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Abstract: It has become a common understanding that financial risk can spread rapidly from one
institution to another, and the stressful status of one institution may finally result in a systemic
crisis. One popular method to assess and quantify the risk of contagion is employing the co-risk
measures and risk contribution measures. It is interesting and important to understand how the un-
derlining dependence structure and magnitude of random risks jointly affect systemic risk measures.
In this paper, we mainly focus on the conditional value-at-risk, conditional expected shortfall, the delta
conditional value-at-risk, and the delta conditional expected shortfall. Existing studies mainly focus
on the situation with two random risks, and this paper makes some contributions by considering
the scenario with possibly more than two random risks. By employing the tools of stochastic order,
positive dependence concepts and arrangement monotonicity, several results concerning the usual
stochastic order, increasing convex order, dispersive order and excess wealth order are presented.
Concisely speaking, it is found that for a large enough stress level, a larger random risk tends to lead
to a more severe systemic risk. We also performed some Monte Carlo experiments as illustrations
for the theoretical findings.

Keywords: arrangement increasing; co-risk measures; Monte Carlo simulation; risk contribution
measures; stochastic orders; survival copula

MSC: 91G45; 91G70; 60E15

1. Introduction

Researchers’ interest in risk contagion or systemic risk has been rising gradually
since the financial crisis in 2007–2009. The so-called contagion risk refers to the fact
that when one or more components of the portfolio collapse, it will lead to the collapse
of other components, thus making the entire portfolio at risk. Many scholars pay attention
to the interaction of risks. For example, the essay of [1] proposed an LPPL model for market
bubbles or collapse, which aims to diagnose and describe the relationship between future
market prices and prices of IIGPS countries. Yang et al. in [2] focused on correlation change
and risk spillovers of the Chinese mainland and the London stock markets, using CoVaR
and CoES as two risk measures. Meanwhile, the paper by [3] measured the risk spillover
effect among carbon markets of some countries in China through the regular vine copula
using the CoES approach. In many recent studies regarding the risk of contagion, the
focus is put on conditional risk distributions instead of unconditional ones. Therefore,
relevant scholars have adjusted the risk measures commonly used in the financial industry
to include the impact of the interaction.

Recall that, given a risk X with distribution function F, its Value-at-Risk (VaR) at level
p (or the pth-quantile) is defined as VaRp(X) = F−1(p) = inf{x : F(x) ≥ p}, for p ∈ (0, 1).
In 1994, the J.P. Morgan investment bank first proposed to use the VaR as a measurement
of financial risk. After that, the VaR measure was soon widely adopted by banks, and
the Bank for International Settlements took it as the risk model for measuring capital
adequacy in the first pillar of Basel II in 1995. VaR measures the tail loss under normal
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market fluctuations; that is, the extreme loss under normal market fluctuations. It ex-
plains the maximum possible loss under normal market fluctuations rather than the loss
under extreme market conditions, such as war, politics and financial crisis. People grad-
ually find that VaR itself has certain limitations. First, the VaR model itself can not ac-
curately measure the future market risk because it uses historical data to predict future
losses and usually assumes that the correlation between variables remains unchanged.
However, in practice, the correlation changes and the pre-calculated results sometimes
do not agree with reality. Second, the concept of VaR does not possess subadditivity.
That is, the overall risk of a financial institution cannot be reduced by combining the
risks of its subsidiaries, which brings great trouble to the risk measurement. However,
subadditivity is very important in financial management and is one of the most important
characteristics of risk measurement. For this reason, refs. [4–6] in 2001 proposed another
market risk measure, the expected shortfall (ES), which is both subadditive and easy to
use, and then [7–9] explored the application of ES further. As a successor of VaR, ES is
defined as ESp(X) = E(X|X > VaRp(X)). If the distribution function F is continuous,
the following identity holds: for p ∈ (0, 1), ESp(X) = 1

1−p
∫ 1

p VaRt(X)dt. See [10,11] and
references therein for comprehensive overviews of risk measures of univariate risks.

Both VaR and ES play a vital role in risk management since their emergence.
However, in the past decade, people have begun to realize that the interaction among risks
within a portfolio also plays an important role in determining the measure of risk. In recent years,
the interaction between supervision and discussion of risks has been significantly strengthened
in financial risk analysis. For example, [12–14] proved consistent results for the VaR and ES
of aggregate risk. In this context, risk measures are utilized to evaluate marginal and aggregate
risks and to assess the systemic risk since the recent global financial crisis. The past three decades
have witnessed several financial crises, globally or regionally, and one important thing people
learned from these crises is that financial institutions possess strong interaction, which affects
institutions differently. The bankruptcy of some banks may lead to the bankruptcy of more
banks, while some banks have very little effect on the whole financial market. That is to say,
systemic risk should be measured more carefully and delicately.

The current financial system has various systemic risk measures, such as conditional
Value-at-Risk (CoVaR, for a formal definition, see (2)) introduced by [15,16], the conditional
expected shortfall (CoES, for a formal definition, see (3)) introduced by [3,17], the Targeted
Sparse Systemic Risk Index by [18] and so on. Basically, the existing systemic risk measures
fall into two classes: co-risk measures and risk contribution measures. Co-risk measures
take the dependence structure among isolated risks into consideration. From the viewpoint
of probability, these measures consider the conditional event that specific risks or the total risk
are under pressure. Examples include CoVaR and CoES. In parallel, risk contribution measures
quantify how a stressful situation for an institution brings forth extra risk to another or even
the whole portfolio. Examples of risk contribution measures can be found in [15,17,19,20].

To the best of our knowledge, the existing literature on co-risk measures and risk con-
tribution measures mainly focus on paired risk. For example, [17] studied the dependence
consistency that CoVaR showed when holding the marginal risks’ distributions, a more
concordant dependence structure will result in a larger CoVaR. Recently, ref. [21] extended
this finding to other risk measures such as CoES, ∆CoVaR and ∆CoES under some positive
dependence structures; they also found a more concordant dependence structure will imply
a larger CoES, ∆CoVaR and ∆CoES, respectively, when the marginal distribution possesses
some specific stochastic orders. For paired risks, the stress event of one risk will have its
own impact on another risk, and vice versa. In order to understand the risk level of paired
risks, ref. [22] studied how the magnitude of two risks and the dependence structure
between them affect the co-risk measurement and risk contribution measurements, such
as using the popular CoVaR, CoES, ∆CoVaR and ∆CoES. Usually, there are more than two
institutions in a financial market, and interaction among institutions is more complicated.
When considering the risk contagion behavior between two specific institutions, the impact
from other institutions should not be ignored. However, to the best of our knowledge,
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the existing literature has not investigated the difference between risk contagion from one
institution to another and that from the latter to the former when there are more than two
institutions in the market. When there are possibly more than two risks, are the results
of paired risk exploration in [22] are still applicable? Are there any general results?

