
Citation: Mohammed, H.J.;

Al-Fahdawi, S.; Al-Waisy, A.S.;

Zebari, D.A.; Ibrahim, D.A.;

Mohammed, M.A.; Kadry, S.; Kim, J.

ReID-DeePNet: A Hybrid Deep

Learning System for Person

Re-Identification. Mathematics 2022,

10, 3530. https://doi.org/10.3390/

math10193530

Academic Editors: Abeer Alsadoon

and Luis Coelho

Received: 16 August 2022

Accepted: 25 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

ReID-DeePNet: A Hybrid Deep Learning System for
Person Re-Identification
Hussam J. Mohammed 1,*, Shumoos Al-Fahdawi 2, Alaa S. Al-Waisy 3 , Dilovan Asaad Zebari 4 ,
Dheyaa Ahmed Ibrahim 3, Mazin Abed Mohammed 5 , Seifedine Kadry 6,7,8 and Jungeun Kim 9,*

1 Computer Center, University of Anbar, Ramadi 31001, Iraq
2 Computer Science Department, Al-Ma’aref University College, Ramadi 31001, Iraq
3 Computer Engineering Technology Department, Information Technology Collage,

Imam Ja’afar Al-Sadiq University, Baghdad 10072, Iraq
4 Department of Computer Science, College of Science, Nawroz University, Duhok 42001, Iraq
5 College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq
6 Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
7 Department of Electrical and Computer Engineering, Lebanese American University,

Byblos P.O. Box 13-5053, Lebanon
8 Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology,

Ajman University, Ajman P.O. Box 346, United Arab Emirates
9 Department of Software, Kongju National University, Cheonan 31080, Korea
* Correspondence: hussamjasim@uoanbar.edu.iq (H.J.M.); jekim@kongju.ac.kr (J.K.)

Abstract: Person re-identification has become an essential application within computer vision due to
its ability to match the same person over non-overlapping cameras. However, it is a challenging task
because of the broad view of cameras with a large number of pedestrians appearing with various
poses. As a result, various approaches of supervised model learning have been utilized to locate
and identify a person based on the given input. Nevertheless, several of these approaches perform
worse than expected in retrieving the right person in real-time over multiple CCTVs/camera views.
This is due to inaccurate segmentation of the person, leading to incorrect classification. This paper
proposes an efficient and real-time person re-identification system, named ReID-DeePNet system. It is
based on fusing the matching scores generated by two different deep learning models, convolutional
neural network and deep belief network, to extract discriminative feature representations from
the pedestrian image. Initially, a segmentation procedure was developed based on merging the
advantages of the Mask R-CNN and GrabCut algorithm to tackle the adverse effects caused by
background clutter. Afterward, the two different deep learning models extracted discriminative
feature representations from the pedestrian segmented image, and their matching scores were fused
to make the final decision. Several extensive experiments were conducted, using three large-scale
and challenging person re-identification datasets: Market-1501, CUHK03, and P-DESTRE. The ReID-
DeePNet system achieved new state-of-the-art Rank-1 and mAP values on these three challenging
ReID datasets.

Keywords: person re-identification; deep learning; deep belief network; Mask R-CNN; GrabCut
algorithm; Market-1501 dataset

MSC: 68T10

1. Introduction

Surveillance systems have been used immensely in various public and private areas
such as airports, universities, schools, streets, houses, etc. These surveillance systems
provide massive data, including images and videos, which are helpful in the investigation of
criminal activities [1]. However, processing and analyzing these images and videos to track
and monitor a person over non-overlapping cameras is a time-consuming and challenging
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task [2]. Several factors can significantly affect the performance of the person ReID system
in practical applications, such as pose variations, illumination changes, occlusions, different
camera settings, and background clutter [3]. All these factors cause the appearance of the
same person to look extremely different. This leads to a heavy burden on investigators to
identify the wanted person from many surveillance videos in a short time. Therefore, the
person Re-ID task is still an unsolved problem that is worth further research. However, the
ethical and privacy implications of surveillance biometric-based systems (e.g., person ReID)
have become significantly critical, and have attracted increasingly critical attention [4].
Some direct questions have been raised concerning whether biometric systems offer society
significant advantages over traditional methods of personal identification (e.g., passwords,
ID cards, etc.), or whether it constitutes a threat to people’s privacy. For instance, CCTVs
are used in car parks and cities, and X-ray machines at airports to detect and prevent
potential crimes against people or property. However, the dilemma facing the surveillance
systems is data collection, and ensuring that collected data will not be used for purposes
that are unethical or impinge upon human rights. Thus, the collected information should
be protected by ethics and laws, except in specific circumstances (e.g., in a court of law) [5].

In general, the person ReID system is mainly based on three critical steps: automatic
pedestrian detection, features extraction, and classification step. Most of the previously
published works directly learn the feature representations from the whole pedestrian image,
that contains background clutter. Quite recently, several person ReID deep learning-based
systems have suggested learning effective feature representations from the detected pedes-
trian body to reduce the background clutter and improve the robustness of the person ReID
system [6–8]. This motivates us to develop an automated image segmentation algorithm
to eliminate background noise interference issues and enhance the discriminability of
the extracted feature representations, even for an incomplete person, which may contain
information that is discriminatory and deserves attention.

In the features extraction step, person ReID systems can be divided into either
handcrafted-based systems or deep learning-based systems. Handcrafted-based systems
are designed to extract invariant features (e.g., color and texture) for pedestrian descrip-
tion [9]. For instance, Zheng et al. [10] applied the SIFT descriptor to extract a feature
vector of 128 values for pedestrian description and employed the bag of words (BOW) for
person ReID. Klaser et al. [11] proposed the integration of the histograms oriented gradient
(HOG) and histograms of optical flow (HOF) to introduce a 3D pedestrian descriptor,
named HOG3D. Although the handcrafted-based descriptors have further improved the
performance of person ReID systems, the massive amount of captured data using multiple
cameras has made extracting common feature representations from the same pedestrian
very hard due to these descriptors lacking a self-learning process. This promotes the
appearance of deep learning-based systems for person ReID.

Recently, deep learning methods, for example, convolutional neural networks (CNN),
have played an essential role in addressing person re-identification problems due to their
ability to jointly handle occlusions, geometric transforms, illumination changes, and back-
ground clutter in a unified framework [12]. CNNs can extract discriminative and robust
feature representations for either the whole or part body of a pedestrian’s image. However,
a tremendous amount of data is required to train ReID deep learning-based systems and
achieve a satisfactory performance. Some examples of ReID deep learning-based systems
can be found in [3,13,14]. Another critical step of person ReID is learning a robust distance
or similarity function to address the problems of the matching pedestrian (e.g., hetero-
geneous face recognition). In this regard, metric learning methods have been developed
to solve matching person problems, such as cross-view quadratic discriminant analysis
(XQDA) [15], distance metric [16], etc.

