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Abstract: Computer-aided diagnosis/detection (CADx) systems have been used to help doctors in
improving the quality of diagnosis and treatment processes in many serious diseases such as breast
cancer, brain stroke, lung cancer, and bone fracture. However, the performance of such systems
has not been completely accurate. The key factor in CADx systems is to localize positive disease
lesions from the captured medical images. This step is important as it is used not only to localize
lesions but also to reduce the effect of noise and normal regions on the overall CADx system. In
this research, we proposed a method to enhance the segmentation performance of thyroid nodules
in ultrasound images based on information fusion of suggestion and enhancement segmentation
networks. Experimental results with two open databases of thyroid digital image databases and
3DThyroid databases showed that our method resulted in a higher performance compared to current
up-to-date methods.

Keywords: medical image processing; thyroid nodule segmentation; artificial intelligence; attention
network; suggestion and enhancement networks

MSC: 68T07; 68U10

1. Introduction

Computer-aided diagnosis and detection (CADx) systems have been used to support
doctors in the diagnosis and treatment of many types of diseases such as cancer [1–4],
stroke [5], bone fracture [6], COVID-19 [7], and other abnormalities. The technology uses
an imaging system such as X-ray [6], computed tomography (CT) [5,7], and ultrasound
(US) [2] to capture images of the human body to detect abnormalities. Conventionally, a
CADx system comprises several parts, including image acquisition, data (image) cleaning,
feature extraction, and detection/classification [8], as shown in Figure 1.
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The image acquisition is the first step of every CADx system that provides data for the
later processing steps. This step is performed by using some specialized camera sensors to
capture images or video sequence of several organs of human body (X-ray for bone fracture,
lung; CT or MRI for brain; US for breast, thyroid, etc.).
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Data cleaning refers to methods that are applied on the captured images to prepare
data for the main processing steps such as enhancing the image quality of captured images
or reducing noise.

Feature extraction is the process of extracting features from input image to model the
information contained in the input images. This step can be performed by using either
handcrafted feature-based or learned feature-based methods.

Detection/diagnosis is the process of detecting the abnormal parts in the input im-
ages, or assigning a corresponding label to each input image, which best describes the
type of disease represented in the image according to prior knowledge associated in the
training data.

Although these systems have proven to be efficient in assisting doctors in the treatment
process, they have a limitation in common; that is, the image capture devices are very
expensive, which prevents the widespread installation of these systems. Ultrasound
imaging techniques use sound waves to capture images of organs of the human body
in vivo and offer an alternative imaging technique for some organs such as the breast or
thyroid. Unlike X-ray or CT imaging techniques, the ultrasound imaging technique does
not use radiation. Therefore, it is safe for patients. Because of its advantages, this type of
CADx system has been studied and applied for the breast and thyroid diseases. In this
work, we researched the enhancement of the segmentation performance of thyroid nodule
in ultrasound thyroid images, which is key for thyroid disease diagnosis and treatment
processes. We propose a method to enhance the segmentation performance of conventional
medical image segmentation methods to provide a more accurate estimation of the thyroid
nodule region in ultrasound thyroid images. Thus, doctors can enhance the quality of their
diagnosis and treatment methods.

The remaining of our paper is structured as follows: we first present related works in
Section 2. In Section 3, we describe in detail our approach for thyroid nodule segmentation.
In Section 4, we conduct various experiments using our proposed method with two public
datasets. On the basis of these experimental results, we further make comparison between
our proposed approach and previous studies and provide a detailed discussion on these
results. Lastly, we give our conclusions in Section 5.

2. Related Work

A medical image processing system has two main components: lesion detection/
segmentation and classification. Of these, the lesion detection/segmentation step is an
important part of the CADx system as it helps to not only locate the position of abnormal
areas, but also reduces the effect of noise caused by non-lesion regions. Previous studies
on medical image segmentation can be roughly categorized into two groups of segmen-
tation methods: conventional-based and deep learning-based methods. We summarize
previous studies of these two types in Table 1. Before the explosion of deep learning-based
techniques, medical image lesions were normally segmented/detected using methods such
as watershed segmentation [9], graph-based methods [10], and active contour models [11].