Along the study of [22], this paper aims to further study how a marginal distribution
of risks and dependence structure affects the overall condition risk measurement and risk
contribution measurement in system risk when there are two or more risks interconnected
with each other. The concept of copula and survival copula is employed to characterize
the dependence structure among risks, combined with the arrangement monotonicity,
exchangeability and some other dependence properties. For exchangeable survival copula,
the stochastically larger marginal risk has a larger CoVaR. For asymmetric survival copula
possessing arrangement monotonicity, when the stress level is large enough, the stochas-
tically larger marginal risk is proved to attain a larger CoVaR. Similar phenomena can
be observed for CoES, ∆CoVaR and ∆CoES, where the larger random risk, in the condi-
tion of increasing convex order, dispersive order and excess wealth order, tends to have
a severe impact on the systemic risk. Our results show that when considering the risk
contagion effect inside two institutions if the dependence structure among institutions
in the whole market possesses some local property, such as symmetry of arrangement
monotonicity, the comparing relationship between the two institutions is similar to that
under the situation where the market only has two institutions.

The rest of the paper proceeds as follows: Section 2 reviews some related concepts and
technical results concerning the detailed discussions in the sequel. Section 3 presents the com-
parison results of two co-risk measures, CoVaR and CoES. The comparison results from
the two risk contribution measures, ∆CoVaR and ∆CoES, are developed in Section 4. Finally,
several Monte Carlo experiments are carried out in Section 5 to illustrate the main findings.

2. Preliminaries

Throughout this paper, we denote p = (p1, · · · , pn) ∈ (0, 1)n. For 1 ≤ i < j ≤ n, we
denote p(i; α) = (p1, · · · , pi−1, α, pi+1, · · · , pn) and

p(i, j; α, β) = (p1, · · · , pi−1, α, pi+1, · · · , pj−1, β, pj+1, · · · , pn).

Let X = (X1, X2, · · · , Xn) be a random vector, and X−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn)
be a random vector obtained by deleting the ith argument from X.

2.1. Stochastic Orders

The following stochastic orders play a key role in this study.

Definition 1. Let X and Y be two random variables with respective distribution functions FX and
FY and tail functions F̄X = 1− FX and F̄Y = 1− FY, respectively. Then, X is said to be smaller
than Y,

(i) in the usual stochastic order (denoted by X ≤st Y) if F̄(t) ≤ Ḡ(t) (or F(t) ≥ G(t)) for all
t ∈ R;

(ii) in the increasing convex order (denoted by X ≤icx Y) if
∫ ∞

t F̄X(x)dx ≤
∫ ∞

t F̄Y(x)dx, for all
t ∈ R;

(iii) in the dispersive order (denoted by X ≤disp Y) if F−1
X (p)− F−1

X (q) ≤ F−1
Y (p)− F−1

Y (q)
for all 0 ≤ q < p < 1;

(iv) in the excess wealth order (denoted by X ≤ew Y) if
∫ ∞

F−1
X (p) F̄X(x)dx ≤

∫ ∞
F−1

Y (p) F̄Y(x)dx,
for all p ∈ (0, 1).

It is well-known that (see [23]) X ≤st Y ⇒ X ≤icx Y and X ≤disp Y ⇒ X ≤ew Y,
but not the converse. Stochastic orders are widely used in the study of finance, actuarial
sciences, reliability theory and operation research, etc. For more on the properties and
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applications of stochastic orders, readers can refer to monographs [24–26]. The following
lemma will be used to derive some main results.

Theorem 1 (Theorem 2.1 of [27]). For two random variables X and Y, X ≤icx Y if and only if∫ 1

0
F−1

X (t)dΦ(t) ≤
∫ 1

0
F−1

Y (t)dΦ(t),

for any increasing convex function Φ : [0, 1] 7→ R.

The notion of distortion function, popular in the recent study of actuarial and financial
research, will also be utilized in deriving some of the main results. A distortion function
h is a non-decreasing function mapping from [0, 1] to [0, 1] that satisfies h(0) = 0 and
h(1) = 1. If h is continuous, the transformation of the tail function F̄X = 1− FX of X given
by F̄h(x) = h(F̄X(x)) = h ◦ F̄X(x) defines a new tail function associated with a certain
random variable Xh, which is said to be the h-distorted random variable induced from X.
Readers who are interested in distortion functions can refer to [28,29]. The next lemma
connects the dispersive order and distortion functions.

Lemma 1 (Lemma 14 of [21]). Let X and Y be two continuous random variables with distribution
functions F and G, respectively. Let h be a concave distortion function and let g be another distortion
function such that h(t) ≤ g(t) for all t ∈ [0, 1]. Denote by Xh and Yg the distorted random variables
induced, respectively, from X and Y, by the distortion functions h and g, respectively. If X ≤disp Y, then:

(i) F−1
Xh

(p)− F−1
X (p) ≤ F−1

Yg
(p)− F−1

Y (p), for all p ∈ (0, 1);

(ii) F−1
Xg

(p)− F−1
Xh

(p) ≤ F−1
Yg

(p)− F−1
Yh

(p), for all p ∈ (0, 1).

2.2. Copula and Dependence

Copula is a useful tool for modeling the dependence structure among random risks.

Definition 2. For X = (X1, · · · , Xn) with univariate marginal distribution functions F1, · · · , Fn,
and marginal survival functions F̄1, · · · , F̄n, if there exist some C : [0, 1]n 7→ [0, 1] and Ĉ :
[0, 1]n 7→ [0, 1] such that the joint distribution function

F(x1, · · · , xn) = C
(

F1(x1), · · · , Fn(xn)
)
,

and the joint survival function

F̄(x1, · · · , xn) = Ĉ
(

F̄1(x1), · · · , F̄n(xn)
)
,

for all xi, 1 ≤ i ≤ n, then C(u1, · · · , un) and Ĉ(u1, · · · , un) are called the copula and survival
copula of X, respectively.

