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Abstract: We herein mainly employ a proper orthogonal decomposition (POD) to study the reduced
dimension of unknown solution coefficient vectors in the Crank–Nicolson finite element (FE) (CNFE)
method for the symmetric tempered fractional diffusion equation so that we can build the reduced-
dimension recursive CNFE (RDRCNFE) method. In this case, the RDRCNFE method keeps the same
basic functions and accuracy as the CNFE method. Especially, we adopt the matrix analysis to discuss
the stability and convergence of RDRCNFE solutions, resulting in the very laconic theoretical analysis.
We also use some numerical simulations to confirm the correctness of theoretical results.
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1. Introduction

The fractional partial differential equations (PDEs) are of significant physical meaning
and can be used to depict many natural phenomena. In addition, the fractional PDEs
frequently come out in biology and economics, too. Thereby, the fractional PDEs have
been attracting a lot of attention. For instance, Ding [1] established a high-order finite
difference (FD) numerical scheme for a two-dimensional (2D) time-space tempered frac-
tional diffusion-wave equation. Du et al. [2] addressed a high-order FD algorithm for the
fractional diffusion wave equation with the Caputo fractional derivative. Li and Ding [3]
also posed the higher order FD scheme for the reaction and anomalous diffusion equation.
Xing and Wen [4] developed a fourth-order FD algorithm for the 2D space-fractional diffu-
sion equations. Zhou et al. [5,6] also built some FD schemes for space fractional diffusion
equations. Luo and Wang [7] established a reduced-order FD scheme for the fractional-
order parabolic-type sine-Gordon equations, and Zhou and Luo [8] founded an optimized
FD algorithm for the fractional-order parabolic-type sine-Gordon equations. Especially,
Çelik and Duman [9] constructed the Crank–Nicolson finite element (FE) (CNFE) method
with the unconditionally stable second-order time accuracy for the symmetric tempered
fractional diffusion equation (STFDE), which is one of the most effective FE numerical
methods.

Herein, we mainly study the reduced-dimension of unknown solution coefficient
vectors to the CNFE method of the following STFDE in [9].

Problem 1. Seek v : Ω× J → R that satisfies
∂tv(x, t) + ∂

θ,γ
|x| v(x, t) = ρ(x, t), x ∈ Ω, t ∈ J,

v(0, t) = v(l, t) = 0, t ∈ J̄,

v(x, 0) = v0(x), x∈Ω̄,

(1)
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in which Ω = (0, l), l > 0 is a real numer, J = (0, T), T is the time upper limit, ∂t = ∂/∂t,
1 < θ < 2, γ > 0, ρ(x, t) and v0(x) are the known source and initial functions, respectively,
∂

θ,γ
|x| v(x, t) is defined as follows

∂
θ,γ
|x| v(x, t) =

−1
2 cos(θπ/2)

[Dθ,γ
+ v(x, t) + Dθ,γ

− v(x, t)− 2γθv(x, t)],

Dθ,γ
+ v(x, t) =

e−γx

Γ(n− θ)

dn

dxn

∫ x

−∞
(x− ξ)n−θ−1eγξ v(ξ, t)dξ,

Dθ,γ
− v(x, t) =

(−1)neγx

Γ(n− θ)

dn

dxn

∫ x

−∞
(ξ − x)n−θ−1e−γξv(ξ, t)dξ,

Γ(θ) =
∫ ∞

0
xθ−1e−xdx, n = [θ] + 1,

and [θ] is the integer part for θ.

Although the CNFE method with the second-order time accuracy in [9] is one of
the most effective numerical methods, when the partition on the region Ω̄ is sufficiently
refined, it also includes lots of unknowns, which would bring many difficulties in practical
application. Hence, a key task is to reduce the unknowns of the CNFE method so as to
lessen CPU runtime and rounding error amassing, and to mitigate the calculated load in
the calculated process.

A lot of numerical simulations (see [4,10–26]) have shown that the POD method is
one of the most effective approaches to reduce the unknowns of numerical models. It
has played an important role in the order reduction of numerical models, such as the FD
scheme, the Galerkin method, the FE method, the finite volume element (FVE) method, and
the reduced basis (RB) method for time-space integer order derivative PDEs (see [4,10–26]).
However, the above reduced-order FE, FVE, and RB methods all lower the dimension of
subspaces of approximate solutions by the POD technique.

Unfortunately, at the moment, the POD technique has not been used to reduce the
dimension of unknown solution coefficient vectors to the CNFE method of STFDE with the
spatial fractional-order derivative. Hence, we herein adopt the POD technique to lower
the dimension of unknown CNFE solution coefficient vectors of STFDE so as to build the
reduced-dimension recursive CNFE (RDRCNFE) method with very few unknowns.

It is worth noting that the RDRCNFE method is absolutely different from the existed
reduced-order FE and CNFE methods or the reduced-order FVE and RB methods both
theoretically and technically, and the RDRCNFE method has at least the following two
aspects of advantages.