In this paper, an automatic hybrid deep learning system is developed and named
ReID-DeePNet system, to identify a person in real life using multiple CCTVs/street camera
views. Initially, an efficient and reliable image segmentation procedure was developed
based on integrating the advantages of the Mask R-CNN and GrabCut algorithm to tackle
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the adverse effects caused by background clutter. Then, the matching scores from two
distinctive deep learning models based on CNN and deep belief network (DBN) models
were obtained to establish the person’s identity across multiple cameras.

1. An automated and fast image segmentation algorithm was proposed to eliminate
background noise interference issues and enhance the feature representations’ dis-
criminability in the subsequent steps of the proposed ReID-DeePNet system. Herein,
the MASK region-based CNN (Mask R-CNN) algorithm was applied to automatically
extract the pixel-wise mask for foreground objects “pedestrians” out of the complex
background. However, Mask R-CNN could not ideally detect the object of interest,
such as the dynamic pedestrian body, and some parts of the background still appeared
in the final segmented image. This could negatively affect the accuracy of the pro-
posed system. Thus, the GrabCut algorithm was applied using the mask generated by
Mask R-CNN as the initial seed to reduce the effects of background noise interference
and enhance the person’s body segmentation accuracy;

2. An effective and real-time person ReID system was developed based on integrating
the matching scores generated from two different deep learning approaches, such as
CNN and DBN, to extract discriminative feature representations from the pedestrian
image. To the best of our knowledge, this was the first attempt to investigate the
possibility of training a CNN and DBN from scratch, to address the person ReID
problem in a unified system;

3. A parallel architecture for integrating the matching scores generated from the CNN
and DBN model was considered that could give end users a high degree of flexibility
in establishing a person’s identity using the result obtained from one or both adopted
models, based on the desired security level and the user’s satisfaction. The perfor-
mance of the proposed system was assessed using different fusion rules at the score
level (e.g., sum rule (SR), weighted sum rule (WSR), product rule (PR), max rule,
and min rule) and rank level (e.g., highest rank (HR), Borda count (BC), and logistic
regression (LR));

4. The accuracy of the proposed ReID-DeePNet system was assessed by carrying out sev-
eral comprehensive experiments on three large-scale and challenging ReID datasets,
including the Market-1501, CUHK03, and P-DESTRE datasets. A new advanced
Rank-1 identification rate and mAP were achieved using the ReID-DeePNet system
on all the employed datasets.

The rest of this article is organized as follows: A review of the previous works is
presented in Section 2, and the proposed framework of ReID-DeePNet in Section 3. The
employed ReID datasets and the empirical results are discussed and explained in Section 4.
Finally, conclusions and future work guidelines are outlined in the last section.

2. Related Work

Recently, many researchers have focused on addressing the person re-identification
problem by developing ideal solutions that can help in recognizing the person’s identity
across multiple cameras. Many researchers have employed deep learning approaches to
address the person ReID task by combining the feature extraction and classification stages in
a unified system. For instance, Weilin et al. [17] developed a hybrid framework combining
multilevel feature extraction and a multi-loss learning approach to obtain a high description
of the pedestrian. The multilevel feature extraction process was achieved using a feature
aggregation network (FAN) to extract multilevel attributes from different layers. The
multi-loss learning process included two actions: verification and recognition, where the
verification aimed to verify that the two images belonged to the same identity, and where
the recognition aimed to specify the identity within each image. This was accomplished
using recurrent comparative network (RCN) and global average pooling (GAP) algorithms.
Their experiments were conducted using four datasets, including CUHK03, CUHK01,
Market1501, and DukeMTMC-reID. The best Rank-1 rate of 84.7% and mAP of 65.8% were
obtained on Market1501dataset.
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Yutian et al. [18] proposed a Bayesian query expansion (BQE) algorithm to produce
a new query from the initial ranking list. They suggested dividing the dataset into three
mutually exclusive sets of data: a training set, gallery set, and testing set. Once the
algorithm was trained on the training data, the algorithm calculated the probability of
images within the initial gallery, producing actual matches. The images of actual matches
were used to predict a single vector used to generate a new list as a query expansion process.
Extensive experiments on four different datasets were carried out, including Market-1501,
DukeMTMC-reID, CUHK03, and MARS. The highest Rank-1 rate of 85.24% and mAP of
69.79% were achieved on the Market-1501 dataset.

Yichao et al. [19] proposed a feature attention block to generate part-level represen-
tations for pedestrians. Their method provided a weight for each part of the pedestrian’s
body by finding various horizontal features. A deep CNN model was utilized in the method
to learn discriminative feature representations to compute the distance between pairs of
query images in the gallery set and generate a ranking list for each query person. The
authors evaluated their method using three datasets, Market-1501, DukeMTMC-ReID, and
CUHK03. The experiments showed that the best results were obtained on the Market-1501
dataset by achieving a Rank-1 rate of 93.5% and mAP of 81.8%. Li et al. [20] proposed
two branches of CNN network architecture for person feature extraction purposes. These
branches considered the global and local features based on loss functions that are commonly
used in person re-ID. The highest Rank-1 rate of 93.8% and mAP of 84.6% were achieved
on the Market1501 dataset. In the context of multi-modules methods, Xin et al. [21] devel-
oped a semi-supervised feature representation approach to obtain discriminative feature
representations from pedestrian images across disjoined cameras. They suggested using
various CNN models to generate different feature representations from a single labeled
image within a dataset. A finely-tuned process was applied to each CNN’s feature represen-
tation to simultaneously decrease the identification loss and verification loss. Afterward,
a multi-view clustering process was utilized to classify the CNN’s features into similar
groups and dissimilar to different groups, thereby integrating the features into the proper
representations. The multi-view clustering process also estimated pseudo labels for unla-
beled images to produce a label for each image within the dataset. Two benchmark datasets,
including Market1501 and the DukeMCMT-reID dataset, were employed in the conducted
experiments. The best performance on the Market1501 dataset was obtained by achieving a
Rank-1 rate of 75.2% and mAP of 52.6%.

Isobe et al. [22] investigated the ability to learn discriminative feature representa-
tions within the person image. They proposed a framework to reduce the noise with
unlabelled images, transfer the knowledge that could be learned from the source to the
target image, and add extra training constraints. Therefore, the cluster-wise contrastive
learning algorithm (CCL) was utilized with progressive domain adaptation (PDA) followed
by Fourier augmentation (FA). Their experiments were performed on various datasets,
including Market-1501, Duke, and MSMT. Their results outperformed current state- of-the-
art works by achieving a mAP of 8.1%, 9.9%, 11.4%, and 11.1%, on the Market-to-Duke,
Duke-to-Market, Market-to-MSMT, and Duke-to-MSMT tasks, respectively. In terms of
using low-resolution images, Xia et al. [23] developed a semi-supervised method based on
the mixed-space super-resolution model (MSSR) to enhance a person’s resolution. Then, a
part-based graph convolutional network (PGCN) was performed to obtain discriminative
feature representations from the pedestrian images. Their experiments were carried out
on the Market1501, CUHK03, and MSMT17 datasets to evaluate the performance of the
proposed methods. The results showed that they were able to identify the person with
good accuracy compared with many semi-supervised methods, by achieving the highest
Rank-1 rate of 73.2% and mAP of 49.8 on the Market-1501 dataset.

