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Abstract: Rock burst disasters occurring in underground high-stress rock mass mining and excava-
tion engineering seriously threaten the safety of workers and hinders the progress of engineering
construction. Rock burst classification prediction is the basis of reducing and even eliminating rock
burst hazards. Currently, most of mainstream discriminant models for rock burst grade prediction
are based on small samples. Comprehensive selection according to many pieces of literature, the
maximum tangential stress of surrounding rock and rock uniaxial compressive strength ratio co-
efficient (stress state parameter), rock uniaxial compressive strength and uniaxial tensile strength
ratio (brittleness modulus), and the elastic energy index are used as a grading evaluation index of
rock burst based on the collection of different construction engineering instances of rock burst in
114 groups of extensive sample data in different regions of the world, which are used to carry out
the training study. The representativeness and accuracy of the index selection were verified by the
indicator variance analysis and Spearman correlation coefficient hypothesis test. The Intelligent Rock
burst Identification System (IRIS) based on an optimizable SVM model was established using data
set samples. After extensive data cross-validation training, the accuracy of the SVM discriminant
analysis model can reach 95.6%, which is significantly better than the prediction accuracy of the
traditional SVM model of 71.9%. The model is used to classify and predict the rock burst intensity of
10 typical projects at home and abroad. The prediction results are consistent with the actual rock burst
intensity, which is better than the discriminant model based on small sample data and other existing
prediction models. The application of engineering examples shows that the results of the rock burst
intensity classification prediction model based on extensive sample data processing analysis and the
SVM discriminant method are in good agreement with the actual rock burst intensity, which can
effectively provide a reference for the prediction of rock burst intensity grade in a construction area.

Keywords: rock burst; rock mechanics; hierarchical prediction; analysis of variance; large sample
data; Spearman correlation coefficient hypothesis test; Bayesian hyperparameter optimization; SVM
discriminant analysis model

MSC: 68T05

1. Introduction

Rock burst is a failure phenomenon in excavating underground rock mass with high
stress. Under the action of excavation or other load disturbances, hard and brittle surround-
ing rocks in a high-stress state rapidly release the accumulated elastic energy, resulting in
the dynamic instability disaster of rock spalling, fragmentation and ejection. Rock burst is
characterized by its sudden occurrence and the significant harm caused, which not only
poses a significant threat to the construction personnel and mechanical equipment, but
also delays the construction period, even destroying the whole project and inducing earth-
quakes [1]. On 28 November 2009, an intense rock burst occurred in the drainage tunnel
of Jinping Ii Hydropower Station, resulting in seven deaths and direct economic losses
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of hundreds of millions of CNY [2]. On 9 March 2014, a rock collapse caused by a rock
burst occurred in the Dulong River highway tunnel in Gongshan, Yunnan province, killing
three construction workers [3]. With the development of mining activities to a great depth,
the increase of buried depth and the increase in stress level, the mining and excavation of
underground high-stress rock mass shows a sudden trend of high frequency.

The accurate grading prediction of rock burst intensity has an extremely important
theoretical and practical status for the effective prevention and control of rock burst in engi-
neering. In general, rock burst prediction methods can be divided into four categories [4],
namely the rock burst criterion method, numerical index method, applied mathematical
method and on-site monitoring method. With the continuous development of big data
analysis technology, the nonlinear rock burst prediction method (applied mathematical
method) that comprehensively considers multiple influencing factors has achieved good
rock burst prediction results and is a method with good development prospects in future
rock burst intensity prediction. In particular, the typical “training modeling” method can
achieve a better prediction effect. The main idea is that a fixed number of rock burst instance
samples were trained and taught to establish a prediction model, including the neural
network method, support vector machine (SVM) method, Distance discriminant method,
Bayes discriminant method, Fisher discriminant method, Gaussian process method, ran-
dom forest model and many other methods, but some machine learning algorithms have
shortcomings in their application process. For example, Naive Bayes [5] has a poor classifi-
cation effect on sample data sets with a strong index correlation. After testing, the accuracy
of the prediction method is stable at 79.8%. The classification effect of random forest on
low-dimensional data is not good, and the accuracy of the prediction method is stable
at 79.8% after testing. Neural network [5] has a slow convergence speed in the learning
process, and the hidden layer neurons need to be selected. After testing, the accuracy of
this prediction method is stable at 86.8%. Due to the randomness and complexity of rock
burst disasters, it is necessary to select a discriminant model with a good learning effect
and high prediction accuracy.