For more on copulas, we refer readers to the comprehensive monograph [30].
Owing to the fact that random variable F̄i(Xi) = 1− Fi(Xi), 1 ≤ i ≤ n are uniformly
distributed over [0, 1], for p1, · · · , pn ∈ (0, 1). If the marginals are continuous, then the fol-
lowing inequality holds:

Ĉ(1− p1, 1− p2, · · · , 1− pn) = P
(
X1 > F−1

1 (p1), X2 > F−1
2 (p2), · · · , Xn > F−1

n (pn)
)
.

For ease of reference, denote

C̄(p1, p2, · · · , pn) = Ĉ(1− p1, 1− p2, · · · , 1− pn).

We will use some notions that formalize the idea of positive dependence of random vectors.
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Definition 3. For random vector X and random variable Y,

(i) X−i is said to be stochastically increasing (SI) in Xi if the conditional distribution X−i|Xi = xi
is stochastically increasing as xi increases;

(ii) X is said to be positive dependent through the stochastic order (PDS) if X−i ↑SI Xi for i =
1, · · · , n;

(iii) X is said to be weakly stochastically increasing (WSI) in Y (denoted X ↑WSI Y) if P(X1 ≥
x1, · · · , Xn > xn | Y = y) is increasing in y for all x1, · · · , xn ∈ R;

(iv) X is said to be positively dependent through the upper orthant (PDUO) if X−i ↑WSI Xi for all
i = 1, · · · , n.

The following characterization will be utilized to derive some results in the sequel.
According to [31], if the random vector X has an absolutely continuous survival copula Ĉ,
then given i = 1, · · · , n, X−i ↑WSI Xi is equivalent to

∂2Ĉ(p1, · · · , pn)

∂pi
2 ≤ 0, (1)

for any pi ∈ (0, 1), namely, Ĉ is concave in ui.
It is well-known that SI, PDS, WSI and PDUO are all notions describing positive

dependence among random variables. It is clear that for two random variables X and Y,
X ↑SI Y is equivalent to X ↑WSI Y, and a bivariate random vector (X, Y) is PDUO if and
only if it is PDS.

2.3. Co-Risk Measures

The systemic risk measure is usually utilized to quantify a financial institution’s
contribution to the risk of other financial institutions or even the entire financial system. Co-
risk measures are risk-adjusted versions of measures usually employed to assess isolated
risks. In the past decade, co-risk measures and risk contribution measures have been
increasingly used in actuarial portfolio analysis to evaluate systemic risk. One may refer
to [16,17,32] and the references therein for further applications regarding co-risk measures.

Definition 4. For a random vector X,

(i) the CoVaR of Xi at stress level pi given that Xj is under stress at level pj for 1 ≤ j 6= i ≤ n is

CoVaRp(Xi|X−i) = VaRpi

(
Xi|

⋂
1≤j 6=i≤n

{Xj ≥ VaRpj(Xj)}
)

. (2)

(ii) the CoES of Xi at stress level pi given that Xj is under stress at level pj for 1 ≤ j 6= i ≤ n is

CoESp(Xi|X−i) =
1

1− pi

∫ 1

pi

CoVaRp(i;t)(Xi|X−i)dt. (3)

2.4. Risk Contribution Measures

Apart from the co-risk measures, risk contribution measures quantify how a stress
situation for a component affects another one, even the overall financial system. For more
details on risk contribution measures and their applications, one can refer to [17,21].

Definition 5. For a random vector X,

(i) ∆CoVaR of Xi at stress level pi given that Xj is under stress at level pj for 1 ≤ j 6= i ≤ n is

∆CoVaRp(Xi|X−i) = CoVaRp(Xi|X−i)−VaRpi (Xi) (4)
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(ii) ∆CoES of Xi at stress level pi given that Xj is under stress at level pj for 1 ≤ j 6= i ≤ n is

∆CoESp(Xi|X−i) = CoESp(Xi|X−i)− ESpi (Xi). (5)

The next lemma for CoVaR is useful for deriving the main results in the sequel.

Lemma 2. For a random vector X = (X1, X2, · · · , Xn) having continuous marginal distri-
butions Fi for all i = 1, · · · , n and copula C(u1, · · · , un), which is the distribution function
of (U1, · · · , Un), then

CoVaRp(Xi|X−i) = F−1
Xi

(
F−1

Ui |
⋂

1≤j 6=i≤n{Uj≥pj}
(pi)

)
, (6)

and

FUi |
⋂

1≤j 6=i≤n{Uj≥pj}(pi) = 1− C̄(p1, · · · , pi−1, pi, pi+1, · · · , pn)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pn)
. (7)

Proof. Since (U1, · · · , Un) has the distribution function C(u1, · · · , un), which is the copula
of X, one has for pi ∈ (0, 1), i = 1, · · · , n,

1− FXi |
⋂

1≤j 6=i≤n{Xj≥VaRpj (Xj)}(xi)

= P
(
Xi ≥ xi |

⋂
1≤j 6=i≤n

{Xj ≥ VaRpj(Xj)}
)

= P
(

FXi (Xi) ≥ FXi (xi) |
⋂

1≤j 6=i≤n

{FXj(Xj) ≥ pj}
)

=
P
(⋂

1≤j 6=i≤n{FXj(Xj) ≥ pj}, FXi (Xi) ≥ FXi (xi)
)

P
(⋂

1≤j 6=i≤n{FXj(Xj) ≥ pj}
)

=
C̄(p1, · · · , pi−1, FXi (xi), pi+1, · · · , pn)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pn)

=
P(U1 ≥ p1, · · · , Ui−1 ≥ pi−1, Ui ≥ FXi (xi), Ui+1 ≥ pi+1, · · · , Un ≥ pn)

P(
⋂

1≤j 6=i≤n Uj ≥ pj)

= P(Ui ≥ FXi (xi) |
⋂

1≤j 6=i≤n

{Uj ≥ pj})

= 1− FUi |
⋂

1≤j 6=i≤n{Uj≥pj}
(

FXi (xi)
)
.

Therefore, if
xi = F−1

Xi |
⋂

1≤j 6=i≤n{Xj≥VaRpj (Xj)}
(pi),

one immediately has (6) and (7).