Recently, Wu et al. [24] suggested learning more distinctive features for person ReID by
jointly optimizing the appearance feature and the information of the ranking context. The
authors proposed a hybrid ranking framework composed of two streams for addressing the
person ReID problems. In the first stream, the external ranking information was obtained
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by generating the ranking list for each probe image to learn visible changes among the top
ranks of the gallery set. On the other hand, the internal ranking information was obtained
using the fine-grained feature in the second stream. The performance of the proposed
hybrid ranking framework was assessed using four ReID datasets, including the Market-
1501, DukeMTMC-ReID, CUHK03 and MSMT17 datasets. The best performance was
achieved on Market-1501 with 94.7 and 86.8, of Rank-1 and mAP respectively. Tang et al. [25]
developed a novel harmonious multi-branch network (HMBN) with various stripes on
different branches to learn more discriminative feature representations for person ReID. The
authors replaced the uniform partition procedure with a horizontal overlapped partition to
avoid losing important information within the local regions. The performance of the HMBN
was assessed on three different ReID datasets, including DukeMTMC-ReID, CUHK03, and
Market-1501. The highest Rank-1 rate of 95.58% and mAP of 94.21% were achieved on the
Market1501 dataset.

Gu et al. [26] considered extracting clothes’ irrelevant feature representation from
the original RGB images of pedestrians. The performance of the developed clothes-based
adversarial loss (CAL) was tested on a private ReID dataset, named CCVID dataset. The
CAL achieved a Rank-1 rate of 82.6% and mAP of 81.3%. Yang et al. [27] addressed
the problem of twin noise labels (TNL) in visible infrared person re-identification (VI-
ReID), which refers to noisy annotation and correspondence. The authors developed
a new approach for reliable VI-ReID, named DuAlly robust training (DART). DART is
mainly based on computing the clean confidence of noisy annotations and rectifying the
noisy correspondence with the estimated confidence. The performance of DART has
outperformed five state-of-the-art methods using two ReID datasets: SYSU-MM01 and
RegDB datasets.

Throughout this review, one can see that several studies in the literature were devel-
oped to tackle the person re-identification problem using different deep learning architec-
tures. In general, the models trained in a supervised manner showed better performance
than semi-supervised and unsupervised approaches, due to the labeled images playing a
substantial role in improving the learning ability of the developed models in recognizing a
person’s identity across multiple cameras. Although most of the developed approaches
have significantly reduced the effects of lighting and pose changes and achieved good
performance, the discriminative power of the extracted feature representations may still be
affected by background clutter. Thus, the generalization abilities of currently developed
approaches are still far from being at an acceptable level in handling real person ReID
issues. In this study, several advanced deep learning approaches are integrated to develop
a competitive person ReID system.

3. The Proposed ReID-DeePNet System

This section describes the proposed ReID-DeePNet system for person ReID. As de-
picted in Figure 1, the overall structure of the proposed ReID-DeePNet system is composed
of two modules: The background suppression module and the person Re-ID module. In the
background suppression module, the issues of background noise interference are solved
to enhance the discriminability of feature representations in the subsequent steps of the
proposed system. Mask R-CNN is employed to automatically extract the pixel-wise mask
for foreground objects “pedestrians” out of the complex background. Nevertheless, the
Mask R-CNN algorithm cannot perfectly distinguish between the foreground and back-
ground in the input image during the segmentation process. Thus, the output of the Mask
R-CNN algorithm is further enhanced using the GrabCut method to reduce the effects of
the background noise interference and enhance the person’s body segmentation accuracy.
This is followed by identifying a pedestrian’s identity by integrating the advantages of two
distinctive deep learning models (CNN and DBN) to address the person ReID problem.
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3.1. The Background Suppression Module

It was proved that using the pixel-wise mask of pedestrians can significantly reduce
background clutter and improve the robustness of person ReID models under various
background conditions. Furthermore, the generated pixel-wise masks have body shape
information which is considered an important gait feature and useful for identifying a
person, thus, boosting the identification accuracy [28,29]. The Mask R-CNN is an extension
to the Fast R-CNN model that works on detecting objects in the input image and produces
a binary mask for each object. Mask R-CNN aims to detect various objects in an image or
video to produce the bounding box of an object along with its class label and binary mask.
In other words, the Mask R-CNN consists of two stages including proposal generation
of the potential objects within the input image, and prediction of the object’s class then
refinement of the surrounding box to generate the binary mask of the presented object
within the first stage [30].

In addition, these two stages are connected using a backbone model to predict the
person’s class. In this study, the backbone component, based on a pre-trained ResNet101
model, is employed to extract more discriminative feature maps of the person from the
input image. Then, the generated feature maps are transferred on to the feature pyramid
network (FPN) to efficiently extract useful feature representations of different scales in
the input image. The FPN uses the feature maps and semantic information to localize
the region of object. The FPN also takes the benefits of the inherent and multiple scale
nature of CNNs to gain a better detection of the person’s object and to perform the semantic
segmentation with various scales. This is achieved using the sliding window that applies
on the generated feature maps to generate regions of persons within the image in the form
of a bounding box. However, these proposals of bonding boxes come with different sizes,
causing various issues in generating the segmented person within its mask. Therefore, the
ROIAlign is employed to produce fixed feature maps with a unique form. Afterward, these
fixed maps are passed into two fully connected layers within the network head component
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to produce the class of person and the boundary box of that person. In addition, the
features maps will also pass into multi-convolutional layers within a mask component to
obtain the mask of the segmented person. As a result, the output from the Mask R-CNN
is represented by three components including the class of person, the boundary box, and
the binary mask. However, the Mask R-CNN cannot perfectly separate the foreground
objects from the complicated background during the segmentation process. In this study,
the accuracy of the Mask R-CNN algorithm has been further improved using the predicted
mask from Mask R-CNN as an initial seed to the GrabCut algorithm to reduce the effects of
the background noise interference and enhance the person’s body segmentation accuracy.