In practical application, the optimized SVM algorithm is better than the traditional
SVM algorithm in all aspects, which provides a way to solve the problem of SVM being diffi-
cult to calculate and classify large-scale training samples. The advantage of the optimizable
SVM algorithm in the training process lies in that it can optimize and adjust the multi-class
methods, box constraint level, kernel function, kernel scale and standardized data in the
hyperparameter training process in the iterative process until the best classification effect is
obtained. Based on the above analysis, the optimized SVM classification prediction model
was established and applied to 132 groups of typical rock burst samples for training and
testing. The model was compared with XGBoot (the accuracy is stable at 70%), RF (the
accuracy is stable at 70%) and SVM models (the accuracy is stable at 80%) in engineering
applications, which proved the accuracy, reliability and practicability of the optimized SVM
discriminating model (the accuracy is stable at 95.6%).

2. Principle and Method of Rock Burst Intensity Prediction Model

Support Vector Machines (SVM) are a linear classifier model developed in the late
20th century to solve the binary classification problem. They map the feature vectors of
the study samples to some points in the space through a specific rule. Their purpose is to
draw the distinction line between the two. To distinguish the two kinds of topics accurately
and efficiently, even after the training is completed, new issues to be measured are added,
and the trained lines can still be classified well. The key to the SVM machine learning
algorithm is to select the kernel function and related parameters of the model. Standard
kernel functions include the linear kernel function, radial basis kernel function, Laplacian
kernel function, and so on. With little subjective influence, this method is one of the most
commonly used classifiers with the best effect at present. Since its optimization goal is to
minimize structural risk, it has excellent generalization ability, so it has been widely used in
the classification and prediction of rock burst intensity. Based on collecting a large number



Mathematics 2022, 10, 3276 3 of 16

of rock burst samples, the SVM discriminant model for rock burst intensity classification
prediction is established and applied in engineering.

2.1. Support Vector Machines

Support Vector Machines (SVM) are a linear classifier model developed in the late
20th century to solve the binary classification problem. They map the feature vectors of
the study samples to some points in the space through a specific rule. Its purpose is to
draw the distinction line between the two. To distinguish the two kinds of topics accurately
and efficiently, even after the training is completed, new issues to be measured are added,
and the trained lines can still be classified well. The key to the SVM machine learning
algorithm is to select the kernel function and related parameters of the model. Standard
kernel functions include the linear kernel function, radial basis kernel function, Laplacian
kernel function, and so on. With little subjective influence, this method is one of the most
commonly used classifiers with the best effect at present. Since its optimization goal is to
minimize structural risk, it has excellent generalization ability, so it has been widely used in
the classification and prediction of rock burst intensity. Based on collecting a large number
of rock burst samples, the SVM discriminant model for rock burst intensity classification
prediction is established and applied in engineering.

(1) Linear Support Vector Machines. According to the principle of the SVM hyperplane
w× x + b = 0 to divide the sample data set, to ensure the maximum classification
interval, the hyperplane optimization method is expressed as Formula (1)

minϑ(w) =
1
2
||w||2 =

1
2

wTw (1)

Lagrangian functions are usually used to convert samples of initial problems into dual
problems, resulting in Formula (2).

maxµ(a) =
n

∑
i=1

ai −
1
2

n

∑
i,j=1

aiajyiyj
(

xi × xj
)

(2)

After solving by Formula (2), the optimal classification function can be obtained by
Formula (3)

f (x) = sgn
(
wT + b

)
= sgn(

n

∑
i=1

a∗i yi(xi × x) + b∗) (3)

However, in practical application, many data samples are linearly indivisible, so
blindly using the linearly inseparable method causes significant errors. To deal with this
situation, the problem adaptation formula is changed into Formula (4) after the relaxation
variable is introduced.