Firstly, the existed reduced-order FE and CNFE methods or the reduced-order FVE and
RB methods were built by replacing the finite dimensional subspaces with the subspaces
spanned by the continuous POD basic functions, where their accuracy is impacted by the
reduction order; unlike those, the RDRCNFE method is established by using the POD
technique to lower the dimension of unknown solution coefficient vectors after the basic
functions in the CNFE method are absorbed into the stiffness matrix, so that the RDRCNFE
method possesses the same FE subspace and accuracy as the CNFE method. Although
the unknowns of the RDRCNFE method are greatly reduced, the FE basis functions of the
RDRCNFE method remain unchanged so that the accuracy of the RDRCNFE method is
unchanged and maintains the same as that of the CNFE method. More specifically, if we
assume that the finite dimensional subspace in the FE and CNFE methods or the FVE and
RB methods is as follows

Wh = span
{

ζ j(x) : 1 6 j 6 M
}

,
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where
{

ζ j(x)
}M

j=1 is the set of basis functions, then the classical solution ωn
h in the FE and

CNFE methods or the FVE, CS, and RB methods should be expressed as

ωn
h = ζ1(x)zn

1 + ζ2(x)zn
2 + · · ·+ ζM(x)zn

M

= (ζ1(x), ζ2(x), · · · , ζM(x)) · (zn
1 , zn

2 , · · · , zn
M) ∈Wh, 1 6 n 6 N.

Then, the existed reduced-order FE and CNFE methods or the reduced-order FVE and
RB methods are to lower the dimension of Wh, namely the dimension of basis function
vector (ζ1(x), ζ2(x), · · · , ζM(x)); in other words, the subspace Wh is replaced with the d-
dimensional subspace Wd =span{ϕ1, ϕ2, · · · , ϕd} generated by the main fewer d (usually
d = 5∼7) POD basis ϕ1, ϕ2, · · · , ϕd. In addition, the classical solutions ωn

h = ζ1(x)zn
1 +

ζ2(x)zn
2 + · · ·+ ζM(x)zn

M are approximated with ωn
d = ϕ1βn

1 + ϕ2βn
2 + · · ·+ ϕdβn

d , where
βi (1 6 i 6 d) are unknowns. Whereas, the RDRCNFE method herein is to lower the
dimension of unknown solution coefficient vectors (zn

1 , zn
2 , · · · , zn

M) (1 6 n 6 N), namely
the classical solutions ωn

h = (ζ1(x), ζ2(x), · · · , ζM(x)) · (zn
1 , zn

2 , · · · , zn
M) are approximated

with the linear combination vn
d = (ζ1(x), ζ2(x), · · · , ζM(x)) · [ΨM×d(bn

1 , bn
2 , · · · , bn

d )]
T
M×1

of the POD basis vectors ΨM×d generated by the first few solution coefficient vectors
(zn

1 , zn
2 , · · · , zn

M) (1 6 n 6 L � N), where bi (1 6 i 6 d) are unknowns. Thus, the FE
basis functions in the RDRCNFE solutions vn

d are unchanged and are still
{

ζ j(x)
}M

j=1
so that the RDRCNFE solutions vn

d have the same accuracy as the classical solutions
ωn

h . Therefore, the reduced dimension of unknown solution coefficient vectors herein is
completely different from the existed reduced dimension of finite dimensional subspace,
i.e., basis function vector.

Secondly, we adopt the matrix analysis to analyze the stability and convergence of
RDRCNFE solutions, resulting in the very laconic and readily understood theory method,
but the stability and convergence of the existed reduced-order FE and CNFE solutions are
discussed by functional analysis so that their theory methods are abstract and complicated.
Thereby, the RDRCNFE method is completely new.

Although the reduced-order methods of the unknown solution coefficient vectors for
the hyperbolic, parabolic, Sobolev, viscoelastic wave, and unsteady Stokes equations with
time-space integer order derivatives have been built in [27–31], respectively, the STFDE
with the spatial fractional-order derivative herein is more complicated than the above five
types of equations, so that both the structure for the RDRCNFE model and the theoretical
analysis of existence, stability, and errors for the RDRCNFE solutions need more techniques
and have more difficulties than those in [27–31]. However, the RDRCNFE method for the
STFDE with the spatial fractional order derivative has very important applications.

The rest of the content herein is arranged in the following four sections. In Section 2,
we retrospect the CNFE method of STFDE in [9] and the associated theoretical results such
as the existence as well as the stability together with the error estimates for the CNFE
solutions, and the most key step is to rewrite the CNFE format of functional form into the
matrix form. In Section 3, we first build the RDRCNFE method with a set of POD basic
vectors generated by the initial several CNFE solution coefficient vectors, and then, we
employ the matrix analysis to analyze the stability together with the convergence of the
RDRCNFE solutions. In Section 4, we utilize some numerical simulations to confirm the
rightness of theory results so as to reveal the superiority of the RDRCNFE method. We
provide the main conclusions and discussion in Section 5.