The GrabCut algorithm is an effective segmentation method used to remove undesired
and heterogeneous edges of background from the segmented image of the person, and
retain the foreground which is represented as a person’s body [31]. Herein, the GrabCut
algorithm utilizes the graph cuts method by drawing a boundary box around the fore-
ground object of a person within the input image produced from the Mask R-CNN. Then,
the Gaussian Mixture Model (GMM) is applied for estimating the color distribution of
the foreground and background. The GMM then learns and predicts class labels for the
unknown pixels based on the data from the input image, where each pixel is classified
either as a foreground or background depending on its color statistics [32]. The GrabCut
algorithm represents the input image as a graph by considering its pixels as vertices and the
feature connection between these pixels as the edges (see Figure 2). The GrabCut algorithm
loops on all the pixels within an image and breaks the weak connections between them,
and then assigns each pixel to either the foreground or background. The implementation
of the GrabCut algorithm on the top of the Mask R-CNN has significantly reduced the
effects of the image’s background and enhanced the segmentation accuracy and contour
extraction of the person’s body.
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3.2. The Person Re-ID Module

The output of proposed image segmentation procedure in the background suppression
module is the targeted person who should be classified in order to be tracked, based on
his appearance. In this study, the person’s identity is recognized using two powerful
deep learning models (CNN and DBN) trained from scratch to address the person ReID
problem. To the best of our knowledge, this is the first study that explores the possible use
of CNN and DBN models in a unified person ReID system to extract distinctive local feature
representations from pedestrian images. In the next sub-sections, the main architecture
and the training methodology of the adopted deep learning models (CNN and DBN) are
explained in detail.
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3.2.1. CNN for Person ReID

As shown in Figure 3, the main structure of the employed CNN model comprises a
combination of four locally-connected convolutional layers, each one followed by (2 × 2)
sub-sampling max-pooling layer. Each convolutional layer has an assigned number of
trainable filters to learn high-level feature representations from the pedestrian image.
Herein, the number of trainable filters are set as 6, 20, 64, and 128, for the employed
convolutional layer. In this work, two fully connected layers are employed on top of
the proposed CNN model for the multi-class classification tasks. The output of the last
fully connected layer is fed into the Softmax classifier, which computes the probability
distribution over all of the class labels in the dataset being used to produce the predicted
class label. Finally, a suitable loss function based on a cross-entropy is employed to measure
the correspondence between the predicted and the target labels and compute the cost value
for the proposed CNN model.
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Following the same training procedure described [33], we start training a specific
CNN model with a particular structure by splitting the training set into four sets. The
CNN model is trained using the first three sets, and the last set is used as a validation
set to assess the CNN model’s generalization capacity during the learning process. The
last trained CNN model with minimum validation error on the validation set is stored to
report the real performance using the testing set. To prevent the overfitting problem, an
early stopping procedure is applied by stopping the training process when the value of
validation error on the validation set starts to increase again, for few times. Furthermore,
some of the most widely used data augmentation techniques are implemented to reduce
overfitting and enhance the generalization capability of the last trained CNN model during
the learning process. In this work, five image regions are randomly cropped from each
image in the training set along with their horizontally flipped versions. The main steps of
the implemented training procedure can be defined as follows:

1. Divide the dataset into three sets (e.g., training set, validation set, and testing set);
2. Select a particular CNN structure and initialize the value of the hyper-parameters

(e.g., number of epochs, learning rate, etc.);
3. Train the selected CNN model with the training set;
4. Assess the performance of the selected CNN model using the validation set during

the learning process;
5. Repeat steps 3 through 4 using 300 epochs;
6. Save the weights of the best trained CNN model with less validation error on the

validation set;
7. Report the actual performance of the saved CNN model using the testing set.

3.2.2. DBN for Person ReID

On the other hand, the DBN model consists of a single visible layer and multiple
hidden layers connected with each other in a strong relationship to learn high-level feature
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representations from input data [34]. These layers are also utilized to learn the statistical
associations between units of a previous layer where each unit within the proceeding layer
is connected to all units of the earlier layer, as illustrated in Figure 4. The DBN is a stack of
multiple layers of restricted Boltzmann machines (RBMs). RBM is a generative stochastic
neural network consisting of two fully-connected layers using symmetric undirected edges
with no links between nodes of the same layer. As shown in Figure 4, the employed
DBN model for a person ReID is composed of stacking three RBMs as hidden layers. The
first two hidden layers are trained one at a time as feature descriptors in a bottom-up
fashion utilizing an unsupervised greedy layer wised (GLW) algorithm. Herein, the CD
learning algorithm is employed. The applied DBN model’s final hidden layer is trained as a
discriminative model in combination with a Softmax classifier to perform the classification
task. Herein, the suggested training procedure to train the employed DBN model can be
outlined into three steps as follows:

1. As per the training procedure described in [35,36], the first two RBMs are trained one at
a time using an unsupervised learning algorithm based on the CD learning algorithm.
After the training process of the first RBM is finished, its activation outputs can be
seen as features learned from the input image. Then, these feature representations
are used as input data to train the next RBM in the stack. This unsupervised learning
process enables us to train the network with massive amounts of unlabeled data to
advance the generalization capability of the proposed DBN model. After finishing the
training process of the first two RBMs, they can be seen as feature descriptors that can
extract the most discriminative features from the raw images automatically;

2. The training and validation sets, together with their associated class labels, are used
to train the last hidden layer in the proposed DBN as a non-linear classifier, which is
used to monitor the learning process;

3. To improve classification accuracy, the weights of the whole network are fine-tuned in
a top-down fashion using the back-propagation algorithm.
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4. Experimental Results

This section provides a description of the three large-scale and challenging ReID
datasets that were employed to evaluate the effectiveness of the proposed ReID-DeePNet
system. Then, implementation details of the proposed approaches in the background
suppression and person Re-ID module are introduced. Next, the hyper-parameters analysis
and visualization of the employed deep learning models are also presented to verify their
effectiveness. Finally, we compare the performance of the proposed ReID-DeePNet system
with advanced systems on these three datasets. The code of the ReID-DeePNet system
was coded in Python programming language and all the experiments were conducted on
the Google Colab server platform with 69K GPU graphics card, and 16 GB of RAM on the
Windows 10 operating system, Intel(R) Core (TM) i7-4510U GHz CPU.
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4.1. Datasets Description

The robustness of the proposed ReID-DeePNet system was tested on three large-scale
and challenging Re-ID datasets, including the Market-1501 [10], CUHK03 [37], and P-
DESTRE datasets [38]. These three employed Re-ID datasets reflected the main issues
that influence person Re-ID in a real-world application, such as perspectives, changes of
illumination, occasions, poses of pedestrians, etc. All the conducted experiments followed
the standard evaluation protocol and data split setting of these three datasets. The per-
formance evaluation metrics, such as the Rank-1 identification rate and mean average
precision (mAP) were computed. Table 1 shows the statistics of the adopted three Re-ID
datasets, and some samples from these datasets are shown in Figure 5.

Table 1. The statistics of the adopted three Re-ID datasets.