Recently, with the growing number of computational techniques, such as convolu-
tional neural networks (CNN) and the appearance of hardware acceleration devices, deep
learning-based techniques have been successfully used for various computer vision ap-
plications, including image detection/segmentation [12,13], image classification [14–18],
and image generation [19]. For medical image segmentation, previous studies have used
deep learning-based techniques for breast, brain stroke, and thyroid nodule segmentation.
One of the most significant studies on medical image segmentation was carried out by
Ronneberger et al. [12]. In that study, Ronneberger et al. proposed the use of an auto
encoder–decoder neural network architecture for image segmentation problem, namely,
the UNet network. This architecture first used a conventional fully convolution network
(FCN) to learn useful information from an input image, i.e., an encoder. In their study,
the encoder network is formed by stacking several convolution blocks (convolution layer
with max pooling) together for the purpose of image feature extraction. As a result, the
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outputs of encoder are the image feature maps at various abstract levels, in which each
abstract level represents the image information at a specific image scale. Subsequently, a
decoder network was used to decode the output of the encoder and reconstruct the target
image. For this purpose, the decoder network uses the transposed convolution layers to
expand the size of feature maps and the convolution layers to learn the mapping function
to reconstruct the target image. At every scale, the output feature maps of the encoder
and corresponding feature maps of the decoder are combined to capture both low and
high abstract level of image features, which can help to enhance the learning ability of
the network. This neural network architecture was found to work well in many medical
image segmentation applications. To simplify the training of the UNet network and in-
crease its depth, Khanna et al. [20] used a residual UNet network architecture, i.e., a UNet
network with a residual connection. They showed that the residual UNet outperformed
state-of-the-art studies on the retinal vessel segmentation problem. Recently, Zhou et al. [21]
proposed an enhancement to UNet for medical image segmentation, namely, the UNet++
network. The UNet++ network could be seen as a nesting of multiple UNet networks.
Through experiments, the authors showed that their network architecture with the nesting
methodology outperformed the conventional UNet network. However, the UNet++ does
not explore the information from every feature scale. To address this limitation, Huang
et al. [22] proposed a similar but more efficient network architecture, namely, UNet 3+, to
explore the information of full-scale using full-scale skip connections and deep supervision.
By using the full-scale skip connections, the UNet 3+ network can incorporate the infor-
mation of both low-level and high-level features. As a result, the UNet 3+ network can
enhance segmentation accuracy compared to the UNet++ network. Instead of using the
nesting approach of UNet networks such as the UNet+++ or UNet 3+, Baccouche et al. [23]
proposed an enhancement version of the UNet network by concatenating the two UNet
networks together to form a so-called Connected-UNets network. In the connected-UNets
network architecture, the output of the first UNet network is further enhanced by using a
second UNet network. The authors proved the efficiency of the connected-UNets in their
experiments with the breast nodule segmentation problem. However, the use of two deep
networks makes the connected-UNets network too deep and possibly causes the gradient
vanishing problem that hinders the network segmenting small objects. In a most recent
study, Lin et al. [24] attached the transformer blocks to the encoder and decoder paths of
the UNet network to model the long-range contextual information in input images. As a
result, they obtained better segmentation accuracy than other Unet variants such as Unet
or Unet++ networks. Lu et al. [25] simplified the Unet network by taking advantage of
full-scale fusion, Ghosh modules, and the unification of channel numbers. They showed
that their network, namely, Half-UNet, had similar segmentation performance compared
with the UNet and its variants, but was simpler by reducing the network parameters and
number of floating-point operations.

In a study by Vakanski et al. [26], the performance of the UNet network was enhanced
by combining the input image with a salient map through an attention-based module.
In contrast to other studies that segment objects using a single input image, Vakanski
et al. [26] used an additional input, i.e., a salient map that is obtained from the input image
using some handcrafted-based segmentation methods. This salient map, therefore, can
be used as an approximation of the segmentation of target object. Although the salient
map contains segmentation error, it can be used as a prior knowledge of experts about the
object and its characteristics. With the salient map, they designed an attention module
that enables to incorporate the information in the salient maps with feature maps in UNet
network, to enhance the segmentation performance of a conventional UNet network.
Through experiments, they showed that the use of salient map and attention mechanism
are efficient for enhancing segmentation performance compared to conventional UNet
network. However, this method is not clear with regard to obtaining the salient maps and
it mainly depends on the knowledge of experts when designing the system.



Mathematics 2022, 10, 3484 4 of 20

Although these UNet-based network architectures have been successfully applied
to various medical image segmentation problems, the segmentation performance is still
limited. In addition, the most important requirement for a medical image processing system
is for consistently high performance. Therefore, in this study, we propose an enhancement
of the UNet network for the medical image segmentation problem. Our proposed method
is applied to thyroid nodule segmentation to enhance the segmentation performance. Our
proposed method has four novel elements compared to previous studies:

- We propose the use of a sequential nested architecture of suggestion and enhancement
networks to increase the performance of thyroid nodule segmentation.