2. Retrospect the CNFE Method for STFDE and Rewrite Matrix-Form
2.1. Retrospect the CNFE Method for STFDE

Herein, the integer and fractional order Sobolev spaces (see [32]) are simultane-
ously adopted.
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For θ > 0 and γ > 0, set

Hθ,γ(R) = {v ∈ L2(R) :
(

γ2 + ω2
)θ/2

v̂ ∈ L2(R)},

endowed with norm
‖v‖Hθ,γ(R) = ‖(γ

2 + ω2)θ/2v̂‖L2(R),

where v̂ is Fourier’s transformation of the function v, and ω is the variable in Fourier’s trans-
formation.

Let W = H1(0, T; H
θ
2 ,γ
0 (Ω)), Hθ,γ

0 (Ω) =
{

v ∈ Hθ,γ(Ω) : v|∂Ω = 0
}

, and Hθ,γ(Ω)
consist of the restrictions in Ω = (0, l) of functions in the space Hθ,γ(R). Thereupon,
with integration by parts, the weak form for STFDE is established in the following.

Problem 2. Seek u ∈W that satisfies

(vt, υ) + a(v, υ) = (ρ, υ), ∀υ ∈ H
θ
2 ,γ
0 (Ω), (2)

in which (·, ·) indicates the inner product in L2(Ω), a(v, υ) = Cθ [2(v, υ)− (D
θ
2 ,γ
+ v, D

θ
2 ,γ
− υ)−

(D
θ
2 ,γ
− v, D

θ
2 ,γ
+ υ)], Cθ = −1/(2 cos(θπ/2)), and v(x, 0) = v0(x) (x ∈ Ω̄).

Noting that a(·, ·) is not coercive in H
θ
2 ,γ
0 (Ω) as mentioned in [9], it is necessary to

make Problem 1 into coerciveness so that it is uniquely solvable in H
θ
2 ,γ
0 (Ω). Thereby,

by setting v(x, t) = eκtU(x, t) (κ > 0) we can change Problem 1 into the following system
of equations with respect to the unknown function U.

∂tU(x, t) + ∂
θ,γ,κ
|x| U(x, t) = η(x, t), x ∈ Ω, t ∈ J,

U(0, t) = U(l, t) = 0, t ∈ J̄,

U(x, 0) = v0(x), x∈Ω̄,

(3)

where ∂
θ,γ,κ
|x| U(x, t) = ∂

θ,γ
|x|U(x, t) + κU(x, t) and η(x, t) = e−κtρ(x, t).

Thereupon, with integration by parts, the weak form for the system of Equations (3) is
built as follows.

Problem 3. Seek U ∈W that satisfies

(Ut, υ) + aκ(U, υ) = (η, υ), ∀υ ∈ H
θ
2 ,γ
0 (Ω), (4)

U(x, 0) = v0(x), x ∈ Ω̄, (5)

where aκ(U, υ) = 2Cθ(U, υ) +κ(U, υ) −Cθ(D
θ
2 ,γ
+ U, D

θ
2 ,γ
− υ) −Cθ(D

θ
2 ,γ
− U, D

θ
2 ,γ
+ υ), and Cθ =

−1/(2 cos(θπ/2)).

The following result has proven in ([9], Lemma 3.3 and Theorems 4.3–4.5).

Theorem 1. When v0(x) ∈ H
θ
2 ,γ
0 (Ω) and ρ(x, t) ∈ L2(0, T; L2(Ω)), the bilinear functional

aκ(·, ·) is coercive and continuous in H
θ
2 ,γ
0 (Ω) such that Problem 3 has a unique weak solution

U ∈W.

Let =h be the regular subdivision onto Ω̄ = [0, l] such that Ω̄ = {∪K : K ∈ =h} and
h = maxK∈=h

{max |x1 − x2| : x1, x2 ∈ K}. The FE subspace is defined as:
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Wh = {υh ∈ H
θ
2 ,γ
0 (Ω) ∩ C(Ω) : υh|K ∈ Pm(K), K ∈ =h}

= span
{

ζ j(x) : 1 6 j 6 M− 1
}

, (6)

where Pm(K) consists of the mth-degree polynomials on K ∈ =h, and
{

ζ j(x)
}M−1

j=1 is a

set of orthonormal bases under the inner product in L2(Ω) and may be obtained by the
orthogonalization in ([32], Section 6.3 of Chapter 1).

For positive integer N > 0, let τ = T/N, Un
h be the CNFE solutions for Problem 3

at tn = nτ (0 6 n 6 N), ∂̄Un
h = (Un

h − Un−1
h )/τ, Ūn

h = (Un
h + Un−1

h )/2, and ηn− 1
2 =

η(x, tn− 1
2
). Thereupon, the CNFE model of Problem 3 is built as the following

functional form.

Problem 4. Seek Un
h ∈Wh (1 6 n 6 N) that satisfies

(Un
h , υh) + τaκ(Ūn

h , υh) = (Un−1
h , υh) + τ(ηn− 1

2 , υh), ∀υh ∈Wh, 1 6 n 6 N, (7)

U0
h(x) = Πhv0(x), x ∈ Ω̄, (8)

in which Πh : H
θ
2 ,γ
0 (Ω)→Wh is an interpolation operator.