In order to compare the degree of risk interaction of multivariate risks, given α ∈ (0, 1),
p = (p1, · · · , pn) ∈ (0, 1)n, for β ∈ (0, 1), denote vα(p, i, j; β) and v̂α(p, i, j; β) the solutions
of equations

β = 1−
C̄
(

p1, · · · , pi−1, vα(p, i, j; β), pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
,

and

β = 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, v̂α(p, i, j; β), pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
,

respectively.
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2.5. Arrangement Monotonicity

Denote the permutation τi,j(x1, · · · , xi, · · · , xj, · · · , xn) = (x1, · · · , xj, · · · , xi, · · · , xn)
for 1 ≤ i < j ≤ n. A real function g(x) : Rn 7→ R is said to be arrangement increasing (AI)
in {i, j} such that 1 ≤ i < j ≤ n, if

(xi − xj)[g(x)− g(τi,j(x))] ≤ 0 for any xi ≤ xj. (8)

Function g is said to be arrangement decreasing (AD) in {i, j} such that 1 ≤ i < j ≤ n
if the inequality in (8) is reversed.

Arrangement monotone functions have been receiving more and more attention
from researchers in risk management and operations research. Interested readers may refer
to [33] for comprehensive properties on arrangement monotone functions.

At the end of this section, we finally recall one important lemma to be used in the sequel.

Lemma 3 (Lemma 4.7.1 in [34]). Suppose
∫ ∞

t dσ(x) ≥ 0 for all t and one not necessarily positive
measure σ(x). Then, ∫ +∞

−∞
h(x)dσ(x) ≥ 0,

whenever the integrand h(x) is nonnegative and increasing on the real line.

3. Co-Risk Measures

In this section, we discuss how the magnitude of marginal risks affects the correspond-
ing CoVaR in a portfolio. It is of interest to compare the same co-risk measure incurred by
risks of a different magnitude under the same stress levels. Specifically, we will propose
several sufficient conditions for the following inequality.

CoVaRp(i,j;α,β)(Xj|X−j) ≥ CoVaRp(i,j;β,α)(Xi|X−i). (9)

That is, for CoVaRp(i,j;α,β)(Xj|X−j), we consider the case when risk X` is under
the stress level p` for 1 ≤ ` ≤ n and ` 6= i, j, risk Xj is under the stress level α and
risk Xi is under the stress level β. As for CoVaRp(i,j;β,α)(Xi|X−i), we consider the case
similar to the previous one by exchanging the two risks Xi and Xj.

Theorem 2. For the random vector X with survival copula Ĉ(u1, · · · , un), (u1, · · · , un) ∈
(0, 1)n,

(i) if Ĉ(u1, · · · , un) is symmetric, then Xi ≤st Xj is equivalent to (9);
(ii) if Ĉ(u1, · · · , un) is AD in 1 ≤ i < j ≤ n, then Xi ≤st Xj implies (9) for

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
.

Proof. Denote the random vector (U1, · · · , Un) having survival function Ĉ(1− u1, · · · , 1− un).
Case (i): Note that Xi ≤st Xj is equivalent to

F−1
Xi

(p) ≤ F−1
Xj

(p) (10)
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for any p ∈ (0, 1). By the symmetry of Ĉ and (7), one has

FUi |
⋂

1≤k≤n,
k 6=i,j

{Uk≥pk},Uj≥α(β)

= 1−
C̄(p1, · · · , pi−1, β, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

= 1−
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, β, pj+1, · · · , pn)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)

= FUj |
⋂

1≤k≤n,
k 6=i,j

{Uk≥pk},Ui≥α(β).

Owing to (6) and (10), X1 ≤st X2 is equivalent to (9).
Case (ii): We have

CoVaRp(i,j;α,β)(Xj|X−j)−CoVaRp(i,j;β,α)(Xi|X−i) = F−1
Xj

(
v̂α(p, i, j; β)

)
− F−1

Xi

(
vα(p, i, j; β)

)
.

Due to (10), it suffices to verify that v̂α(p, i, j; β) ≥ vα(p, i, j; β). Note that the AD
property of Ĉ implies the AI property of C̄, we have

1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, v̂α(p, i, j; β), pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)

= β

= 1−
C̄
(

p1, · · · , pi−1, vα(p, i, j; β), pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, vα(p, i, j; β), pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
,

for α, β ∈ (0, 1) such that vα(p, i, j; β) ≥ α. Owing to the non-increasing property of C̄, one
has v̂α(p, i, j; β) ≥ vα(p, i, j; β). Similarly, for α and β such that v̂α(p, i, j; β) ≥ α, it holds that

1−
C̄
(

p1, · · · , pi−1, vα(p, i, j; β), pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

= β

= 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, v̂α(p, i, j; β), pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)

≤ 1−
C̄
(

p1, · · · , pi−1, v̂α(p, i, j; β), pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
,

and hence we have v̂α(p, i, j; β) ≥ vα(p, i, j; β). Note that v̂α(p, i, j; β) ≥ α and vα(p, i, j; β) ≥
α are equivalent to

β = 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, v̂α(p, i, j; β), pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)

≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
,

and
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β = 1−
C̄
(

p1, · · · , pi−1, vα(p, i, j; β), pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
,

respectively. Due to the AI property of C̄, it holds that

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn) ≥ C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn),

and hence min{v̂α(p, i, j; β), vα(p, i, j; β)} ≥ α is equivalent to

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
.

This completes the proof.

Theorem 2 shows that when random risks have an exchangeable survival copula, that
is, when their interactions are symmetric, the only factor determining the level of co-risk
measure is the marginal distribution. When the interaction among risks is monotonous,
namely, one risk may have a greater effect than another risk, both marginal distribution
and dependence structure play an important role in the level of common risk measurement.
For both types of interaction, when the stress level is large enough, a stochastically larger
marginal risk always tends to incur a larger co-risk. The symmetry property of survival
copula implies that the effect one risks on the other one is similar to the effect the latter
has on the former. Roughly speaking, the AD property of the survival copula implies that
one risk has a stronger effect on the other. Take one practical case as an example. Suppose
there are several banks in the market, if two banks have similar market shares and trade
with each other, it is natural to assume their dependence structure is symmetric. Then, by
Theorem 2, for these two banks, when the one with a larger return is under stress, the other
one with a smaller return will suffer more. That is, the one with a larger return is somehow
safer in extreme market situations.