Datasets No. Images No. Identities

Market-1501 [10] 32,688 1501
CUHK03 [37] 13,164 1360

P-DESTRE dataset [38] — 269
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• Market-1501 dataset [10] is a public benchmark dataset containing 1501 identities
that were collected by six cameras from different viewpoints. The total number of
pedestrian images was 32,688, with approximately 3.6 images on average for each
identity from different viewpoints. In addition, all images were in .jpg format. A
deformable part models (DPM) pedestrian detector was used to extract and detect
the pedestrian within the collected images. Following the standard evaluation pro-
tocol, the Market-1501 dataset was divided into two sets, with 750 for training set
(e.g., 17.2 images per identity) and 751 for testing set. Thus, all the 12,936 images were
used to train the proposed ReID-DeePNet system;

• CUHK03 dataset [37] is also a public dataset composed of 1360 identities with
13,164 images in .jpg format. Six surveillance cameras were utilized to capture these
images and each two disjoined cameras produced 4.8 images on average for each
identity. The captured images within the CUHK03 dataset contained various varia-
tions, such as illumination, direction of pedestrians, different cameras settings, etc.
Following the training and testing splits described in [37], the dataset was divided into
two sets: the training set had 767 IDs, while the testing set contained the remaining
700 identities;
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• P-DESTRE dataset [38] contained a total of 75 videos and individual tracks sequences
with a resolution of (3840 × 2160) pixels. The cameras used to capture these videos
were attached to several UAVs. The dataset included videos acquired at altitudes of
5.5 and 6.7 m over many days in crowded outdoor settings. Although most of the
bounding boxes included humans with an acceptable resolution, this was not always
the case when people were caught from a distance (distances exceeding 40 m), which
resulted in low resolution and blur in some situations. Some of the frames had motion
blur problems because of the UAVs’ fast movements and low altitude. The proposed
ReID-DeePNet system’s effectiveness on this dataset was evaluated by computing
the mean and standard deviation of the results across all five splits, which had five
predefined splits of test data and training data. A 10-fold cross validation strategy was
employed for the P-DESTRE set, with the data in each split being randomly split into
60% for the training set (45 videos), 20% for the validation set (15 videos), and 20% for
the testing set (15 videos).

4.2. The Background Suppression Module Evaluation

The experimental hypothesis of image segmentation was to locate and segment a
person in the image among various objects, such as vehicles, trees, animals, etc. In addition,
the person could appear in a small part of the image, such as their upper/lower body.
Therefore, an automated segmentation step was desperately required to locate the person
within the image and apply accurate classification. Herein, the Mask R-CNN was applied
as an effective and reliable approach to detect a person’s body across multiple cameras.
Although the Mask R-CNN has shown encouraging results, it still had some parts of
the image’s background appearing in the final segmented image that could significantly
degrade the accuracy of the developed system. Therefore, the effects of the background
noise interference were eliminated by employing the Mask R-CNN as an initial seed
to the GrabCut algorithm as a post-process step of the person segmentation procedure.
Several experiments were conducted based on different network backbones within the
Mask R-CNN, such as ResNet34, ResNet5o, ResNet101, and VGG19. These experiments
were repeated with the same network backbones based on merging the advantages of the
Mask R-CNN and GrabCut methods to prove the effectiveness of the proposed background
suppression module, as illustrated in Table 2. In these experiments, two common evaluation
metrics were calculated, including cumulative match characteristic (CMC) which denoted
as Rank-1 accuracy, and mAP. All the experiments were carried out using the pre-trained
ResNet50 model in the classification stage.

Table 2. Performance comparison of person Re-ID accuracy (%) using a different network backbone
for Mask R-CNN.

Methods Network
Backbone

Market-1501 CUHK03 P-DESTRE

Rank-1 mAP Rank-1 mAP Rank-1 mAP

Mask
R-CNN

ResNet34 69.61 59.22 64.22 63.31 43.14 ± 12 35.43 ± 13.2
ResNet50 56.64 45.23 66.24 55.34 45.67 ± 9.7 34.56 ± 11.8

ResNet101 84.24 76.34 69.56 65.87 80.89 ±7.1 71.03 ± 8.9
VGG19 71.64 65.54 70.74 72.24 69.93 ± 8.8 65.95 ± 9.5

Mask
R-CNN +
GrabCut

ResNet34 76.21 65.25 68.34 65.11 52.64 ± 11.1 50.35 ± 9.8
ResNet50 76.61 81.02 67.22 63.31 59.90 ± 9.7 45.65 ± 10.7

ResNet101 84.51 80.98 79.11 77.89 85.67 ± 6.3 74.89 ± 6.3
VGG19 73.21 74.18 69.99 68.49 76.81 ± 10.3 67.32 ± 8.1

From Table 2, one can see that using only the Mask R-CNN method with ResNet34
and ResNet50 as network backbones demonstrated a varying accuracy among the other
network backbones. In terms of the Rank-1 rate, the Mask R-CNN method provided a
higher accuracy using ResNet50 on the CUHK03 and P-DESTRE datasets, compared with
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the ResNet34 model, by achieving a Rank-1 rate of 66.24% and 45.67%, respectively. In
contrast, the ResNet34 presented a better accuracy on the Market-1501 dataset by achieving
a Rank-1 rate of 69.61%. Moreover, it was obvious that using ResNet34 model obtained
higher mAP values on Market-1501 and CUHK03 datasets by achieving a mAP of 59.22%
and 63.31, respectively. However, using Mask R-CNN along with the ResNet101 model,
better segmentation accuracy was obtained, compared with the other three models across
all the employed datasets. However, a slightly higher mAP value was obtained using
the VGG19 model as a network backbone on the CUHK03 dataset. In general, the best
segmentation accuracy was obtained using the ResNet101 model as a network backbone by
producing a Rank-1 rate of 84.24%, 72.56%, and 80.89% on the Market-1501, CUHK03 and
P-DESTRE datasets, respectively.

Although higher results were obtained on the CUHK0 dataset using the VGG19 model
by achieving a Rank-1 rate of 70.74% and mAP of 72.24%, inferior results were obtained
on the other two datasets compared with the ResNet101 model. On the other hand, one
can see that the overall results in terms of Rank-1 rate, and mAP were further improved by
merging the advantages of the Mask R-CNN and GrabCut algorithm. However, a slightly
lower Rank-1 rate of 69.99% and mAP of 68.49% were obtained using the VGG19 model as
a network backbone on the CUHK03 dataset. Generally, the highest Rank-1 rates of 84.51%,
79.11%, and 85.67% were acquired using the ResNet101 model as a network backbone
on the Market-1501, CUHK03 and P-DESTRE datasets, respectively. However, a slightly
higher mAP value of 81.02% was acquired using the ResNet50 model on the Market-1501
dataset compared with inferior results on the other two datasets by achieving a mAP
of 63.31% and 45.65% on the CUHK03 and P-DESTRE datasets, respectively. Figure 6
shows some results of applying the proposed person’s body segmentation procedure using
Mask R-CNN (e.g., using the ResNet101 model as a network backbone) and the GrabCut
algorithm on the Market-1501dataset. Furthermore, some examples of the created attention
masks using the proposed background suppression module are shown in Figure 7. The
proposed background suppression module could effectively focus on several unique parts
of the human body and eliminated background noise interference to significantly improve
the accuracy of the subsequence steps of the proposed system.
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sion module.