The following result of the existence as well as the stability together with the error
estimations for the CNFE solutions to Problem 4 was proved in ([9], Theorems 5.1 and 5.3
and Corollary 5.4).

Theorem 2. Problem 4 has a unique set of unconditionally stabilized CNFE solutions {Un
h }

N
n=1 ⊂

Wh. When the solution U to Problem 3 is sufficiently smooth, the CNFE solutions Un
h have the

following error estimations

‖U(tn)−Un
h ‖0 6 σ

(
τ2 + hm+1

)
, n = 1, 2, ..., N. (9)

where ‖ · ‖0 is the norm in L2(Ω) and σ represents a usually positive constant independent of τ
and h, which may be unequal at different places. Furthermore, the CNFE solutions vn

h = eκtn Un
h

(n = 1, 2, ..., N) are also uniquely existing and unconditionally stabilized, and they have the
following error estimations

‖v(tn)−vn
h‖0 6 σ

(
τ2 + hm+1

)
, n = 1, 2, ..., N. (10)

2.2. Rewrite the CNFE Functional Form into Matrix Form

With the orthonormal bases
{

ζ j(x)
}M−1

j=1 , the CNFE solutions to Problem 4 can be
denoted by the following vector form:

Un
h =

M−1

∑
j=1

zn
j ζ j(x) = Υn · ζ, n = 1, 2, ..., N,

where Υn = (zn
1 , zn

2 , ..., zn
M−1)

T and ζ = (ζ1(x), ζ2(x), ..., ζM−1(x))T . Thereupon, Problem 4
can be rewritten as the following matrix form.
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Problem 5. Seek Υn ∈ RM−1, Un
h ∈Wh, and vn

h ∈Wh (1 6 n 6 N) that meet(
I +

τ

2
D
)

Υn =
(

I − τ

2
D
)

Υn−1 + τFn− 1
2 , n = 1, 2, ..., N, (11)

Un
h =

M−1

∑
j=1

zn
j ζ j(x) = Υn · ζ, vn

h = eκtn Un
h , n = 1, 2, ..., N, (12)

where the matrix D = (aκ(ζi, ζ j))(M−1)×(M−1) is symmetrical positive definite owing to the
coerciveness of aκ(·, ·), I is an (M− 1)× (M− 1) identity matrix, Υ0 = (v0(x1), v0(x2), ...,
v0(xM−1))

T , xj’s are the inner nodes in =h, and Fn− 1
2 = ((ηn− 1

2 , ζ1), (ηn− 1
2 , ζ2),

..., (ηn− 1
2 , ζM−1))

T .

Remark 1. When the FEs in =h need to be sufficiently refined, there will be many unknowns in
Problem 5, resulting in that the rounding errors are accumulated rapidly in the calculation process
and the CNFE solutions appear to have a large deviation. Hence, it is necessary to adopt the POD
technique to lower the dimension of unknown solution coefficient vectors Υn in Problem 5.

3. The RDRCNFE Method for STFDE
3.1. Structure of POD Basic Vectors

We first seek the initial L solution coefficient vectors Υn (n = 1, 2, ..., L) of Problem 5
to make up the matrix E =

(
Υ1, Υ2, ..., ΥL)

(M−1)×L and calculate the positive eigenvalues
χj > 0 (j = 1, 2, · · · , κ = rank(E)) (degressively sequenced) and the relative orthonormal
eigenvectors Ψ̃ = (φ1, φ2, · · · , φκ) ∈ RM×κ of EET . Thus, a set of POD bases Ψ =
(φ1, φ2, · · · , φd), consisting of the initial d vectors in Ψ̃, has the following property (see [4]):

‖E−ΨΨTE‖2,2 =
√

χd+1, d 6 κ, (13)

where ‖E‖2,2 = supy 6=0 ‖Ey‖/‖y‖ and ‖y‖ are the Euclidian norm of vector y. Thereupon,
we obtain

‖Υn −ΨΨTΥn‖ = ‖(E−ΨΨTE)en‖ 6 ‖E−ΨΨTE‖2,2‖en‖ 6 √χd+1, 1 6 n 6 L, (14)

in which en (1 6 n 6 L) represents the identity vectors with the nth component 1.

Remark 2. Owing to (M− 1)� L, but both ETE and EET have identical positive eigenvalues
χj (1 6 j 6 r), we can firstly find that the main d eigenvectors ϕj (1 6 j 6 d) correspond
to most of the main eigenvalues χj (1 6 j 6 d) of ETE, we then can lightly obtain most of the
main d eigenvectors φj = Eϕj/

√
χj (1 6 j 6 d) of EET to make up a set of POD basic vectors

Ψi = (φ1, φ2, · · · , φd) (d 6 κ).