- Our proposed method uses an enhanced UNet-based network (suggestion network)
to learn a rough salient map of thyroid nodules from the input ultrasound image.

- An additional enhanced UNet-based network with an associated attention module (en-
hancement network) is proposed to increase the performance of the suggestion network.

- We make our pretrained model for thyroid nodule segmentation public to allow other
researchers to use it in their studies [27].

Table 1. Summary of medical image segmentation method in previous studies and our approach.

Categories Segmentation Method Strengths Weaknesses

Conventional
segmentation

methods

Graph-based method [10]. - Easy to implement
- Accuracy can be enhanced with the manual

helps by experts
Low accuracyActive contour

method [11].

Deep learning-based
segmentation

methods

UNet network [12].
- Easy to implement
- High accuracy

Optimal depth of
network is unknown

Residual UNet-based
network [20].

- Easy to train than UNet network
- Can increase the depth of UNet network

UNet++ network [21].
- Enhances the segmentation accuracy by

nesting multiple networks

Longer training time
due to the complexity

of architecture

UNet 3+ network [22]

- Enhances the segmentation accuracy of UNet
and UNet++ network by using full-scale skip
connections and deep supervision

Connected-UNets [23]
- Enhances the segmentation accuracy by

concatenating two UNet networks

UNet with Transformer
blocks [24]

- Models the long-range contextual information
in input images using transformer block

Simplified UNet
(Half-UNet network) [25]

- Simplifies the UNet network architecture by
taking advantage of full-scale feature fusion,
Ghosh modules, and unification of
channel numbers

Segmentation
accuracy is not better

than UNet and
its variants

Attention-based UNet
network [26]

- Associates the information of salient maps
with feature maps

Salient map is
learned using

complex method



Mathematics 2022, 10, 3484 5 of 20

Table 1. Cont.

Categories Segmentation Method Strengths Weaknesses

Deep learning-based
segmentation

methods

Suggestion and
enhancement networks

(proposed method)

- Combines both the attention and the nesting
approach for enhancing segmentation
performance in enhancement network

- Salient maps are automatically learned using
an enhanced UNet-based network
(suggestion network)

- Higher performance than conventional
UNet-based network

Takes long time to
train and inference

3. Proposed Segmentation Method

In this section, we present a detailed description of our proposed approach for thyroid
nodule segmentation.

3.1. Overall Segmentation Netowork Architecture

Our proposed method is depicted in Figure 2, which consists of two components. First,
we used a suggestion network (SN) to learn a rough segmentation mask for the input image.
We call this map a ‘salient map’ for convenience. We designed an SN as a UNet-based
network architecture in our study. To enhance the performance of the SN, we used an
additional network, i.e., an enhancement network (EN), as the postprocessing network
after the SN. This EN was responsible for enhancing the segmentation performance of the
SN by combining the output of the SN with the input image using another segmentation
network. A description of the SN and EN is provided in Sections 3.2 and 3.3, respectively.
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Figure 2. Overall network architecture.

3.2. Suggestion Network

Previous studies on segmentation networks were mainly based on an auto encoder–
decoder architecture [12,20,21], whereby two neural networks are used: an encoder and a
decoder network. The encoder network is designed in a manner similar to a CNN network
that is responsible for learning the useful features of the input image. The decoder network
performs the inverse operation to the encoder network to create the output image. The
encoder and decoder are connected to form a concrete network termed a U-shaped network.
In this study, the proposed network was also designed on the basis of the UNet network
architecture, as outlined in Section 3.1.

Although a deep Unet-shaped network is efficient for extracting deep features from the
input image, it contains too many network parameters and a high abstract level of extracted
features. As a result, it is difficult to train the network, especially for the segmentation
of small objects/lesions. To enhance the segmentation performance of the conventional
UNet network for the thyroid nodule segmentation, we propose an SN based on UNet
architecture that uses a reduced number of filters and network depth, as shown in Figure 3.
In this figure, BN indicates the batch normalization operation. In detail, we used three
scales of feature maps in our SN, which is lower than that of the conventional UNet network
(conventional UNet uses five scales of feature maps). With this modification, our SN was
easier to train and more efficient for small object-segmentation problems.
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3.3. Enhancement Network

The auto encoder–decoder has a significant drawback, i.e., the optimal depth of the
network is unknown [21]. In addition, the use of multiscale features causes the underuse
of information because the low- and high-level features are concatenated directly in the
decoder [28]. To overcome these problems, nesting-based or attention-based segmentation
networks have been proposed [21,26,28]. However, previous studies only focused on
either nesting or attention approaches. In this study, we propose an enhancement of the
conventional UNet network by utilizing both the nesting and the attention approaches in a
single network.