Ref. [22] considered the effect of interaction between two random risks on the CoVaR
by using the concept of copula. They showed that when the underlining copula is symmet-
ric, AI or AD, a stochastically larger risk tends to have a bigger impact on the other risk.
Theorem 2 partially generalized the findings of [22] to a situation where two or more risks
are involved. In Section 5, we illustrate the finding of Theorem 2 through a specific random
vector with Gumbel copula.

The following theorem has a parallel discussion on the CoES. Roughly speaking, CoES
is the average value of CoVaR at pressure levels above a threshold. To be specific, we
propose some conditions sufficient to

CoESp(i,j;α,β)(Xj|X−j) ≥ CoESp(i,j;β,α)(Xi|X−i). (11)

Theorem 3. For the random vector X with survival copula Ĉ(u1, · · · , un), (u1, · · · , un) ∈
(0, 1)n, assume that X−i ↑WSI Xi and X−j ↑WSI Xj,

(i) if Ĉ(u1, · · · , un) is symmetric, then Xi ≤icx Xj implies (11);
(ii) if Ĉ(u1, · · · , un) is AD in 1 ≤ i < j ≤ n, then Xi ≤icx Xj implies (11) for

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
. (12)
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Proof. Denote the random vector (U1, · · · , Un) having survival function Ĉ(1− u1, · · · , 1−
un), and

U(i | j, α, pk, k 6= i, j) = Ui |
( ⋂

1≤k≤n,
k 6=i,j

{Uk ≥ pk}, Uj ≥ α
)
.

Since X−i ↑WSI Xi, by (1) and Lemma 2,

CoESp(i,j;β,α)(Xi|X−i)

=
1

1− β

∫ 1

β
F−1

Xi

(
F−1

U(i|j,α,pk ,k 6=i,j)(pi)

)
dpi

=
1

1− β

∫ 1

F−1
U(i|j,α,pk ,k 6=i,j)(β)

F−1
Xi

(t)d
(

1−
C̄(p1, · · · , pi−1, t, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

)
=

∫ 1

0
F−1

Xi
dAα,β(t),

where

Aα,β(t) = max
{

1−
C̄(p1, · · · , pi−1, t, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
, 0
}

is an increasing and convex distortion function. Similarly,

CoESp(i,j;α,β)(Xj|X−j) =
∫ 1

0
F−1

Xj
dÂα,β(t),

where

Âα,β(t) = max
{

1−
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, t, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
, 0
}

is also an increasing and convex distortion function.
Case (i): It follows from the symmetric property of Ĉ that Aα,β(t) = Âα,β(t) for all

α, β, t ∈ (0, 1). By Lemma 1, Xi ≤icx Xj implies that, for α, β ∈ (0, 1),

CoESp(i,j;α,β)(Xj|X−j)−CoESp(i,j;β,α)(Xi|X−i)

=
∫ 1

0
F−1

Xj
(t)dÂα,β(t)−

∫ 1

0
F−1

Xi
(t)dAα,β(t)

=
∫ 1

0
F−1

Xj
(t)dÂα,β(t)−

∫ 1

0
F−1

Xi
(t)dÂα,β(t)

≥ 0.

Case (ii): Note that the AD property of Ĉ implies the AI property of C̄. By definition,
for t ≥ vα(p, i, j; β), Aα,β(t) ≥ 0 and for t < vα(p, i, j; β), Aα,β(t) = 0. Similarly, for t ≥
v̂α(p, i, j; β), Âα,β(t) ≥ 0 and for t < v̂α(p, i, j; β), Âα,β(t) = 0. Using a similar method
to the proof of Theorem 2 (ii), for α, β ∈ (0, 1), one can show that (12) implies v̂α(p, i, j; β) ≥
vα(p, i, j; β) ≥ α, and hence, for any t ≥ min{v̂α(p, i, j; β), vα(p, i, j; β)}, the AI property
of C̄ implies that
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Aα,β(t)− Âα,β(t)

=
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, t, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)

−
C̄(p1, · · · , pi−1, t, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

≥
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, t, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

−
C̄(p1, · · · , pi−1, t, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

≥ 0.

For any t < min{v̂α(p, i, j; β), vα(p, i, j; β)}, Aα,β(t) = Âα,β(t) = 0. Moreover, Aα,β(1) =
Âα,β(1) = 1. Therefore, for u ∈ (0, 1),

∫ 1

u
d(Âα,β(t)− Aα,β(t)) = Aα,β(u)− Âα,β(u) ≥ 0.

Noting that F−1
Xj

(t) is increasing in t, from Lemma 3 it has

∫ 1

0
F−1

Xj
d(Âα,β(t)− Aα,β(t)) ≥ 0.

Then, by Lemma 1,

CoESp(i,j;α,β)(Xj|X−j)−CoESp(i,j;β,α)(Xi|X−i)

=
∫ 1

0
F−1

Xj
(t)dÂα,β(t)−

∫ 1

0
F−1

Xi
(t)dAα,β(t)

≥
∫ 1

0
F−1

Xj
(t)dAα,β(t)−

∫ 1

0
F−1

Xi
(t)dAα,β(t)

≥ 0.

This completes the proof.

It should be pointed out that when there are only two risks, by the connection be-
tween copula and survival copula, the findings in Theorem 3 reduce to those given in
Theorem 2 in [22], and hence our result generalizes the existing one by allowing more than
two random risks. Since CoES means the averaged CoVaR at stress levels above some
threshold, Theorem 3 shows that a more divergent risk may lead to a larger CoES when
the related risk is at a large enough stress level.

4. Risk Contribution Measures

In this section, we focus on the risk contribution measures. Similar to the previous
discussion on co-risk measures, we propose several sufficient conditions for the ∆CoVaR
and ∆CoES. We first consider the next inequality.

∆CoVaRp(i,j;α,β)(Xj|X−j) ≥ ∆CoVaRp(i,j;β,α)(Xi|X−i). (13)

Theorem 4. For the random vector X with survival copula Ĉ(u1, · · · , un), (u1, · · · , un) ∈
(0, 1)n, assume that X−i ↑WSI Xi and X−j ↑WSI Xj,

(i) if Ĉ(u1, · · · , un) is symmetric in 1 ≤ i < j ≤ n, then Xi ≤disp Xj implies (13) for
α, β ∈ (0, 1);
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(ii) if Ĉ(u1, · · · , un) is AD in 1 ≤ i < j ≤ n, then Xi ≤disp Xj implies (13) for

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
.

