studies a predation–prey model with Brownian motion, and the article
is carried out in three parts. In the first part, the thesis proves that the positive solution
is present and unique according to the Lipshiz condition, then we use the proof by con-
tradiction to show that the solution of the system exists globally. In the second part, the
article studies the long-term properties of the systematic solution. Firstly, we study the
existing conditions of stationary distribution, then we prove that the stationary distribution
is ergodic. Secondly, we study the progressive properties of the stochastic systems, we
study the progressive behavior of the solution of a stochastic system near the internal
equilibrium of its corresponding deterministic system. In the third part, using two methods
explores the extinction behavior of the system populations. We also verify the correctness
of the conclusions through numerical simulation.

This paper proves the properties of the system through the construction of the Lya-
punov function and mathematical derivation according to Ito’s formula, and the conclu-
sions are reached by numerical simulation, making the conclusions scientific and rigorous.
Moreover, two different methods are used to prove the population extinction conditions.
However, the paper discusses the effect of white noise on the populations except for the
delay factors and the effect of Levy noise. I sincerely hope that I can make great progress in
the future work.
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