3.2. Construction of RDRCNFE Method

If we assume that bn
d = (bn

1 , bn
2 , ..., bn

d )
T , Υn

d = (zn
d1, zn

d2, ..., zn
d(M−1))

T = Ψbn
d = ΨΨTΥn,

and Un
d = ζ · Υn

d , we immediately gain the initial L RDRCNFE solutions Un
d = ζ · Υn

d =
ζ · (ΨΨTΥn) (1 6 n 6 L). If the unknown solution vectors Υn (L+ 1 6 n 6 N) in Problem 5
are replaced with Υn

d = Ψbn
d (L + 1 6 n 6 N), by the positive definiteness and invertibility

of matrix (I + τD/2), we could build the following RDRCNFE method.

Problem 6. Seek bn
d ∈ Rd, Un

d ∈Wh, and vn
d ∈Wh (n = 1, 2, ..., N) that meet

bn
d = ΨTΥn, 1 6 n 6 L; (15)

bn
d = ΨT

(
I +

τ

2
D
)−1(

I − τ

2
D
)

Ψbn−1
d
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+ τΨT
(

I +
τ

2
D
)−1

Fn− 1
2 , L + 1 6 n 6 N, (16)

Un
d =

M−1

∑
j=1

zn
djζ j(x) = ζ · (Ψbn

d), vn
d = eκtn Un

d , 1 6 n 6 N, (17)

where Υn (1 6 n 6 L) are the initial L solution vectors to Problem 5, and the matrix D and vectors
Fn− 1

2 are given in Problem 5.

Remark 3. It is obvious that Problem 6 has a unique set of RDRCNFE solutions {Un
d }

N
n=1 ⊂Wh

so that the RDRCNFE solutions {vn
d}

N
n=1 = {eκtn Un

d }
N
n=1 ⊂Wh of Problem 1 are also uniquely

existing. Specially, at each time node, Problem 5 has (M− 1) unknowns, while Problem 6 has only
d unknowns (d� M− 1), but it has the same basis functions {ζi(x)}M

i=1 as Problem 5. Namely,
although the unknowns of Problem 6 are greatly reduced, it keeps the basis functions unchanged so as
to maintain the accuracy unchanged, too. Hence, Problem 6 is obviously superior to Problem 5. This
signifies that Problem 6 can not only immensely salvage CPU runtime and slow down the rounding
error amassing but also raise the accuracy for numerical solutions in the practical calculations.

3.3. Stability and Error Estimations of the RDRCNFE Solutions

The theoretical analysis for the stability together with the errors of the RDRCNFE
solutions requires the following matrix properties (see [33], Theorems 1.4.1 and 1.4.2).

Lemma 1. The symmetrical positive definite matrix D in Problem 5 possesses the following
properties:

‖(I + 0.5τD)−1(I − 0.5τD)‖2,2 6 1; ‖(I + 0.5τD)−1‖2,2 6 1.

For the RDRCNFE solutions to Problem 6, we have the following result of stability
together with error estimations.

Theorem 3. Under the same conditions as Theorem 2, the RDRCNFE solutions Un
d (n =

1, 2, ..., N) to Problem 6 are unconditionally stabilized and have the following error estimations

‖U(tn)−Un
d ‖0 6 σ

(
τ2 + hm+1 +

√
χd+1

)
, 1 6 n 6 N, (18)

where U(tn) are the state of solutions of Problem 3 at tn = nτ (1 6 n 6 N). Furthermore,
the associated RDRCNFE solutions vn

d = eκtn Un
d (1 6 n 6 N) are also unconditionally stabilized

and have the following error estimations

‖v(tn)−vn
d‖0 6 σ

(
τ2 + hm+1 +

√
χd+1

)
, 1 6 n 6 N. (19)

Proof. (i) Prove the stability of solutions of Problem 6.

While n = 1, 2, ..., L, based on the orthonormality of POD bases Ψ, we obtain

‖Un
d ‖0 = ‖Υn

d · ζ‖0 = ‖ΨΨTΥn · ζ‖0 6 σ‖Un
h ‖0. (20)

Thus, with the unconditionally stability of Un
h given by Theorem 2, we immediately

assert that {Un
d }

L
n=1 is unconditionally stabilized.

While n = L + 1, L + 2, ..., N, by Υn
d = Ψbn

d , we could, respectively, revert (16) and
(17) into

Υn
d =

(
I +

τ

2
D
)−1(

I − τ

2
D
)

Υn−1
d + τ

(
I +

τ

2
D
)−1

Fn− 1
2 , n = L + 1, L + 2, ..., N, (21)

Un
d = ζ · Υn

d , n = L + 1, L + 2, ..., N. (22)
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Using Lemma 1, from (21) we obtain

‖Υn
d‖ 6 ‖(I + 0.5τD)−1(I − 0.5τD)‖2,2‖Υn−1

d ‖+ τ‖(I + 0.5τD)−1‖2,2‖Fn− 1
2 ‖

6 ‖Υn−1
d ‖+ τ‖Fn− 1

2 ‖, n = L + 1, L + 2, ..., N. (23)