ϑ(w) =
1
2
||w||2 + C

n

∑
i=1

εi (4)

where C is the penalty factor.
The Lagrange algorithm was used to solve the problem and Formula (5) was obtained.

maxµ(a) =
n

∑
i=1

ai −
1
2

n

∑
i,j=1

aiajyiyj
(

xi × xj
)

(5)

After solving all kinds of coefficients ai, the classification decision function is obtained,
and the Formula (6) is obtained.

f (x) = sgn(
n

∑
i=1

a∗i yi(xi × x) + b∗) (6)
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(2) Nonlinear Support Vector Machines. By the theorem of the Mercer condition for
any symmetric function K

(
x,

.
x
)
, for any ϕ(x) 6= 0 and

∫
ϕ2(x)dx < ∞, existences

K
(

x,
.
x
)

ϕ(x)ϕ
( .

x
)
dxd .

x > 0 was established. The symmetry function K
(
x,

.
x
)

is used
to replace the inner product of the optimal classification plane, so the optimization
function is Formula (7) (nonlinear data condition).

µ(a) =
n

∑
i=1

ai −
1
2

n

∑
i,j=1

aiajyiyj
(
xi × xj

)
(7)

The classification decision function is transformed into Formula (8) (nonlinear
data condition).

f (x) = sgn(
n

∑
i=1

a∗i K(xi × x) + b∗) (8)

2.2. Bayesian Optimization

Based on Bayesian optimization of parameter tuning, in the traditional SVM model,
including parameters C and other parts of the above parameters, these parameters and
performance have the characteristics of the black-box model, namely between the version
of the model and parameters that cannot use the expression to describe, only using the
traversal method for construction of the optimal SVM model. Bayesian optimization [6]
is an efficient optimization algorithm with sample validity mainly used for parameter
tuning machine learning models. This method adopts the Gaussian process to establish a
probability proxy model, refers to previous parameter information and iteratively updates
prior knowledge, and can determine the optimal parameters of the model in a relatively
short time. In general, the expression of the gaussian process is shown in Formula (9).

f (x) ∼ GP
[
m(x), k

(
x, x′

)]
(9)

In Formula (9), the mean function (x) = E( f (x)) represents the mathematical expecta-
tion of sample f (x) and the covariance function k(x, x′) = E{[ f (x)−m(x)][ f (x′)−m(x′)]}.
The gaussian process uses some known points to estimate the mean and variance of the
objective function at other points. It then constructs the acquisition function to determine
the location of sampling points in the iterative process.

2.3. The Intelligent Rock Burst Identification System

In this paper, Bayesian optimization is adopted as the parameter optimization algo-
rithm of the SVM model. The specific algorithm (based on the Python language environ-
ment) flows as follows:

(1) According to the principle of the SVM model, the value range of equation coefficients
such as hyperparameter C is determined and n0 sampling points are randomly se-
lected. The average accuracy of cross-validation is used as the objective function f ,
and the parameter combination of the model is used as the independent variable x0
to construct a surrogate model, and the initial distribution of the objective function
and the sampling point set D are obtained.

(2) Maximize the objective function to obtain the next sampling point xt and the function
value f (xt).

(3) Add sampling points [xt, f (xt)] to set D, and synchronously update the Gaussian
process surrogate model to further fit the distribution of the objective function.

(4) Return to step (2) and continue the iteration until the algorithm iteration reaches the
maximum number of iterations, and then output the optimal sampling point to obtain
the optimal hyperparameter C equivalent of the SVM model.
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2.4. Great Advantages of Support Vector Machine Based on Bayesian Hyperparameter Optimization

Usually, the influence of a support vector machine is the main problem in building a
model to fill in the necessary parameter values; these values are not limited to penalty factor
and the parameters of the kernel function are set. Only relying on the existing provisions
of researchers and the experience of related papers can lead to a support vector machine
(SVM) in which the rock burst prediction accuracy is not huge, and parameter selection
and the accuracy value are small. There is no improvement in accuracy; if the parameter
selection and the accuracy value are large, it is impossible to judge whether the model
result is overfitting. Which parameters to choose and how to choose the parameters are the
problems that need to be solved urgently in support vector machine prediction.