Using an SN, we obtained a ‘salient map’ appropriate for the target image. Because of
the limitations of conventional UNet-based networks, this salient map was not optimum.
We, therefore, used the approach proposed by Vakanski et al. [26] to combine the salient
map with a UNet-based network to construct an EN. In Figure 4, we depict the conceptual
architecture of an EN. Essentially, the EN is based on UNet network, but it contains
additional modules, namely, attention blocks (‘Att’ in Figure 4) to fuse the information of
the salient map with intermediate feature maps in a UNet-based network. The attention
module is designed to make the segmentation network focus on particular areas of the
input image using the input salient map, as shown in Figure 5.
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As shown in Figure 4, we used attention model at three parts of the enhancement
network to combine the information of the salient maps with internal feature maps of
UNet-based network. The structure of the attention module is presented in Figure 5. All
three attention models used in Figure 4 have the same architecture as shown in Figure 5, but
the weights (attention module’s parameters) are different as they are used at different scale
of enhancement network. As shown in Figure 5, the attention module has the responsibility
of learning the important spatial information of the input feature maps by learning a weight
matrix for every pixel in the input feature maps using the input salient map. In details,
suppose we have an input feature maps with size of (2 m) × (2 n) × K and the salient map
with the shape of (H×W× D). By using the attention model, we first obtain a reduced-size
feature maps with shape of m × n × K using the pooling operator (scaled feature maps
in Figure 5). In addition, we obtain a weight matrix of m × n × 1 using the weight block
based on convolution operation, addition, and sigmoid activation function (the dashed
box in Figure 5). Finally, the output of the attention model is obtained by weighting the
scaled feature maps with the weight matrix to evaluate the importance of every pixel in
the input feature maps. Therefore, the attention module is not a channel attention but a
spatial attention. In this way, the attention module helps the segmentation network pay
more attention (focuses) to some particular spatial regions than other regions in the input
image, based on the input salient maps.
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3.4. Loss Function

The dice loss function was shown to be more efficient for training a deep learning-
based segmentation network than the cross-entropy loss [29,30]. Therefore, we used the
dice loss function to train our proposed network in our study. The dice score (DSC) and
dice loss (DSC_LOSS) functions are defined by Equations (1) and (2) [30] as follows:

DSC(X, Y) =
2× |X∩ Y|
|X|+ |Y| , (1)

DSC_LOSS = 1.0 − DSC(X, Y), (2)

where “∩ ” indicates the intersection between two binary sets, i.e., X is the label object
mask and Y is the estimation (prediction) of X; |X| and |Y| indicate the size of these two
sets. The dice loss function is the complement of the dice score, which is the statistical
measurement of the similarity degree of the X and Y sets. By using the dice loss function,
we learned to maximize the intersection of two sets, which is also the purpose of the
segmentation problem.

4. Results and Analysis
4.1. Experimental Datasets

We used two open (public) datasets, the TDID [31] and 3DThyroid [32], to examine
the thyroid lesion segmentation problem. The TDID dataset was released by Pedraza
et al. [31] that is designed for the purpose of thyroid nodule classification. However,
the authors also provided a rough segmentation of thyroid regions that can be used for
segmentation purposes. In total, this dataset contains images from 298 persons, including
both benign and malignant cases, with ground-truth identification of thyroid regions made
by radiologists. Table 2 provides detailed information of the TDID dataset with some
example images shown in Figure 6. The 3DThyroid dataset was released by Wunderling
et al. [32] and designed for thyroid region segmentation with a total of 16 3D image volumes.
Table 3 contains detailed information on the 3DThyroid dataset. Examples of 2D images
extracted from this dataset are shown in Figure 7. The TDID and 3DThyroid can be freely
used for academic purposes according to the instructions of dataset providers. Therefore,
our research is exempt for the approvals from a review board for the experiments with
human subjects.

Table 2. Details of the TDID dataset.

Benign Cases Malignant Cases Total

52 246 298
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Figure 6. Examples of thyroid images with corresponding ground-truth thyroid region in TDID
dataset.

Table 3. Detailed descriptions of the 3DThyroid dataset.