Using (11) and Lemma 1, we obtain

‖Υn‖ 6 ‖(I + 0.5τD)−1(I − 0.5τD)Υn−1‖+ τ‖(I + 0.5τD)−1Fn− 1
2 ‖

6 ‖Υn−1‖+ τ‖Fn− 1
2 ‖

6 ‖Υ0‖+ τ
n

∑
i=1
‖F i− 1

2 ‖

6 σ, n = 1, 2, ..., N. (24)

Thus, summing for (23) from L + 1 unto n, noting that ‖ΥL
d‖ = ‖ΨΨTΥL‖ 6 σ‖ΥL‖,

by (24) we obtain

‖Υn
d‖ 6 ‖Υ

L
d‖+ τ

n

∑
i=L+1

‖F i− 1
2 ‖

6 σ‖ΥL‖+ τ
n

∑
i=L+1

‖F i− 1
2 ‖

6 σ, n = L + 1, L + 2, ..., N. (25)

Thus, noting that Un
d = ζ · Υn

d , ‖ζ‖0 6 σ, and ‖y‖∞ 6 ‖y‖, we obtain

‖Un
d ‖0 6 ‖Υn

d · ζ‖0 6 ‖Υn
d‖∞‖ζ‖0 6 ‖Υn

d‖ · ‖ζ‖0 6 σ, n = L + 1, L + 2, ..., N, (26)

which implies that {Un
d }

N
n=L+1 is also unconditionally stable. Hence, both {Un

d }
N
n=1 and

{vn
d}

N
n=1 = {eκtn Un

d }
N
n=1 are unconditionally stabilized.

(ii) Estimate the errors of ROECNFSE solutions.

While 1 6 n 6 L, noting that Un
h = ζ · Υn, ‖ζ‖0 6 σ, and ‖y‖∞ 6 ‖y‖ (∀y ∈ R(M−1)),

by (14) we obtain

‖Un
h −Un

d ‖0 6 ‖ζ‖0‖Υn − Υn
d‖∞ 6 σ‖Υn −ΨΨTΥn‖ 6 σ

√
χd+1. (27)

While n = L + 1, L + 2, ..., N, by (11) and (21), using Lemma 1, we obtain

‖Υn − Υn
d‖ = ‖(I + 0.5τD)−1(I − 0.5τD)(Υn−1 − Υn−1

d )‖
6 ‖(I + 0.5τD)−1(I − 0.5τD)‖2,2‖Υn−1 − Υn−1

d ‖
6 ‖Υn−1 − Υn−1

d ‖. (28)

Thus, from (28) and (27), we obtain

‖Υn − Υn
d‖ 6 ‖Υ

L − ΥL
d‖

6 σ
√

χd+1, n = L + 1, L = 2, ..., N. (29)

Therefore, we have

‖Un
h −Un

d ‖0 = ‖ζ · (Υn − Υn
d)‖0

6 ‖ζ‖0‖Υn − Υn
d‖∞

6 σ‖Υn − Υn
d‖

6 σ
√

χd+1, n = L + 1, L = 2, ..., N. (30)
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Combining (27) and (30) together with Theorem 2, we obtain (18). By v(x, tn) =
eκtn U(x, tn), vh(x, th) = eκtn Un

h , and vn
d = eκtn Un

d (n = 1, 2, ..., N), from (18) and
Theorem 2, we immediately obtain (19). Theorem 3 is proved.

Remark 4. Although the error estimates in Theorem 3 have one more term
√

χd+1 than those in
Theorem 2 due to the dimensionality reduction for the CNFE method, it can be used as a criterion for
selecting the POD basis vectors. As long as the number d of POD bases meets

√
χd+1 6 τ2 + hm+1,

there is little effect on the total errors. A lot of numerical simulations (see [4,10–31]) have shown that
the series {χj} of eigenvalues would rapidly decrease to 0. In a general way, while d = 5v7,

√
χd+1

is already extremely small. Especially, if the RDRCNFE solution Un0+1
d obtained by Problem 6 at

some time node tn0+1 cannot satisfy the accuracy requirement, but Un
d at the time nodes tn (n 6 n0)

can still satisfy, we may choose a new set of solution vectors (Υn0+1−L, Υn0+2−L, ..., Υn0−1, Υn0)
to construct a new set of POD basis vectors and to build the new RDRCNFE method, and then,
we can calculate out the RDRCNFE solutions that satisfy accuracy requirements. In this way, we
can calculate out the RDRCNFE solutions at an arbitrary time node. This is incomparable to the
traditional CNFE method.

4. Some Numerical Simulations

Here, the correctness of theory results and the superiority of the RDRCNFE method
are verified by the means of some numerical simulations. Problem 1 has an analytical
solution, but it usually has no analytic solution when the source term and initial functions
are complicated.