Proof. Since X−i ↑WSI Xi and X−j ↑WSI Xj, (13) is equivalent to

F−1
Xj,hα

(β)− F−1
Xj

(β) ≥ F−1
Xi,gα

(β)− F−1
Xi

(β)

where Xi,gα
and Xj,hα

are distorted versions of Xi and Xj induced by the concave distor-
tion transforms

hα(u) =
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 1− u, pj+1, · · · , pn)

C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
,

and

gα(u) =
C̄(p1, · · · , pi−1, 1− u, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

respectively. Moreover, it holds that

F−1
Xj,hα

= F−1
Xj

(1− h−1
α (1− β)) and F−1

Xi,gα
= F−1

Xi
(1− g−1

α (1− β)).

Case (i): Note that Ĉ(u1, · · · , un) is symmetric in 1 ≤ i < j ≤ n, one immediately has
hα(u) = gα(u), which leads to the desired result by Lemma 1.

Case (ii): By the definition of vα(p, i, j; β) and v̂α(p, i, j; β), it holds that

1− h−1
α (1− β) = v̂α(p, i, j; β)

and
1− g−1

α (1− β) = vα(p, i, j; β).

Moreover, according to the proof of Theorem 2(ii), for

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
,

one has v̂α(p, i, j; β) ≥ vα(p, i, j; β). Therefore, due to the monotonicity of F−1
Xi

, we have

F−1
Xj,hα

(β)− F−1
Xj

(β)

= F−1
Xj

(1− h−1
α (1− β))− F−1

Xj
(β)

= F−1
Xj

(v̂α(p, i, j; β))− F−1
Xj

(β)

≥ F−1
Xi

(v̂α(p, i, j; β))− F−1
Xi

(β)

≥ F−1
Xi

(vα(p, i, j; β))− F−1
Xi

(β)

= F−1
Xi

(1− g−1
α (1− β))− F−1

Xi
(β)

= F−1
Xi,gα

(β)− F−1
Xi

(β),

which completes the proof.

The risk contribution measure ∆CoVaRp(i,j;α,β)(Xj|X−j) quantifies the effect on Xj
brought forth by other risks X−j in the same portfolio. Theorem 4 shows that, with some
positive dependence structure, for either a symmetric or asymmetric dependence structure,
a more dispersive risk may result in a larger ∆CoVaR. The auhtors of [22] proved a similar
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result for paired random risks, which serves as a special case of Theorem 4 by setting
n = 2. It should be pointed out that [22] also provides a sufficient condition concerning
the case when the copula of two risks is AD, which corresponds to the case with an AI
survival copula.

As the final result, we consider the risk contribution measure ∆CoES and present
a sufficient condition for the inequality concerning this risk contribution measure.

∆CoESp(i,j;α,β)(Xj|X−j) ≥ ∆CoESp(i,j;β,α)(Xi|X−i) (14)

Theorem 5. For the random vector X with survival copula Ĉ(u1, · · · , un), (u1, · · · , un) ∈
(0, 1)n, assume that X−i ↑WSI Xi and X−j ↑WSI Xj,

(i) if Ĉ(u1, · · · , un) is symmetric in 1 ≤ i < j ≤ n, then Xi ≤ew Xj implies (14) for α, β ∈
(0, 1);

(ii) if Ĉ(u1, · · · , un) is AD in 1 ≤ i < j ≤ n, then Xi ≤ew Xj implies (14) for

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
.

Proof. Similar to the proof of Theorem 23 in [21], we have

∆CoESp(i,j;α,β)(Xj|X−j) =
∫ 1

0
F−1

Xj
(t)dÂα,β(t)−

∫ 1

0
F−1

Xj
(t)dB(t),

and

∆CoESp(i,j;β,α)(Xi|X−i) =
∫ 1

0
F−1

Xi
(t)dAα,β(t)−

∫ 1

0
F−1

Xi
(t)dB(t),

where

Aα,β(t) = max
{

1−
C̄(p1, · · · , pi−1, t, pi+1, · · · , pj−1, α, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
, 0
}

,

Âα,β(t) = max
{

1−
C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, t, pj+1, · · · , pn)

(1− β)C̄(p1, · · · , pi−1, α, pi+1, · · · , pj−1, 0, pj+1, · · · , pn)
, 0
}

,

and B(t) = max
{

t−β
1−β , 0

}
. Since X−i ↑WSI Xi and X−j ↑WSI Xj, it can be verified that

Aα,β ◦ B−1(t) and Âα,β ◦ B−1(t) are both convex. Then, by Theorem 22 in [21], Xi ≤ew
Xj implies

∫ 1

0
F−1

Xj
(t)dÂα,β(t)−

∫ 1

0
F−1

Xj
(t)dB(t) ≥

∫ 1

0
F−1

Xi
(t)dÂα,β(t)−

∫ 1

0
F−1

Xi
(t)dB(t). (15)

Case (i): The symmetry of Ĉ implies that Aα,β(t) = Âα,β(t) for all t ∈ (0, 1), and hence
the conclusion follows from (15).

Case (ii): When

β ≥ 1−
C̄
(

p1, · · · , pi−1, α, pi+1, · · · , pj−1, α, pj+1, · · · , pn
)

C̄(p1, · · · , pi−1, 0, pi+1, · · · , pj−1, α, pj+1, · · · , pn)
,

as shown in the proof of Theorem 3(ii), Âα,β(t) ≤ Aα,β(t) for all t ∈ (0, 1). Thus,

∫ 1

0
F−1

Xi
(t)dÂα,β(t)−

∫ 1

0
F−1

Xi
(t)dB(t) ≥

∫ 1

0
F−1

Xi
(t)dAα,β(t)−

∫ 1

0
F−1

Xi
(t)dB(t).

Then the desired result directly follows from (15).
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In short, CoES is the average of CoVaR. Similarly, the properties of ∆CoES can be
inherited from the properties of ∆CoVaR. Theorem 5 also provides a case in which a greater
risk in the sense of excess wealth order leads to a larger ∆CoES.

For the situation with a random risk pair (X, Y), ref. [22] proven in Theorem 4, that
when the underlining copula between the two random risks is PDS, the excess wealth
ordering between two risks implies a inequality between the two corresponding ∆CoES.
Note that PDS is equivalent to WSI for a bivariate random vector and is strictly stronger
than WSI for a random vector with three or more dimensions. Therefore, Theorem 5 serves
as a generalization of the finding in [22].