4.3. Person Re-ID Module Evaluation

This section seeks to validate the automated approach of classification in finding the
person of interest based on the given query image. In this study, we examine two powerful
deep learning models, including the CNN model and the DBN model trained from scratch,
on top of the output of the proposed segmentation procedure. All experiments were carried
out on the three ReID datasets described above to finely-tune all the hyper-parameters of
each model.

4.3.1. The Evaluation of the CNN Model

In this section, a set of comprehensive experiments conducted to find the optimal
CNN model for the person Re-ID system, are presented. In these experiments, the effects of
some hyper-parameters and a set of CNN architectures were assessed to find the optimal
CNN model with optimal values of hyper-parameters to address the person Re-ID prob-
lem. Initially, the influence of the learning rate values was assessed using the AdaGrad
optimization method. Using the suggested training methodology for the CNN model,
an initial value of learning rate was set as 0.001. However, it was noticed that the CNN
model took a long time to converge during the learning process due to the value of the
learning rate being too small, and it was continuously reduced after each epoch using the
AdaGrad optimization method. Thus, an initial value of the learning rate of 0.01 was set
for all the remaining experiments. At the same time, the first number of epochs was set
as 100, and using the same training methodology, the performance of larger numbers was
also tested, including 200, 300, and 400 epochs. It was observed that if the CNN model
was trained with a larger number of epochs than 100 epochs, its performance improved
on the validation set. However, the CNN model started overfiting the training data and
its performance on the validation set started to decline when it trained 400 epochs. As a
result, the number of epochs was set as 300 epochs for all remaining experiments as the
last trained CNN model had a good generalization ability without overfitting the training
data. Table 3 shows the values of the employed hyper-parameters for the best obtained
CNN model.
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Table 3. The values of the hyper-parameters for the best obtained CNN model for addressing person
ReID problems.

Hyper-Parameters Values

No. of Conv. Layers 4
No. of Max-Pooling Layers 3

Optimization Method Adagrad
Activation Function ReLU

Momentum 0.90
Weight-decay 0.0002

Dropout 0.5
Batch Size 64

Learning Rate 0.01
Total No. of Epochs 300

In addition, image size plays an important role in the training speed and accuracy of
the CNN model. Herein, the image size was set as 64 × 64 pixels, as the quality of the image
becomes very poor for a lower image size, while a larger image size can require higher
memory requirements and higher computational costs. A zero-padding of 1 pixel was
applied only to the input layer of the proposed CNN to avoid a rapid decline in the amount
of input data. On the other hand, to prevent the proposed CNN model from overfitting the
training set, a dropout method was employed by ignoring the individual nodes within each
training iteration. The dropout probability within each iteration was set to 0.5 to reduce the
complexity of nodes co-adaptation by avoiding interdependency emerging between the
nodes. The ReLU was employed as an activation function on the top of the convolutional
and fully connected layers. The aim of the ReLU activation function was to increase the
non-linearity of the CNN model. Based on knowledge from previous works the values of
the weight decay, momentum, and batch size, were set to 0.0002, 0.9, and 64, respectively.
Table 3 illustrates hyper-parameters that were employed in the best CNN model.

As shown in Table 4, several comprehensive experiments were conducted using
various network architectures on Market-1501, CUHK03, and P-DESTRE datasets to obtain
the best CNN architecture for personal Re-ID purposes. Initially, the CNN model used
three layers with a different number of filters of each layer, such as 6, 20, and 32. The
proposed model presented poor results across all the employed datasets for the Rank-1 rate
and mAP accuracy. Afterward, the filter configuration of the third layer was duplicated
to become 64 filters instead of 32. It was observed that the Rank-1 rate and mAP were
enhanced by roughly 15%, compared with the previous setting. As a result, it was obvious
that the number of filters in each convolutional layer had a strong impact on the accuracy of
the CNN model. Thus, the number of filters within the second layer was also increased to
become 32 filters instead of 20. One can see that the overall performance of the CNN model
improved on the Market-1501 and P-DESTRE datasets. However, slightly lower values of
Rank-1 rate and mAP on the CUHK03 dataset were obtained, by achieving 72.91% and
68.98%, respectively. Furthermore, it was also noticed that the accuracy of the CNN model
was enhanced as we added more layers and increased the number of filters within the
convolutional layer. From Table 4, the overall results in terms of Rank-1 rate and mAP were
significantly improved for all adopted ReID datasets by adding a new convolutional layer
on the top of the CNN model. As shown in Figure 3, we chose the last CNN architecture
(6, 20, 64, and 128) in Table 4 as the adopted CNN architecture for recognizing a person’s
identity due to it providing the highest Rank-1 rate and mAP values for all the three
datasets. As shown in Figure 8, the performance of the best CNN model for person Re-ID
tasking on three different datasets is expressed via the CMC curves.
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Table 4. Results for several CNN models utilizing images with a 64 × 64 pixel size from three ReID
datasets. Each CNN model has 3 or 4 layers and shows the number of filters in each layer.

Network
Architecture

Market-1501 CUHK03 P-DESTRE

Rank-1 mAP Rank-1 mAP Rank-1 mAP

[6,20,32] 56.64 45.23 66.24 55.34 57.32 ± 11.1 51.67 ± 10
[6,20,64] 76.58 72.34 75.18 73.45 78.41 ± 9.5 74.98 ± 8.2
[6,32,64] 82.81 80.45 72.91 68.98 83.91 ± 7.8 79.87 ± 6.4

[6,20,32,64] 87.21 88.34 87.87 84.23 89.15 ± 6.8 81.76 ± 6.2
[6,20,64,128] 98.65 94.78 96.08 94.89 93.94 ± 5.5 92.95 ± 4.5
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4.3.2. The Evaluation of the DBN Model

The number of DBN architectures and hyper-parameters that need to be verified, such
as the number of RBMs and the number of units per RBM, the number of epochs, the
learning rate, etc., make the process of training a DBN model from scratch a challenging
and difficult task. In training process of a DBN model, the value of a particular parameter
could be affected by the values set for other hyper-parameters, which could be affected by
the values set for other hyper-parameters. Additionally, the hyper-parameter values set
in one RBM may depend on the values set in other RBMs in the stack. Consequently, the
fine-tuning process of the hyper-parameter in a DBN model is quite expensive. Herein, a
coarse search for all possible values was employed to carry out the fine-tuning procedure
to identify the optimal hyper-parameter values. Using the training methodology described
before, the DBN model was trained from scratch in a greedy manner using different
numbers of hidden units per each RBM. After the training process of a specific RBM was
finished, its weights matrix was preserved, and its activations were utilized as input to
train the following RBM in the stack.