Patient ID 1 2 3 4 5 6 7 8

Number of 2D Images 932 942 1058 1020 958 1064 1134 1060

Patient ID 9 10 11 12 13 14 15 16

Number of 2D Images 928 892 1004 968 812 756 794 932

Total 15,254

We performed a fivefold cross-validation procedure to measure the segmentation
performance of our proposed method with the TDID dataset. For the 3DThyroid dataset, we
performed the leave-one-out cross-validation procedure that was also used by Wunderling
et al. [32] in their experiment. In addition, because the study by Wunderling et al. [31] used
semi-auto segmentation methods, i.e., their method requires the help of expert radiologists
to initialize the thyroid region and adjust segmentation results, they only considered slices
of 3D volume that contained thyroid regions for segmentation. For a fair comparison,
we also only used these images in our experiments. In addition, we used the Tensorflow
library [33] to code the neural network.
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Figure 7. Examples of images with corresponding ground-truth thyroid region in 3DThyroid dataset.

4.2. Training of Proposed Networks

In our first experiment, we trained our segmentation network using the TDID and
3DThyroid datasets. We trained the SN and EN separately as we used an attention-based
approach that requires a rough estimation of the lesion region on salient maps. The training
parameters are listed in Table 4. We show the results of the training process in Figure 8.
In this figure, four loss curves of the training and validation in two cases are shown: the
cases of using a single SN (blue and orange curves) and the cases of using an EN (gray and
yellow curves). We can see that the SN was difficult to train as the loss for both training
and validation sets was still high with the TDID dataset (as shown in Figure 8a). This is
because the TDID dataset contains thyroid regions with disease that cause a large variation
of pixel brightness in the thyroid region. However, EN strongly helped to reduce the loss
of both the training and validation sets. This indicates that our method is more effective
than the SN in training the segmentation network.

Table 4. Parameters for training of suggest and enhancement networks.

Loss Function Optimizer Mini-Batch Size Learning Rate Number of Epochs

Dice Adam 8 0.0001 50

Figure 8b shows that the SN was successfully trained by presenting a loss curve
approaching zero in both the training and the validation sets of the 3DThyroid dataset.
Subsequently, the results of the SN were even further enhanced using the EN. The training
and validation loss curves produced using the EN were far below the training and valida-
tion loss curves of the SN. These results show that the EN was easier to train than the SN,
which is a UNet-based network. It also helped to reduce errors in the validation set, which
could later lead to a reduced error in the real-world testing phases using the testing dataset.
Furthermore, the convergence of training losses shows that our segmentation networks
were sufficiently trained using the training dataset, whereas that of the validation losses
shows that the trained segmentation models were not overfitted.
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Figure 8. Training results (loss curves) of the SNs and ENs on the (a) TDID dataset, and (b) 3DThyroid
dataset.

4.2.1. Analyses of Model Overfitting

We used two public datasets to evaluate the performance of our proposed method.
Between the two, the TDID is a smaller dataset with a total of 298 images, and the 3DThyroid
is a larger dataset with a total of 15,254 images, as shown in Tables 2 and 3. The weakness
of the 3DThyroid dataset is that it contains 3D volumes instead of individual images.
Therefore, the images in a 3D volume of the 3DThyroid dataset exhibit high similarity,
and the size of nodule is varied according to the scanning position of the thyroid organ as
shown in the Figure 7. The lack of data for training is a common problem with the deep
learning method, especially the medical image processing systems. To solve this problem,
we adopt the data augmentation, and detailed explanations of this are included in the next
subsection. Although we tried to find other public datasets for evaluating our method, we
only found the TDID and 3DThyroid datasets which are available for researchers. As shown
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in Figure 8, we can see that the difference between the training and validation loss of the
SN was small (approximately 0.021 with the TDID dataset and 0.148 with the 3DThyroid
dataset). With the EN, the difference is also small (approximately 0.057 with the TDID
dataset and 0.159 with the 3DThyroid dataset). In addition, we can see from this figure
that our proposed method helps to reduce the losses of both training and validation sets.
Therefore, we think that our proposed network not only helps to increase the segmentation
performance, but also reduces the overfitting problem.

Figure 8 shows that our proposed method had seemingly better overfitting resistance
on the TDID than the 3DThyroid dataset. In our study, we designed the SN and EN on the
basis of the UNet network architecture, which is a well-known network for medical image
segmentation. Therefore, we think that this phenomenon is not related to the network
architecture that is more suitable for small datasets. This phenomenon is mainly caused
by the characteristics of these datasets. The 3DThyroid dataset contains successive images
with nodule sizes ranging from tiny (as shown in the first row of Figure 7) to large (as
shown in the second row of Figure 7) nodules, whereas the TDID dataset mainly contains
large-sized thyroid nodules as shown in Figure 6. Because it is usually more difficult to
segment small-sized nodules than the larger ones, it causes a higher loss of the validation
set than that of the training set in the experiments with the 3DThyroid dataset. This is a
common problem with segmentation networks.