The optimizable support vector machine (SVM) model, as a supervised learning
algorithm, greatly eliminates the influence of the choice of penalty factor and kernel function
on the classification performance of the SVM. The SVM algorithm can be optimized in the
process of training; the advantage is that the limit parameters must be stipulated in advance,
instead of in the process of model forecast adjustments, according to the classification of the
real-time condition, as well as in the process of iteration for super parameters in the process
of the training class method, box constraint level, kernel function, the nuclear scale, and
standardized data optimization adjustment, until the best classification effect is obtained.

3. Index Selection and Variance Analysis of Rock Burst Intensity Prediction
3.1. Prediction Index Selection

The rock burst mechanism is complex and affected by many factors. This study is based
on the characteristics of rock burst, the causes and the internal and external conditions,
combining previous researchers’ experience, after a comprehensive analysis to determine
the rock burst tendency prediction evaluation index as follows: (1) the maximum tangential
stress of surrounding rock and rock uniaxial compressive strength ratio characterizes the
surrounding rock stress and rock burst cavern; (2) the ratio of uniaxial compressive strength
to the uniaxial tensile strength of rock represents the relationship between rock burst and
lithology; (3) the elastic energy index represents the energy characteristics of the rock. Rock
burst intensity can be divided into four categories: N (no rock burst activity), L (mild
rock burst activity), M (moderate rock burst activity), and H (severe rock burst activity).
Referring to the research results of Wang Yuanhan [7], the corresponding relationship
between each evaluation index and rock burst intensity is shown in Table 1.

Table 1. Prediction standard of rock burst tendency.

Index
Values at Each Rock Burst Level

N L M H

σθ/σc 0~0.3 0.3~0.5 0.5~0.7 >0.7
σc/σt >40 26.7~40 14.5~26.7 0~14.5
Wet 0~2 2~4 4~6 >6

3.2. Establish a Learning Sample Set

By referring to a large amount of literature and relevant materials [5,8], 132 typical rock
burst samples were collected and sorted in this paper, and 18 unqualified examples were ex-
cluded (e.g., the intensity levels of models in different kinds of literature were inconsistent,
etc.). The remaining 114 learning examples are from several projects at home and abroad;
they include: Tianshengqiao secondary hydropower station, Longyangxia hydropower
station, Lijiaxia hydropower station, Norway Heavy Metal Tunnel, Rail Lead-zinc sulfide
mine in Italy, Qinling tunnel, Jiangbian Hydropower Station, Jinchuan No. 2 mine, Malup-
ing mine, Beizhihe Iron Mine, Jinping Secondary power station, Cangling tunnel, Erlang
Mountain tunnel, and so on. Specific data parameters of learning samples for rock burst
intensity classification prediction are shown in Table 2.
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Table 2. Rock burst sample data and classification prediction results.

Sample
Number

Classification Index
A L P L Sample

Number
Classification Index

A L P Lσθ/σc σc/σt Wet σθ/σc σc/σt Wet

1 0.34 24 6.6 M M 58 0.57 25.6 3.8 M M
2 0.11 31.2 7.4 N N 59 0.61 25.6 3.7 M M
3 0.1 23 5.7 N N 60 0.56 29.2 4.8 M M
4 0.42 21.7 5 M M 61 0.71 32.2 5.5 H H
5 0.77 17.5 5.5 H H 62 0.49 49.5 4.7 M M
6 0.4 14.7 7.1 M M 63 0.46 45.5 5.2 M M

7 * 0.54 14.2 6.2 H M 64 0.47 55 5 M M
8 0.4 15 7.1 M M 65 0.31 42.8 1.8 N N
9 0.58 13.2 6.3 H H 66 0.61 25 3.7 M M

10 0.2 36 2.3 N N 67 0.55 31.3 4.6 M M
11 0.19 47.9 1.9 N N 68 0.69 32.1 5.9 H H
12 0.66 13.2 6.8 H H 69 0.5 50.9 5.2 M M
13 0.4 15.6 3.5 L L 70 0.69 16.9 3.4 M M
14 0.44 13.1 2.1 L L 71 0.42 17 10.9 H H
15 0.13 6.7 1.4 N N 72 0.3 20.4 5 L L