5. Simulations

In general, the co-risk measures and risk contribution measures investigated in the pre-
vious sections have no closed forms. We adopt several Monte Carlo experiments to further
illustrate our findings. For more on Monte Carlo simulation, one may refer to [35,36].
For the sake of calculation efficiency, we will consider the case with three random risks.
We will employ a similar methodology as in [22] to use the sample version of co-risk mea-
sures and risk contribution measures based on simulated observations. To obtain a sample
of observations of the concerned risks, Lemma 2 plays a vital role.

The bivariate Gumbel copula is used

C̃(u1, u2; θ) = exp
{
− ((− log u1)

θ + (− log u2)
θ)1/θ

}
.

As per (5.43) of [37], the following modification of the bivariate Gumbel copula
C̃(u1, u2; θ0) produces an asymmetric copula

Ĉ(u1, u2, u3; θ) = u1−θ1
1 u1−θ2

2 u3C̃
(
uθ1

1 , uθ2
2 ; θ0

)
,

where 0 ≤ θ1 6= θ2 ≤ 1, θ0 ≥ 1, θ = (θ0, θ1, θ2) represents the dependence parameter
and asymmetric parameters. Consider the trivariate random vector X = (X1, X2, X3) with
survival copula Ĉ(u1, u2, u3; θ); the corresponding C̄ is given by

C̄(u1, u2, u3; θ)

= Ĉ(1− u1, 1− u2, 1− u3; θ)

= (1− u1)
1−θ1(1− u2)

1−θ2(1− u3)C̃
(
(1− u1)

θ1 , (1− u2)
θ2 ; θ0

)
.

For θ1 ≥ θ2, one can verify that Ĉ(u1, u2, u3; θ) is AD in {1, 2}. Moreover, note that
∂2C̃

(
u1, u2; θ0

)
/∂u2

1 ≤ 0, one has

∂2Ĉ(u1, u2, u3; θ)

∂u2
1

sgn
= −(1− θ1)u

−θ1
1 C̃

(
uθ1

1 , uθ2
2 ; θ0

)
+ (1− θ1)

∂C̃
(
uθ1

1 , uθ2
2 ; θ0

)
∂u1

+ θ1uθ1
1

∂2C̃
(
uθ1

1 , uθ2
2 ; θ0

)
∂u1

≤ −(1− θ1)u
−θ1
1 C̃

(
uθ1

1 , uθ2
2 ; θ0

)
+ (1− θ1)C̃′

(
uθ1

1 , uθ2
2 ; θ0

)
sgn
=

(
(− log uθ1

1 )θ0 + (− log uθ2
2 )θ0

)1/θ0−1
(− log uθ1

1 )θ0−1 − 1

=

(
(− log uθ1

1 )θ0

(− log uθ1
1 )θ0 + (− log uθ2

2 )θ0

)1−1/θ0

− 1

≤ 0,

and similarly, ∂2Ĉ(u1,u2,u3;θ)
∂u2

2
≤ 0. Therefore, (X2, X3) ↑WSI X1 and (X1, X3) ↑WSI X2.

Note that if we directly calculate the sample of risks after a given joint distribution
and estimate the overall CoVaR and other risk measures, there will be few appropriate
observations when the pressure level of any risk is close to 1 (namely, extreme level, which
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is usually the focus of risk management). If there are not enough suitable observations,
the estimated value may differ greatly from the real value. Therefore, we do not directly
draw results from the three observed risks. On the contrary, we first obtain the random
samples of the binary marginal (U2, U3), and then respectively generate observations
from conditional random variables U1 | U2 > α, U3 > γ, where (U1, U2, U3) has joint
survival function Ĉ(1− u1, 1− u2, 1− u3), Ĉ is the survival copula of the random vector
(X1, X2, X3) and α is the given stress level of U2, γ is the fixed stress level of U3. Lemma 2
guarantees the validity of this approach.

The simulation is carried out according to the following steps. In all simulation
experiments, we set θ0 = 2, θ1 = 0.6, θ2 = 0.2 and γ = 0.6.

• For each stress level α = 1
101 , · · · , 100

101 a sample of 104 observations vi;1,α of (U1|U2 ≥
α, U3 ≥ γ) and a sample of 104 observations vi;2,α of (U2|U1 ≥ α, U3 ≥ γ), i =
1, · · · , 104 are generated.

• For α = 1
101 , · · · , 100

101 , based on vi;1,α and vi;2,α calculate the adjusted empirical distri-
bution functions, respectively,

F̂1(t) =
1

104 + 1

104

∑
i=1

I(vi;1,α ≤ t) and F̂2(t) =
1

104 + 1

104

∑
i=1

I(vi;2,α ≤ t).

• Denote at each stress level α = 1
101 , · · · , 100

101 , for each stress level β = 1
101 , · · · , 100

101
utilize the sample βth quantiles

ĈoVaR(β,α,γ)(X1|X2, X3) = F−1
X1

(
inf{t : F̂1(t) ≥ β}

)
and

ĈoVaR(α,β,γ)(X2|X1, X3) = F−1
X2

(
inf{t : F̂2(t) ≥ β}

)
to estimate the risk measures CoVaR(β,α,γ)(X1|X2, X3) and CoVaR(α,β,γ)(X2|X1, X3),
respectively. Further, calculate the sample version

ĈoES(β,α,γ)(X1|X2, X3) =
1

(1 + 104)(1− β)

104

∑
i=1

I
(

F−1
X1

(vi;1,α) > ĈoVaR(β,α,γ)(X1|X2, X3)
)

,

ĈoES(α,β,γ)(X2|X1, X3) =
1

(1 + 104)(1− β)

104

∑
i=1

I
(

F−1
X2

(vi;2,α) > ĈoVaR(α,β,γ)(X2|X1, X3)
)

,

for CoES(β,α,γ)(X1|X2, X3) and CoES(α,β,γ)(X2|X1, X3), respectively.
• The following empirical estimators are used for ∆CoVaR and ∆CoES, respectively.

∆ĈoVaR(β,α,γ)(X1|X2, X3) = ĈoVaR(β,α,γ)(X1|X2, X3)−VaRβ(X1),

̂∆CoVaR(α,β,γ)(X2|X1, X3) = ĈoVaR(α,β,γ)(X2|X1, X3)−VaRβ(X2),

∆̂CoES(β,α,γ)(X1|X2, X3) = ĈoES(β,α,γ)(X1|X2, X3)− ESβ(X1),

∆̂CoES(α,β,γ)(X2|X1, X3) = ĈoES(α,β,γ)(X2|X1, X3)− ESβ(X2).