4.2.2. Data Augmentation

To reduce the effects of the overfitting problem, we also used the data augmentation
method during the training process using the random mirroring method. This is a popular
data augmentation method that was applied to generalize the training dataset in previous
studies [14,15]. In detail, we randomly flipped the input image horizontally or vertically
to obtain the flipped images of original one. Consequently, we can enlarge the training
dataset fourfold compared to the original dataset. Examples of the resulting images after
data augmentation based on the mirroring method are given in Figure 9.
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Figure 9. Examples of resulting images after data augmentation method used in our experi-
ments: (a) original image pair (image and ground-truth mask); (b) vertically flipped images of
(a); (c) horizontally flipped images of (a); (d) horizontally and vertically flipped images of (a).

4.3. Evaluation Metrics

We used two metrics, i.e., the Dice score (DSC) and pixel classification accuracy (Acc),
to measure the segmentation performance in our study. The DSC is one of the most widely
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used similarity measurement methods used for object segmentation problems [26,30,32]
as shown in Equation (1). A high value of DSC indicates a higher similarity level and,
therefore, a better segmentation performance. The Acc is a widely used performance
measurement for a conventional classification system [26,34,35]. A segmentation system is
a classification system in which every pixel in a given input image is classified into either
background or foreground classes. As a result, the pixel classification accuracy can be used
to measure the overall performance of a segmentation system. By definition, the Acc is
calculated using Equation (3) [26,34,35]. In this equation, TP, TN, FP, and FN denote true
positive, true negative, false positive, and false negative, respectively. A higher value of
Acc means that the segmentation system has good functionality.

Acc =
TP + TN

TP + TN + FP + FN
× 100 (%). (3)

4.4. Performance Evaluation on Testing Datasets
4.4.1. Ablation Studies

With the pretrained segmentation networks obtained in experiments in Section 4.2,
we measured the segmentation performance of the SN and EN. The results are presented
in Table 5 for the case of using TDID dataset, and Figure 10 for the case of using the
3DThyroid dataset. Figure 10a shows the measurement of DSC, whereas Figure 10b shows
the measurement of pixel classification accuracy. As shown in Table 5, the SN yielded an
DSC of 0.555 with a pixel classification accuracy of 0.824. Using our proposed (SN + EN)
network, the DSC was increased to 0.596 with a pixel classification accuracy of 0.858.
Figure 10 shows that our proposed (SN + EN) network outperformed the SN method by
producing higher DSC and pixel classification accuracy than those produced by the SN
using the 3DThyroid dataset.

Table 5. Performance comparisons with or without enhancement network on the TDID dataset.

Method
Testing Part 1 Testing Part 2 Testing Part 3 Testing Part 4 Testing Part 5 Average

DSC Acc DSC Acc DSC Acc DSC Acc DSC Acc DSC Acc

SN 0.574 0.825 0.540 0.806 0.572 0.824 0.533 0.844 0.554 0.822 0.555 0.824

SN + EN 0.609 0.856 0.529 0.860 0.652 0.861 0.566 0.856 0.626 0.859 0.596 0.858

We further performed experiments using our proposed EN with the SN based on
the Residual UNet and UNet++ network. Similar to the SN mentioned in Section 3.2
with Figure 3, we modified the conventional Residual UNet and UNet++ networks by
reducing the number of filters and network scales. Table 6 presents the summary of the
segmentation performance of our experiments with all these network architectures. Our
proposed (SN + EN) network architecture outperformed the various SN in both the TDID
and the 3DThyroid datasets. We obtained the best DSC of 0.612 with a pixel classification
accuracy of 0.850 using the proposed EN with the SN based on the UNet++ network
architecture on the TDID dataset. This accuracy is higher than that of any of the SN. Using
the 3DThyroid dataset, we obtained the best DSC of 0.837 with a pixel classification accuracy
of 0.975 using our proposed EN with the SN based on the UNet++ network architecture.
This segmentation accuracy is also higher than that produced by any of the SNs.
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Table 6. Summary of segmentation performance with or without enhancement network on the TDID
and 3DThyroid datasets.