In this work, an initial DBN model composed of three hidden layers with a different
number of hidden units (e.g., 1024-1024-1024) was greedily trained in a bottom-up fashion
to assess the different values of the hyper-parameters. The first two hidden layers (RBMs)
were trained separately in an unsupervised manner utilizing the CD learning algorithm
using one-step Gibbs sampling (CD-1). The first two hidden layers were trained for
200 epochs, a weight decay of 0.0005, a momentum of 0.91, and mini-batch size of 64. The
value of the learning rate was set to 0.001 for each RBM model, but it was noticed that
the RBMs models needed a long time to converge because the learning rate value was
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very small. Thus, the learning rate value was set as 0.01 for all the remaining experiments.
Next, the discriminative performance of the last RBM model was assessed by training it
in supervised manner as a non-linear classifier. The last RBM model was trained using
the same hyper-parameter values as the first two RBM models, with the exception that
it was trained for 300 epochs. Finally, to minimize overfitting issues and improve the
generalizability of the last trained DBN model, the complete network was trained in a top-
down fashion using the back-propagation algorithm supported by the dropout technique.
The dropout ratio was set to 0.5. The early stopping procedure was employed to determine
the number of epochs during the fine-tuning phase, which was around 500 epochs. The
values of the hyper-parameters for the best obtained DBN model are listed in Table 5.

Table 5. The values of the hyper-parameters for the best obtained DBN model for addressing person
ReID problems.

Hyper-Parameters Values

CD Learning Algorithm 1 step of Gibbs sampling
No. of Layers 3 RBMs

No. of Epochs for Each RBMs 200
Momentum 0.91

Weight-decay of 0.0005
Dropout 0.5

Batch Size 64
Learning Rate 0.01

Total No. of Epochs (BW) 500

Using the hyper-parameters shown in Table 5, different experiments were conducted
by training a DBN model composed of three layers, but with a different number of hidden
units per layer on the top of the segmented images generated from three different datasets.
As shown in Table 6, four DBNs models were trained using a different number of hidden
units per layer, ranging from 1024 to 3048 units. These models received the input image
size of 64 × 64 pixels for all datasets. The first DBN model was composed of three hidden
layers with the same number of hidden units (e.g., 1024). This DBN model presented the
lowest accuracy among the other models, in terms of Rank-1 rate and mAP on all the
employed datasets. Therefore, the number of hidden units within the second hidden layer
was increased (to become, e.g., 2024). Notably, better results were obtained compared with
the previous one, by achieving Rank-1 rates of over 80% on the Market-1501 and P-DESTRE
datasets. Another experiment was also conducted using the DBN model, composed of three
hidden layers with the number of hidden units set to 3048, 2024, and 1024, respectively.
One can see that the overall performance of the last trained DBN model was significantly
improved, by achieving the highest Rank-1 rates of 96.86%, 93.97%, and 91.81%, and mAP
of 97.85%, 92.04%, and 87.94%, on the Market-1501, CUHK03 and P-DESTRE datasets,
respectively. However, by increasing the number of the hidden units in last layer to
2024 units, it was observed that the values of the Rank-1 rate and mAP were reduced
by approximately 10% compared with the third DBN model in Table 6. Therefore, the
third DBN model was adopted in all the remaining experiments to identify the person’s
identity using the proposed ReID-DeePNet system (See Figure 4). As shown in Figure 9,
the performance of the best DBN model for person Re-ID task on three different datasets is
expressed via the CMC curves.
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Table 6. Results acquired for different DBN models using the image size of 64 × 64 pixels from three
different ReID datasets.

Network Architecture
Market-1501 CUHK03 P-DESTRE

Rank-1 mAP Rank-1 mAP Rank-1 mAP

DBN (1024-1024-1024) 65.24 56.45 53.56 55.33 58.98 ± 8.9 56.89 ± 7.6
DBN (1024-2024-1024) 81.56 80.34 71.33 63.55 80.91 ± 6.3 72.78 ± 7.5
DBN (3048-2024-1024) 96.86 97.85 93.97 92.04 91.81 ± 4.5 87.94 ± 5.5
DBN (3048-2024-2024) 84.89 85.68 83.69 80.81 83.91 ± 7.1 80.35 ± 6.7
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4.4. The Evaluation of Fusion Rules

Using the proposed ReID-DeePNet system as a personal Re-ID system each time a
query image is presented, N matching scores were generated from two different deep
learning models (CNN and DBN models). These matching scores were either fused directly
using one of matching scores rules (e.g., SR, WSR, PR, max, and min rule) or sorted in
descending order to generate the ranking list of matching identities, which was fused using
one of the ranking rules (e.g., HR, BC, and LR) to make the final decision. As can be seen
from Tables 7 and 8, that the best results were obtained using the WSR rule in the matching
score level by achieving Rank-1 rates of 99.91%, 98.92%, and 99.69%, and mAP of 99.67%,
98.34%, and 94.79%, on the Market-1501, CUHK03 and P-DESTRE datasets, respectively. In
this work, using the WSR rule, a highest weight was given to the CNN model in making
the final decision, due to its better performance compared with the performance of the
DBN model on all the employed datasets. On the other hand, the BC rule in the ranking
level achieved the highest mAP of 98.56% on the CUHK03 dataset. However, as shown in
Tables 9 and 10, the HR rule produced the highest results compared with other ranking
rules by achieving Rank-1 rates of 99.54%, 98.67%, and 94.85%, and mAP of 98.01%, 97.89%,
and 93.95%, on the Market-1501, CUHK03 and P-DESTRE datasets, respectively.
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Table 7. Rank-1 identification rate of the developed ReID-DeePNet system on three different ReID
datasets using score-level fusion.

Datasets CNN DBN
Score Fusion Methods

SR WSR PR Max Min

Market-1501 98.65 96.86 98.76 99.91 99.01 98.11 98.23
CUHK03 96.08 93.97 96.89 98.92 97.87 97.98 97.85

P-DESTRE 93.94 ± 5.5 91.81 ± 5.8 94.26 ± 5.1 94.79 ± 4.3 93.96 ± 6.7 94.14 ± 7.1 93.98 ± 7.4

Table 8. mAP of the developed ReID-DeePNet system on three different ReID datasets using score-
level fusion.