If the initial function v0(x) = 2γ6−θ x3(x− 1)3Γ(−θ) cos(θπ/2) and the source func-
tion ρ(x, t) is denoted by

ρ(x, t) = 2γ6−θ cos(πθ/2)Γ(−θ)e−tx3(1− x)3

+ e−t
[
3γ5(x− 1)2x2(2x− 1)ν(1− θ, xγ)

+ γ
(

γ5x3(3x2 − x3 − 3x + 1)ν(−θ, xγ)

+3γ3x(10x2 − 5x3 − 6x + 3)ν(2− θ, γ− γx)
− γ5(x− 1)3x3ν(−θ, γ− γx) + γ2(20x3 − 30x2 + 12x− 1)ν(3− θ, γx)
+ γ2(1− 12x + 30x2 − 20x3)ν(3− θ, γ− γx)
− 3γ4(x− 1)2(2x− 1)x2ν(1− θ, γ− γx)
− 3γ(5x2 − 5x + 1)(ν(4− θ, γx) + ν(4− θ, γ− γx))
+ 3(x− 1)(ν(5− θ, γx)− ν(5− θ, γ− γx))

−3γ3x(x− 1)(5x2 − 5x + 1)ν(2− θ, γx)
)

+ 2Γ(2− θ)
(

θ4 − 14θ3 + 71θ2 − 154θ + 120

+3(3− θ)(2− θ)γ2(5x2 − 5x + 1) + 3γ4x(x− 1)(5x2 − 5x + 1)
)

−ν(6− θ, γx)− 6ν(6− θ, γ− γx)],

then Problem 1 has an analytic solution

v(x, t) = 2γ6−θ x3(x− 1)3e−t cos(θπ/2)Γ(−θ).

When Ω = J = (0, 1), τ = h = 1/1000, and P1(K) consists of linear polynomials (i.e.,
m = 1), we firstly calculate out the 20 initial CNFE solutions Υn (n = 1, 2, ..., 20) under
various cases of θ = 1.1, 1.5, and 1.9, and γ = 0.5, 1.0, and 2.0 by Problem 5 and make up the
matrix E = (Υ1, Υ2, ..., Υ20), respectively. We then calculate out the eigenvalues χi arrayed
degressively and eigenvectors ϕi (i = 1, 2, ..., 20) of the matrix ETE corresponding to the
various cases of θ = 1.1, 1.5, and 1.9, and γ = 0.5, 1.0, and 2.0, respectively. By reckoning,
we find that

√
χ7 6 3× 10−6. Thus, we just have to take the foremost six eigenvectors φi
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(i = 1, 2, ..., 6) and produce a set of POD basis vectors Ψ = (ϕ1,ϕ2, ...,ϕ6) by ϕi = Eφi/
√

χi
(1 6 i 6 6). Finally, by using Matlab on a laptop (Think-Pad E530) to solve Problem 6,
we calculate out the RDRCNFE solutions vn

d = etn Un
d (n = 1000, i.e., at t = 1) under the

various cases of θ = 1.1, 1.5, and 1.9, and γ = 0.5, 1.0, and 2.0, respectively.
In order to explain the superiority of the RDRCNFE method by using the same Matlab

on the same laptop to solve the CNFE method, we also calculate out the corresponding
CNFE solutions vn

h (when n = 1000, i.e., at t = 1) under the various cases of θ = 1.1, 1.5,
and 1.9, and γ = 0.5, 1.0, and 2.0, respectively, and record the L2 errors ‖v(tn)− vn

h‖0
between the analytic solutions v(tn) and the CNFE solution vn

h , the errors ‖v(tn)−vn
d‖0

between the analytic solutions v(tn) and the RDRCNFE solution vn
d , and the CPU runtime

for the CNFE method and the RDRCNFE method when n = 1000, i.e., t = 1 under the
various cases of θ = 1.1, 1.5, and 1.9, and γ = 0.5, 1.0, and 2.0, as listed in Table 1.

Table 1. CPU runtime and errors between the analytic and the CNFE as well as RDRCNFE solutions
when h = τ = 10−3.

CNFE Method RDRCNFE Method

θ γ ‖v(tn)−vn
h‖0 CPU Runtime ‖v(tn)−vn

d‖0 CPU Runtime

0.5 1.010356 × 10−6 43.568 S 4.150523 × 10−6 1.623 S
1.1 1.0 1.012083 × 10−6 43.865 S 4.250732 × 10−6 1.665 S

2.0 1.125338 × 10−6 43.914 S 5.071732 × 10−6 1.673 S

0.5 1.315376 × 10−6 43.931 S 4.352762 × 10−6 1.692 S
1.5 1.0 1.414376 × 10−6 43.982 S 4.651718 × 10−6 1.713 S

2.0 1.534283 × 10−6 44.173 S 5.052123 × 10−6 1.721 S

0.5 1.541232 × 10−6 43.842 S 4.356431 × 10−6 1.676 S
1.9 1.0 1.562183 × 10−6 43.874 S 4.672762 × 10−6 1.813 S

2.0 1.612386 × 10−6 44.187 S 5.131753 × 10−6 1.925 S

Table 1 explains that the CPU runtime of the RDRCNFE method is about 26 times that
of the CNFE method. Thus, the RDRCNFE method can greatly lessen the CPU runtime.
Especially, at each time node, the RDRCNFE method only includes six unknowns, but the
CNFE method has a thousand unknowns. When the CNFE method is applied to large-scale
numerical calculations in the real world, it has more than millions of unknowns. Hence,
the RDRCNFE method can not only greatly lessen the CPU runtime and decrease the
rounding error amassing but also raise the calculating accuracy so that the RDRCNFE
method is far superior to the CNFE method.