In particular, so as to reduce the approximation error, we only use the population
version for the marginal VaR and ES when deriving these estimators.

In what follows, we apply four cases with different combinations of marginal distribu-
tions. Denote βα = 1− C̄(α,α,γ)

C̄(0,α,γ) for all α ∈ (0, 1).

1. For X1 ∼ ε(1.2), X2 ∼ ε(1), X3 ∼ ε(3), three exponentially distributed random risks,
by the definition of the usual stochastic order, it is plain that when X1 ≤st X2 we have

CoVaR(α,β,γ)(X2|X1, X3) ≥ CoVaR(β,α,γ)(X1|X2, X3)
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for all β ≥ βα. Figure 1a plots the difference

ĈoVaR(α,β,γ)(X2|X1, X3)− ĈoVaR(β,α,γ)(X1|X2, X3).

As can be seen, the difference is positive for all β ≥ βα, confirming the theoretical
finding. Moreover, for some β < βα, the difference may still be positive.

2. For X1 ∼ N (0, 1), X2 ∼ N (0, 2), X3 ∼ N (0, 3), there are three normal distributed
random risks, according to Table 1.1 of [38], one has X1 ≤icx X2. By the second
assertion of Theorem 3, for β ≥ βα,

CoES(α,β,γ)(X2|X1, X3) ≥ CoES(β,α,γ)(X1|X2, X3).

Figure 1b shows the difference ĈoES(α,β,γ)(X2|X1, X3) ≥ ĈoES(β,α,γ)(X1|X2, X3), which
is positive for β ≥ βα and for some β < βα.

3. For X1 ∼ W(1, 1), X2 ∼ W(1.5, 1), X3 ∼ W(2, 1), three Weibull-distributed random
risks (The density function of a Weibull-distributed random variableW(a, b) is given
by (b/a)(x/a)b−1 exp(−(x/a)b), where a is the scale parameter, and b is the shape
parameter.), as shown in Example 16 of [21], X1 ≤disp X2. Figure 1c plots the difference
̂∆CoVaR(α,β,γ)(X2|X1, X3)− ̂∆CoVaR(β,α,γ)(X1|X2, X3), and the graph also confirms

our findings.
4. For X1 ∼ W(1, 2), X2 ∼ W(1, 1), X3 ∼ W(1, 3), three Weibull-distributed random

risks, we have X1 ≤ew X2 by Example 24 of [21]. Figure 1d plots the difference
∆̂CoES(α,β,γ)(X2|X1, X3)− ∆̂CoES(β,α,γ)(X1|X2, X3) and illustrates Theorem 5.

The theoretical findings show that when the underlined dependence structure of the risk
portfolio possesses arrangement monotonicity with respect to two random risks, the impact
of the stress scenario with the larger marginal risk on the smaller risk is more significant than that
of the latter on the former. However, the magnitude of the difference seems to vary significantly,
depending on the marginal distributions. In some extreme cases, for example, when the stress
levels are both close to 1, the difference may be relatively large. Therefore, in the practice of risk
management, simply focusing on the marginal risks and ignoring their dependence structure
may lead to an underestimation of the systemic risk level.

(a) (b)

Figure 1. Cont.
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(c) (d)

Figure 1. Difference surfaces (red), z = 0 (blue) and β = 1 − C̄(α,α,γ)
C̄(0,α,γ) (green). (a) ĈoVaR(α,β,γ)

(X2|X1, X3) − ĈoVaR(β,α,γ)(X1|X2, X3); (b) ĈoES(α,β,γ)(X2|X1, X3) − ĈoES(β,α,γ)(X1|X2, X3);

(c) ̂∆CoVaR(α,β,γ)(X2|X1, X3) − ̂∆CoVaR(β,α,γ)(X1|X2, X3); (d) ∆̂CoES(α,β,γ)(X2|X1, X3) −
∆̂CoES(β,α,γ)(X1|X2, X3).

6. Concluding Remarks

By capturing the dependence, the co-risk measures and risk contribution measures in-
tuitively reflect the interaction among grouped risks. By extending the comparing results
of paired risks [22], this study showed that the potential dependency structure plays a crucial
role in determining the risk interaction level of marginal risk between any two risks when there
is an arbitrary number of risks. Specifically, when the stress level is high enough, regardless
of if the dependence structure is symmetric or arrangement monotonic, a stochastically larger
marginal risk will lead to larger CoVaR, CoES, ∆CoVaR and ∆CoES, respectively. Moreover, the
interaction between two random risks in the case with multiple risks is somewhat surprisingly
similar to that obtained in the case with only two random risks.

In their study [39] on measures of risk contagion, Ortega-Jiménez et al. provided a real
data example of risk contagion in the Spanish banking sector. It was shown that the asset
log returns of Santander bank, the BBVA and Bankinter from June 2015 until June 2019
possess some symmetry dependence structure. Moreover, the asset log returns of BBVA is
larger than that of Bankinter in the sense of increasing convex order. Stemming from their
example, according to Theorem 3, by using the CoES, we can conclude that more risk stress
spread to Bankinter from BBVA than that spread to BBVA from Bankinter. In [16], Tobias
and Brunnermeier pointed out that ∆CoVaR can be applied to detect which institution is
the most at risk should a financial crisis occur. Along with this finding, Theorem 4 further
provides some situations where ∆CoVaR of two specific institutions is comparable when
the whole market has more than two.

Our results show that there are potential differences between the interaction levels
of marginal risk in multiple risk portfolios. However, there are a few things to be explored:
how to calculate the concrete difference between two systemic risks, at least for some
specific dependence structure and marginal distribution? Whether there exist cases when
a larger random risk results in a smaller systemic risk (As discussed in [40], a bank may
not be too big to bankrupt)? What if the underlining dependence structure is neither
symmetric nor arrangement monotonic, maybe some asymmetric concepts defined in [41]?
The answers to these questions can provide more guidance for the application of common
risk measurement and risk contribution measurement in risk management practice and
they definitely deserve future study. As pointed out by one reviewer, most of the time, risk
comes along with return. It is also interesting to take into consideration financial risk and
return simultaneously when studying systemic risk.
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