Datasets CNN DBN
Score Fusion Methods

SR WSR PR Max Min

Market-1501 94.78 97.85 98.19 99.67 97.89 98.02 98.12
CUHK03 94.89 92.04 97.34 98.34 98.01 96.34 97.01

P-DESTRE 92.95 ± 4.5 87.94 ± 5.5 93.18 ± 7.6 94.15 ± 4.4 92.89 ± 6.6 93.16 ± 6.8 93.23 ± 5.7

Table 9. Rank-1 identification rate of the developed ReID-DeePNet system on three different ReID
datasets using rank-level fusion.

Datasets CNN DBN
Rank Fusion Methods

HR BC LR

Market-1501 98.65 96.86 99.54 99.11 99.59
CUHK03 96.08 93.97 98.67 98.34 98.23

P-DESTRE 93.94 ± 5.5 91.81 ± 4.5 94.85 ± 5.2 94.15 ± 6.4 93.94 ± 7.1

Table 10. mAP of the developed ReID-DeePNet system on three different ReID datasets using
rank-level fusion.

Datasets CNN DBN
Rank Fusion Methods

HR BC LR

Market-1501 94.78 97.85 98.01 98.56 98.23
CUHK03 94.89 92.04 97.89 96.78 97.45

P-DESTRE 92.95 ± 4.5 87.94 ± 5.5 93.95 ± 4.6 93.53 ± 6.7 93.66 ± 6.6

4.5. Comparison Study and Discussion

The performance of the proposed ReID-DeePNet system was compared against other
existing state-of-the-art personal Re-ID systems. For a fair comparison, Rank-1 and mAP
values on all three datasets were reported. As shown in Table 11, the proposed ReID-
DeePNet system outperformed all state-of-the-art personal Re-ID systems in terms of
Rank-1 rates and mAP, using WSR and HR, on all the employed datasets. It is worthwhile
noting that the accuracy of the proposed ReID-DeePNet system using WSR on all three
ReID datasets, was higher than its performance using HR. Another observation was that
the accuracy of the proposed ReID-DeePNet system on the P-DESTRE dataset was lower
compared with the other datasets.

In general, the obtained results indicate that learning effective feature representations
from the detected pedestrian body can significantly reduce background clutter and improve
accuracy of the proposed ReID-DeePNet system. However, despite good preparation of
the employed ReID datasets, the accuracy of detecting pedestrians’ bodies cannot reach an
optimal level, since it depends on image contrast, pose variations, illumination changes,
occlusions, different camera settings, the location of the objects within the image, and
the effect of the overlapped objects. Thus, pedestrian detection accuracy may be further
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improved by investigating the possibility of applying many methods, such as single shot
multibox detector (SSD) [39], YOLO [40], and fast R-CNN [41] along with the GrabCut
algorithm to obtain an accurate segmentation of individuals within the image.

Table 11. Performance comparison with state-of-the-art approaches on three large-scale and challeng-
ing ReID datasets.

Methods
Market-1501 CUHK03 P-DESTRE

Rank-1 mAP Rank-1 mAP Rank-1 mAP

DPA [6] 94.14 90.31 63.04 61.73 — —
SegHAN [8] 92.3 76.1 88.3 — — —

RANGEv2 [24] 94.7 86.8 64.3 67.4 — —
HMBN (RK)[25] 95.58 94.21 84.16 82.64 — —

Siamese [28] 83.79 74.33 50.14 50.21 — —
PAP-S-PS [42] 94.6 85.6 72.5 66.8 — —

GoogLeNet [43] 81.0 63.4 85.4 — — —
HPM [44] 94.2 82.7 63.9 57.5 — —

EDAAN [45] 95.3 86.8 94.7 83.4 — —
DSA-reID [46] 95.7 87.6 78.9 75.2 — —

M3L (IBN-Net50) [47] 75.9 50.2 33.1 32.1 — —
+NFormer [48] 95.7 93.0 80.6 79.1 — —
COSAM [38] — — — — 80.2 ± 12.9 80.6 ± 11.9

GLTR [38] — — — — 81.0 ± 12.5 79.7 ± 12.0
OSNet [49] — — — — 82.9 ± 7.7 84.0 ± 7.4

Deep SORT +
OSNet [50] — — — — 77.9 ± 5.1 70.5 ± 4.8

ReID-DeePNet (WSR) 99.91 99.67 98.92 98.34 94.79 ± 4.3 94.15 ± 4.4
ReID-DeePNet (HR) 99.54 98.01 98.67 97.89 94.85 ± 5.2 93.95 ± 4.6

In this study, the processes of learning discriminative feature representations and
producing the final matching scores were jointly optimized using two powerful deep
learning models, the CNN and the DBN models. These two deep learning models were
trained from scratch, using the top of the detected pedestrian body instead of the whole raw
pedestrian image. Herein, a parallel architecture was used to combine the matching scores
acquired from the adopted models, providing a high degree of flexibility in establishing the
person’s identity. The results from the proposed ReID-DeePNet system are encouraging,
especially given that they were derived from three different ReID datasets made up of
more than 1000 IDs and a significant number of pedestrian images, which is relevant to
real-world applications. Therefore, we believe that the proposed ReID-DeePNet system
can be readily used for real-time application. Nevertheless, it should be pointed out that at
the current stage of work, the proposed ReID-DeePNet system has not yet been applied in
any real commercial application.

5. Conclusions and Future Work

In this paper, an efficient and real-time ReID-DeePNet system was proposed to match
a person across non-overlapping cameras by various viewpoints. This system combined
the Mask R-CNN followed by the GrabCut algorithm to obtain an accurate segmentation
of individuals within the image. The developed segmentation approach worked in an
automated method to obtain the person from among other objects. Afterward, a fusion
module based on CNN and DBN was also developed to extract discriminative and robust
features, thereby obtaining a correct classification. The effectiveness and robustness of the
ReID-DeePNet system was tested on three challenging ReID datasets, namely, Market-1501,
CUHK03, and P-DESTRE datasets. It produced higher results than existing state-of-the-art
personal Re-ID systems, by achieving Rank-1 rates of 99.91%, 98.92%, and 94.79%, and
mAP of 99.67%, 98.34%, and 94.15%, on the Market-1501, CUHK03 and P-DESTRE datasets,
respectively. Based on the experimental results, it is obvious that the proposed system has
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illustrated its ability to segment and identify individuals using various fusion approaches
at the score and rank levels.

The focus of future research will be on evaluating the effectiveness of the proposed
ReID-DeePNet system using more difficult ReID datasets. We are also working on ex-
panding the current background suppression module by combining person masks and key
points to match body parts accurately, eliminate undesired information (e.g., background
clutter) and achieve higher accuracy. Another important factor to investigate is the size
of deep learning models, since large trained models require more storage space, which
makes them difficult to store on small embedded devices. Therefore, models with fewer
hyper-parameters and equal or better matching accuracy should be considered.
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