Method
UNet-Based Network Residual UNet-Based Network UNet++-Based Network

SN SN + EN SN SN + EN SN SN + EN

DSC Acc DSC Acc DSC Acc DSC Acc DSC Acc DSC Acc

TDID dataset 0.555 0.824 0.596 0.858 0.464 0.825 0.517 0.851 0.573 0.822 0.612 0.850

3DThyroid dataset 0.793 0.969 0.835 0.975 0.737 0.961 0.831 0.975 0.792 0.968 0.837 0.975

Our proposed method was designed to take advantage of a coarse-to-fine segmentation
strategy. In our design, the purpose of suggestion network (SN) is to roughly segment
objects from input images. It should output a map with both large and small objects and use
this map as a suggestion for the enhancement network (EN). If we use a very deep network
for the SN, it is difficult to be trained when the training dataset contains tiny and small
objects. In addition, it can remove small objects in its prediction results. Therefore, we only
used a shallow network with three-scale feature maps in our design and experiments. To
validate our design, we performed additional experiments with the TDID and 3DThyroid
datasets by using the SN with different scales, i.e., two-scale, three-scale, and four-scale. In
addition, we performed the experiments with or without the SN to take into account the
effect of salient maps. The detailed experimental results are presented in Table 7.

Table 7. Segmentation results (DSC) of the TDID dataset according to the depth of the EN.

Dataset Network Configuration
Depth of SN

Only EN
Two-Scale Three-Scale Four-Scale

TDID
SN 0.434 0.555 0.513

0.490
SN + EN 0.564 0.596 0.571

3DThyroid
SN 0.654 0.793 0.828

0.737
SN + EN 0.808 0.835 0.838

As shown in Table 7, we confirm that our proposed network obtained the best seg-
mentation accuracy using the three-scale SN with a DSC of 0.596 using the TDID dataset.
Without the use of SN, the EN produced a DSC of 0.490, which is much lower than the
performance produced by the SN + EN. A similar situation also occurred in the experiments
with the 3DThyroid dataset. In detail, we obtained DSCs of 0.808, 0.835, and 0.838 for the
cases of using two-scale, three-scale, and four-scale SNs, respectively. We confirmed that
the performances of our proposed method with the SN were similar for the three-scale
and four-scale SNs, and much better than the case for the two-scale SB. Without the SN,
the EN only produced a DSC of 0.737. These results confirm the importance of the salient
map obtained by the SN in our proposed network. In addition, the three-scale SN was
experimentally selected as it has a balance between the enhancement accuracy and the
network complexity.

4.4.2. Comparison with Previous Methods and Discussion

We compare our proposed method to three state-of-art segmentation networks: the
UNet network [12], residual UNet [20] network, and UNet++ network [21]. Because there
are no previous studies that conducted segmentation experiments with the TDID and
3DThyroid datasets using these three networks, we newly performed experiments for
comparison purposes. Experimental results shown in Table 8 indicate that our proposed
network was superior to all three segmentation networks, producing a DSC of 0.612, which
is higher than the DSC of 0.540, 0.490, and 0.560 produced by the UNet, residual UNet,
and UNet++ networks, respectively, with the TDID dataset. However, the segmentation
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performance of all networks with the TDID was not high, as the maximum DSC was
only 0.612. This is because the TDID dataset contains both benign and malignant thyroid
regions that results in large variation in captured images. Figure 11 shows examples of
segmentation results obtained using our proposed method and UNet network with images
in the TDID dataset. As shown in the upper row of Figure 11, the main region of the thyroid
region was segmented with a DSC of 0.690 using the conventional UNet network, and a
DSC of 0.797 using our proposed method. In the lower row of Figure 11, it was difficult
to segment the thyroid region using both the UNet network and the proposed method
because of the appearance of the calcification phenomenon inside the thyroid region.

Table 8. Comparison of segmentation performance (DSC) between our proposed method and
previous study on TDID dataset.