16 * 0.37 24 5.1 L M 73 0.54 12.2 4.9 M M
17 0.45 11.2 2 L L 74 0.2 11.2 3.6 N N
18 0.19 6.7 1.4 N N 75 0.35 22.7 3.3 L L
19 0.48 24 5.1 M M 76 0.72 13.9 9.1 H H
20 0.74 24.4 6.3 H H 77 0.64 14.4 7.7 H H
21 0.23 6.7 1.4 N N 78 0.47 16.5 5.5 M M
22 0.61 24 5.1 M M 79 0.52 18.6 4.2 M M
23 1 11.2 2 H H 80 0.45 14.8 3.1 L L
24 0.28 9.7 1.9 N N 81 0.2 14.1 3.6 N N
25 0.7 11.7 2.8 M M 82 0.55 11.1 4 M M
26 0.11 27.2 7 N N 83 0.56 16.3 3.3 M M
27 0.13 18.8 3.6 N N 84 0.41 30.7 4.3 L L
28 0.1 21.4 4.7 N N 85 0.22 9 4.9 L L
29 0.67 26.8 0.9 L L 86 0.45 6.8 2.2 L L
30 0.83 28.9 3.2 M M 87 0.28 9.5 6.1 M M
31 0.93 28.9 3.2 H H 88 0.35 12.1 2.9 L L
32 0.74 28.9 3.2 M M 89 0.66 22.3 3.2 M M
33 1.41 19.2 3.1 H H 90 0.72 13.2 5.2 H H
34 0.79 22 2 M M 91 0.37 29.7 3.5 L L
35 0.56 20.4 2 L L 92 0.42 32.8 3 L L
36 0.46 20.4 2 L L 93 0.28 42.7 2.2 N N
37 0.49 19.7 2.3 L L 94 0.38 28.8 3 L L
38 0.44 19.7 2.3 L L 95 0.72 27.5 4.3 M M
39 0.84 19.7 2.3 M M 96 0.69 16.6 5.7 H H
40 0.42 19.7 2.3 L L 97 0.42 15.5 3.2 L L
41 0.46 19.7 2.3 L L 98 0.22 36.4 1.8 N N
42 0.28 23.6 4.9 L L 99 0.62 19.4 4.5 M M
43 0.28 23.8 4.8 L L 100 * 0.57 31.2 3.2 L M
44 0.52 21.1 5.5 M M 101 0.65 12.4 5.4 H H
45 0.65 28.6 6.8 H H 102 0.59 18.8 4.2 M M
46 0.11 29.4 2 N N 103 0.73 29.7 3.8 M M
47 0.23 7.5 1.5 N N 104 0.37 42.3 2.8 N N
48 0.44 20.3 8.1 H H 105 0.47 11.11 3.97 M M
49 0.62 8.3 1.8 L L 106 0.53 14.11 5.76 M M
50 0.64 17.5 7.2 H H 107 * 0.48 9.76 7.27 M H
51 0.43 45.9 1.7 N N 108 0.43 13.98 7.27 M M
52 0.42 29.9 2.4 L L 109 0.4 14.73 7.08 M M
53 0.56 34.3 1.9 L L 110 * 0.55 14.72 6.43 M H
54 0.6 28.3 3.4 M M 111 0.61 25 3.7 M M
55 0.53 21 3.6 M M 112 0.55 31.3 4.6 M M
56 0.66 21.5 4.1 M M 113 0.69 32.1 5.9 H H
57 0.52 17.8 4.3 M M 114 0.5 50.9 5.2 M M

Note: Explanation of Abbreviation Meaning: A L: Actual level; P L: Predicting level. The part that is boldfaced
and italicized and marked with * indicates that the predicted results are not consistent with the actual results.