When
√

χ7 = O(10−6) and τ = h = 1/1000, by Theorems 2 and 3, we can obtain that
the theory errors between the analytic solutions v(tn) and the CNFE solution vn

h together
with the theory errors between the analytic solutions v(tn) and the RDRCNFE solutions
vn

d are about O(10−6), but the numerical calculating errors in Table 1 are also O(10−6). It is
shown that the numerical results are in accord with the theoretical results.

To obtain the intuition, we exhibit the RDRCNFE solutions at t = 0.25, 0.50, 0.75,
and 1.00 for γ = 1.0 and θ = 1.1, 1.5, and 1.9 in Figures 1a–3a, respectively. To compare
with the RDRCNFE solutions, we also exhibit the CNFE solutions at t = 0.25, 0.50, 0.75,
and 1.00 for γ = 1.0 and θ = 1.1, 1.5, and 1.9 in Figures 1b–3b, respectively. By comparison,
we find that each pair in Figures 1–3 is highly similar, which implies that the RDRCNFE
solutions have the same accuracy as the the CNFE solutions and the RDRCNFE method
is very effective for settling STFDE (i.e., Problem 1) even if it only employs six POD basis
vectors.
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Figure 1. (a) The RDRCNFE solutions for θ = 1.1 and γ = 1.0. (b) The CNFE solutions for θ = 1.1
and γ = 1.0.

Figure 2. (a) The RDRCNFE solutions for θ = 1.5 and γ = 1.0. (b) The CNFE solutions for θ = 1.5
and γ = 1.0.

Figure 3. (a) The RDRCNFE solutions for θ = 1.9 and γ = 1.0. (b) The CNFE solutions for θ = 1.9
and γ = 1.0.

5. Conclusions and Discussions

Herein, we have dealt with the reduced dimension for the unknown solution coefficient
vectors to CNFE method of STFDE. We have made use of the POD technique to build the
RDRCNFE method for STFDE, adopted the matrix analysis to analyze the stability and
convergence of RDRCNFE solutions, and used some numerical simulations to confirm the
correctness of theoretical results and the superiority of the RDRCNFE method. In particular,
the RDRCNFE method is proposed for the first time and is absolutely different from the
existed reduced-order methods such as the reduced-order methods in [4,10–26]. Therefore,
the RDRCNFE method is a new development over the existing numerical methods.

Although we have only dealt with the reduced dimension for the unknown solution
coefficient vectors to the CNFE method of STFDE, the method can be directly generalized
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to the two-dimensional (2D) or three-dimensional (3D) cases and even the more intricate
real-world engineering numerical simulations. In fact, when the FE models for any 2D
and 3D steady PDEs including the 2D and 3D STFDE are used to perform the numerical
simulations on the computer, they need to express as the following matrix form

Un+1 = B(Un+1, Un, Un−1), n = 1, 2, · · · , (31)

where Un are very high-dimension vectors, which can reach millions or even tens of
millions of dimensions in the actual engineering computation. Thus, we may first compute
the first L steps solutions {Un}L

n=1 (empirical value L = 20), which are also formed from
the observation values of experiments on all grid points at the L moments, to form the
snapshot E = (U1, U2, · · · , UL). Thereupon, we may employ the discrete POD method in
Section 3.1 to find the POD basis vectors Ψ = (φ1, φ2, · · · , φd), which are the eigenvectors
φ1, φ2, · · · , φd corresponding to the main eigenvalues λ1 > λ2 > · · · λd > 0 of EET .

Let Un
d = Ψbn and bn = (bn

1 , bn
2 , · · · , bn

d )
T be the d-dimensional unknown vectors.

Substituting Un
d = Ψbn into Un in the above large-scale linear or nonlinear algebra

Equation (31), we obtain the following reduced-dimension system of equations that only
includes d unknowns:

bn
d = ΨTUn, n = 1, 2, · · · , L;

Ψbn+1 = B(Ψbn+1, Ψbn, Ψbn−1), n = L, L + 1, · · · ,
Un

d = Ψbn, n = 1, 2, · · · , L, L + 1, L + 2, · · · ,
(32)

where Un (n = 1, 2, · · · , L) are the known solution vectors for the system of Equation (31)
or observation values of experiments on all grid points at the L moments. If the reduced-
dimension equations are linear, they can be directly solved iteratively; if the reduced-
dimension equations are nonlinear, they can be solved by the Newton method or other
methods of nonlinear algebra equations. As a consequence, the RDRCNFE method pos-
sesses very extensive applying foreground.
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