UNet Network [12] Residual UNet
Network [20]

UNet++ Network
[21] Proposed Network

0.540 0.490 0.560 0.612
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However, we were unable to train three segmentation networks using the 3DThyroid
dataset. This is because the 3DThyroid dataset contains a series of images with various
sizes of thyroid lesions (tiny, small, and large 2D thyroid images), as shown in Figure 7. In
addition, slices in 3D volumes exhibit high similarity as they are captured from a single
thyroid object. Therefore, it is difficult to train these deep networks with the 3DThyroid
dataset. In Table 9, we present the detailed performance comparison between our proposed
method and the shallow UNet-based networks, as well as a previously published study
using the 3DThyroid dataset. In the study by Wunderling et al. [32], three different methods
were used for segmenting thyroid nodules: the level set, graph-cut, and classifier methods.
They obtained the best DSC of 0.748 using a graph-cut-based method. This result is similar
to the segmentation performance produced using the shallow residual UNet network,
which yielded an average DSC of 0.737. However, this result is lower than the DSC of
0.792 obtained using the shallow UNet++ network and 0.793 yielded using the shallow
UNet network. Using our proposed method, we obtained the highest DSC of 0.837. This
result indicates that our proposed method not only outperformed shallow UNet-based net-
works, but also previous studies. In Figure 12, we show some examples of the segmentation
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results obtained using a shallow UNet network and our proposed network using images in
the 3DThyroid dataset. In the upper part of this figure, we obtained a DSC of 0.753 using
the shallow UNet network, which was enhanced to 0.790 using our proposed method.
However, the segmentation results were poor with the input image in the lower part of
Figure 12 as the input image contained a very small size of thyroid region. We can see a
big difference in segmentation accuracy between the TDID (DSC of 0.612) and 3DThyroid
dataset (DSC of 0.837). This is because the TDID dataset contains a diseased thyroid with a
large variation of pixel brightness in the thyroid region (as shown in Figures 6 and 11). This
problem does not occur with the 3DThyroid dataset that contains a normal thyroid region.

Table 9. Comparison of segmentation performance (DSC) between our proposed method and
previous study on 3DThyroid dataset.

Shallow UNet
Network [36]

Shallow
Residual UNet
Network [37]

Shallow UNet++
Network

(UNet++L2) [21]

Semi-Auto Segmentation Method [32]
Proposed
NetworkLevel Set-Based

Method
Graph Cut-Based

Method
Classifier-Based

Method

0.793 0.737 0.792 0.713 0.748 0.672 0.837
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image; (c) results obtained by shallow UNet network; (d) results obtained by the proposed method.

To explain the internal functioning of our network, Figure 13 shows the class activation
maps (CAMs) [38] produced by our proposed method at various feature scales of input
images. We obtained a rough suggestion of the lesion region in the input image using a
high level of extracted image features. With a combination of low and high image features,
the lesion regions in the input images were more distinctive and focused. As a result, the
final segmented images were quite similar to the ground-truth label images.

Lastly, we measured the processing time of our proposed network in comparison with
conventional segmentation networks. The experiment was performed using a desktop
computer with a Core i7 processor working at 3.4 GHz with 64 GB of RAM. We programmed
our network using the Python programming language and the TensorFlow library [33].
As presented in Table 10, our proposed method required a slightly longer processing time
than other segmentation networks. In terms of processing speed, our proposed network
could operate at a speed of 11.426 fps (1000/87.518). This is acceptable for medical image
processing systems, where accuracy is more important than processing speed.
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Table 10. Measurement of processing time of various segmentation networks (unit: ms).

UNet Network [12] Residual UNet
Network [20]

UNet++
Network [21] Proposed Network

68.566 64.690 60.515 87.518

5. Conclusions

In this study, we proposed a nested attention-based segmentation network for image-
based thyroid lesion segmentation. Our study was designed to take advantage of both
nested-based and attention-based segmentation networks. In details, our proposed network
was composed of two segmentation networks, i.e., SN and EN, to form a nested network.
The output of the SN was used as a rough prediction map of objects (salient map). We used
an attention block to incorporate the information of the salient map with the feature maps
after the convolution layers of the EN. By using both nested and attention-based approaches,
we enhanced the segmentation performance of the thyroid nodule segmentation problem
compared to previous studies using two public thyroid datasets, the TDID and 3DThyroid
datasets. In addition, we found that it was difficult to segment the thyroid region when it
contains significant lesions or is small in size. This problem will be considered in future
research to enhance both the performance and stability of the segmentation system. Our
proposed method can not only be applied for medical image segmentation systems, but
also be applied for the segmentation and modeling of 3D organs (brain, thyroid, kidney,
etc.), which is useful in human anatomical or surgical planning. Although our proposed
method was demonstrated to enhance the segmentation performance, it takes a longer
time to segment an input image than the conventional segmentation method, as shown
in Section 4. In addition, our proposed method also takes a longer time for the training
segmentation model as we must train two networks separately.

In future work, we will research methods to reduce the processing time while main-
taining the segmentation accuracy. In addition, we will research methods to reduce the
training time of our networks based on shallower models.
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