3.3. Classification Index Analysis

Theoretically, the three rock burst intensity classification prediction indexes selected
in this paper reflect the characteristic information of rock burst from different angles.
Generally, there is no correlation between indicators. To verify the reliability of indicator
selection, analysis of variance between indicators and Spearman’s correlation coefficient
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hypothesis testing analysis were carried out to show the relationship between the three
groups of hands.

3.3.1. Analysis of Indicator Variance

Figure 1 and Table 3 shows the results of the analysis of indicator variance based on
the data of 114 groups of learning samples, where p = 1.7090 × 10−90, which is far less than
0.01. The null hypothesis is rejected and highly significant differences between the three
indicators are considered, indicating that the selected indicators and learning samples have
good representativeness and accuracy.
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Table 3. ANOVA visualization table of the test data.

ANOVA Table

Sources SS df MS F p

line 31,791.2 2 15,895.6 404.31 1.7090 × 10−90

error 13,327.8 339 39.3
total 45,119.1 341

Table 3 shows the ANOVA Table data presentation of the test data. Figure 1 shows the
Variance relation diagram of Hierarchical Prediction Indicators of the test data under the
three prediction indicators. In Figure 1, the central red line represents the median of the
data for this predictor, the blue box represents the data for half of the central distribution,
and the ‘+’ represents the outliers.

3.3.2. Spearman’s Correlation Coefficient Hypothesis Test

Hypothesis testing using Spearman’s correlation coefficient should meet the following
conditions: (1) The data to be tested are usually a population conforming to normal
distribution; (2) The absolute Euclidean distance between test data should not differ too
much; (3) Each group of samples was sampled independently.

Table 4 shows the mathematical symbolic representation of the variables represented
by the three hierarchical indexes. For the convenience of data processing, it is declared that
the hierarchical indexes 1, 2 and 3 will be used for data processing and simulation. Table 5
uses statistical principles to perform basic statistical calculations on the three hierarchical
indexes and visualize the data.
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Table 4. The grading index corresponds to the symbol description.

Grading Index 1 σθ/σc

Grading Index 2 σc/σt

Grading Index 3 Wet

Table 5. Statistical parameters of hierarchical index fractal dimension data.

Descriptive Statistics Grading Index 1 Grading Index 2 Grading Index 3

Min 0.1 6.7 0.9
Max 1.41 55 10.9

Mean value 0.491842105 22.55008772 4.214736842
Median 0.485 20.4 3.985

Coefficient of
skewness 0.61812943 0.924468767 0.605471435

Kurtosis coefficient 5.272920784 3.598072918 3.192751812
Coefficient of

standard deviation 0.208290836 10.68934938 1.907852525

Figure 2 shows the Q–Q (Quantile) graph of classification index data. The Q–Q (Quan-
tile) graph in statistics is used to compare the quantiles of the sample data’s probability
distribution. The sample data identified are approximately a straight line, so it is concluded
that the sample data have an approximately normal distribution, which meets the first
requirement.
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Figure 2. Q–Q (Quantile) graph of classification index data.

It can be seen from Figures 3 and 4 that the classification index data are independent
and have a relatively stable variation trend, and the error is within an acceptable range,
meeting the requirements of Articles 2 and 3. Therefore, Spearman’s correlation coefficient
can be used for hypothesis testing.
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Table 6 shows the Analysis Results of Spearman’s Index for grading Indicators. The
null hypothesis H0 : r = 0 and the alternative hypothesis H1 : r 6= 0 were established to
test whether the correlation coefficient was significantly different from 0. The analysis
results are shown in Table 4, where rejecting the null hypothesis means that the correlation
coefficient is quite different from 0. As a result, classification index 1 and the grading index
correlation are substantially different from those of classification index 3 and classification
index 2, respectively, with hierarchical index grade indices for 1 and 3 not being significantly
different from zero. Still, the correlation coefficient is below 0.01, therefore the differences
between the three classification indexes show that selection of indicators and learning
samples have an excellent representative and accuracy.
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Table 6. Analysis results of Spearman’s index for grading indicators.

Grading Index 1 Grading Index 2 Grading Index 3

Spearman’s Rho

Grading Index 1

correlation
coefficient 1 0.039 ** 0.135

Sig. 0 0.678 0.151
Number 114 114 114

Grading Index 2

correlation
coefficient 0.039 ** 1 −0.033 ***

Sig. 0.678 0 0.729
Number 114 114 114

Grading Index 3

correlation
coefficient 0.135 −0.033 *** 1

Sig. 0.151 0.729 0
Number 114 114 114

***, p < 0.01 means rejecting the null hypothesis at the 99% confidence level. **, p < 0.05 means rejecting the null
hypothesis at the 95% confidence level.

In summary, the analysis of the above two methods shows that there is a high degree
of difference between the three indicators based on the index analysis results of 114 groups
of learning sample data, indicating that the selected indicators and learning samples have
good representativeness and accuracy. The SVM hierarchical prediction discriminant model
has good accuracy and persuasiveness.

4. Optimizable Support Vector Machine Model for Rock burst Intensity
4.1. Optimized Support Vector Machine Discriminant Analysis

The main idea of the SVM discriminant analysis method is based on the existing rock
burst sample data, mining the internal relationship between the evaluation index and rock
burst intensity, and establishing a discriminant model for judging new samples. Due to the
mature application of this method in other engineering predictions, relevant contents can
be referred to in [9–11].

4.2. Establishment and Verification of the Discriminant Analysis Model of the Optimized Support
Vector Machine

According to the SVM discriminant analysis model, three rock burst intensity predic-
tion indexes were taken as input units, 114 groups of rock burst samples were formed into
learning sample sets, and four kinds of rock burst grades were taken as different output
units. The SVM discriminant analysis method for rock burst intensity classification predic-
tion proposed in this paper was trained, verified and predicted. Through the realization of
the algorithm, various parameters of the optimized SVM discriminant analysis model are
obtained and the results are shown in Table 7.

Table 7. Training results of optimized SVM model parameters.

Training Results

Accuracy (Validation) 95.6%
Total cost (Validation) 5

Prediction speed ~6800 obs/s
Training time 39.308 s

Test Results
Accuracy (Test) 100.0%
Total cost (Test) 0

Model Type Preset Bayesian optimization

Figures 5–7 show the data distribution among the three hierarchical indexes of each
sample point, which can show the detailed data of the misclassified points.
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Figure 8 is the Minimum Classification Error diagram, which shows how the Minimum
classification error value changes during the training process. Figure 9 shows the Confusion
matrix diagram of Validation data, which shows the classification efficiency and success
rate of the paper’s method.
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As seen from the above-illustrated results, the discriminant results of samples num-
bered 7, 16, 100, 107 and 110 are inconsistent with the actual situation. The first three are
misjudged as type III rock bursts (in the actual results, type III rock bursts account for
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40% of the total number), and the overall misjudgment rate is only 4.38%. The discrimi-
nant error can be eliminated gradually by increasing the number of learning samples and
strengthening model training. In addition, the cross-validation method is considered in this
paper for model testing. Test results are used as performance indicators for the classifier
or model. The goal is to achieve high predictive accuracy and low predictive error. To
ensure the accuracy and stability of the cross-validation results, it is necessary to divide
a test data set into different complementary subsets multiple times and cross-validate
repeatedly. Take the average value of numerous validations as the validation result. The
cross-validation method makes each sample data to be used as training and test data, which
can effectively avoid the occurrence of over-learning and under-learning states. Through
actual measurement, it is found that the accuracy of the validation data obtained by using
the cross-validation method is 95.6% higher than that of the model tested by using the
set-aside method, which is 92.9%. Among them, the proportion of the training set and the
test set of the set-aside method is 75%:25%, and the results of the reserved method change
slightly after the model is run, so it is difficult to avoid the instability of the single use of
the mysterious method, which not only wastes data, but is also susceptible to overfitting,
and the model correction method is not convenient. Therefore, the results obtained using
the cross-validation method for model verification are accurate and persuasive.

5. Application of Engineering Examples

The trained distance discriminant model is used to classify and predict the rock burst
intensity of 10 projects, respectively. The three prediction index data of samples are from
the 1–1 section of the diversion tunnel of Jinping Ii Power Station [11], level 255 m of the
Tongkang Mine of the China Tin Group [12], Jinchuan Ii Ore circle, Daxiangling Tunnel YK61
+ 305 [13], Dongguashan Copper Mine [14] and other domestic and foreign projects [15].
Table 6 shows that the classification prediction results of the SVM discriminant model of
rock burst intensity established in this paper are entirely in agreement the actual situation
and have significant accuracy with the prediction results of other prediction models [15].

Table 8 shows Rock Burst Instance data and Classification Prediction results. The
accuracy of Optimization of SVM is 100% for ten samples randomly selected from different
countries and different geology, which is obviously better than other representative meth-
ods. Figure 10 shows the Confusion matrix diagram of actual test data, Figure 11 shows
TPR and FNR Predicted Results of Actual test data, The two graphs together show that all
ten random sample points were successfully and accurately predicted.

Table 8. Rock burst instance data and classification prediction results.

Sample
Number

Classification Index
A L Optimization of SVM

P L
XGBoot

Model P L
RF Model

P L
SVM Model

P Lσθ/σc σc/σt Wet

1 0.62 20 3.1 M M H * M M
2 0.61 17.9 5.3 M M M M M
3 0.44 13.1 2.1 L L M * M * L
4 0.71 32.2 5.5 H H H H H
5 0.47 11 4 M M H * M H *
6 0.25 20.77 3.80 N N N L * N
7 0.15 20.77 3.80 N N N N N
8 0.58 13.20 6.30 H H H H H
9 0.45 17.50 5.10 M M M H * H *

10 0.66 13.20 6.80 H H H H H

Precision rate 100% 70% 70% 80%

Note: A L: Actual level; P L: Predicting level. The intensity level marked * does not match the actual level.
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Compared with other mathematical model methods, the SVM discriminant model does
not need to consider various human factors, such as index membership degree and weight
coefficient, it has high learning efficiency, and it is easy to use. It only needs to substitute
the data of the samples to be predicted into the discriminant model. It can be seen that the
SVM discriminant model for rock burst intensity classification prediction established in
this paper based on extensive sample data has high accuracy and practicability, which can
well meet the needs of engineering and can be popularized and applied.
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6. Conclusions

(1) A total of 114 groups of rock burst samples are selected, and the analysis of variance
and Spearman’s correlation coefficient hypothesis test shows that the correlation
between the selected three indicators is weak and has good representativeness.

(2) The algorithm model is established based on rock burst in all kinds of data at home and
abroad; therefore, the sample data are suitable for all kinds of geological conditions
of rock burst prediction. In practical engineering applications, the random selection
is different from the original sample data, in the case of forecasting the different
geological conditions of rock burst prediction data at home and abroad. The accuracy
of the final prediction results and the actual results reaches 100.00%, which shows that
the algorithm is suitable for rock burst prediction under various geological conditions
and has a certain adaptability.

(3) The judgment accuracy of the optimized SVM discriminating model established was
95.6%. In the future, it is necessary to extensively collect many representative rock
burst case data, expand and perfect the training sample database, and continuously
improve the classification prediction accuracy.

(4) The optimizable support vector machine (SVM) model, as a supervised learning
algorithm, greatly eliminates the influence of the choice of penalty factor and kernel
function on the classification performance of the SVM. The SVM algorithm can be
optimized in the process of training; the advantage is that the limit parameters must
be stipulated in advance, instead of in the process of model forecast adjustments,
according to the classification of the real-time condition, as well as in the process
of iteration for super parameters in the process of training class method, box con-
straint level, kernel function, the nuclear scale, and standardized data optimization
adjustment, until the best classification effect is obtained.

(5) The optimizable support vector machine model selected in this paper breaks through
the experience and randomness of setting the hyperparameters of the model, and the
hyperparameter optimization based on Bayesian optimization makes the accuracy
of the support vector machine model reach 95.6% and 100.00% in both the learning
and the actual parts. Future research can be improved by further integrating the
actual situation. According to different geological conditions, the establishment and
prediction of data sets can be limited to one geological situation, and then combined
with the optimized support vector machine model selected in this paper for prediction,
and more accurate prediction results can be obtained.
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