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1. Introduction

Many different branches of science and engineering use fractional partial differential
equations (FPDEs), such as hydrodynamics, electroanalytical chemistry, quantum science,
viscoelastic mechanics, signal image processing, chain-breaking of polymer materials,
molecular spectrum, and anomalous ion diffusion in nerve cells [1,2]. Moreover, PDEs with
a fractional order were used to simulate the flow and filtration of a fluid in a porous fractal
medium. The use of fractional derivatives (FDs)for modeling real physical processes or
environments leads to the appearance of equations containing derivatives and integrals
of fractional order in addition to the classical ones. Researchers have focused their efforts
on fractional-order physical models [3] because of the material’s dynamic behavior and
viscoelastic behavior [4]. As a result, the model of fractional order is widely employed to
model the frequency apportionment of structural damping mechanisms [5], the electrical
and physical characteristics of a process in relation to the order of fractional operator. An
intrinsic multiscale existence of these operators is an interesting feature. As a consequence,
memory effects (i.e., a system’s response is a function of its previous history) are enabled
by time-fractional operators, while non-local and scale effects are enabled by space frac-
tional operators. Fractional analysis is used in many areas of science, including nonlinear
biological processes, solid-state mechanics, field theory, control theory, friction, fluid dy-
namics, and so on [6]. For the study of fractionally damped viscoelastic material, Josefson
and Enelund [7] employed the finite element scheme. The surface of a concrete structure
is susceptible to major damaging consequences. Therefore, a composite with enhanced
operating characteristics is currently being developed based on a concrete blend, polymer
concrete, which is characterized by greater tolerance to moisture, chemical compounds, low
temperatures, and toughness relative to concrete. It is possible to depict polymer concrete
as a collection of solid filler granules contained in a viscoelastic medium in simulation [8].
The fractional oscillator equation describes the transverse movement under the control of
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the force of gravity or the exterior force of a filler granule. Thus, the substitution of concrete
for polymer concrete refers to the substitution of the differential equations of the second
order with the FDEs. Special attention is given to the use of fractional calculus to establish
better mathematical models of many real-world issues. Many scholars have presented
the theoretical evolution and implementation of fractional calculus in earlier works [9–11].
Special attention is required to be given to the following vibrating string equation:

∂2w(x, t)
∂t2 + bCDβ

t w(x, t) =
∂2w(x, t)

∂x2 + cRDα
xw(x, t) + f(x, t),

where w(x, t) represents the displacement of a granule through the x- axis at a time t,
b, c are arbitrary constants, and f(x, t) is an external forcing function. In the description
of the vibration models, fractional differentiation operators are commonly utilized. It is
well known that FD equations accurately describe the motion of vibrations with elastic
and viscoelastic components [12]. The findings of [13] demonstrate that the outcome of
solving problems can be used to simulate alteration in the deformation-strength properties
of polymer concrete under the effect of gravity force. Researchers examined samples
of polyester resin-based polymer concrete (chloride-1, Diane,1-dichloro-2, diacyl, and 2-
diethylene). FDs are frequently employed to characterize the viscoelastic characteristics of
sophisticated materials, as well as the dissipative forces in structural dynamics [14].

The aim of this article is to analyze the following 1-D time-space FDEs in the range
D = {0 < x < L, 0 < t < T}

CDβ
t w(x, t) =R Dα

xw(x, t) +
∂2w(x, t)

∂x2 + f(x, t), (1)

with initial conditions

w(x, 0) = ϕ(x), (2)

wt(x, 0) = ψ(x),

and boundary conditions
w(0, t) = w(L, t) = 0, (3)

where CDβ
t denotes the Caputo derivative with respect to the variable t of order β(1 < β < 2),

which is defined as

CDβ
t w(x, t) =

1
Γ(2− β)

∫ t

0

∂2w(x, υ)

∂υ2 (t− υ)1−βdυ,

and RDα
x is the Liouville derivative with respect to the variable x of order α(1 < α < 2), i.e.,

RDα
xw(x, t) =

1
Γ(2− α)

∂2

∂x2

∫ x

0
(x− ξ)1−αw(ξ, t)dξ.

Our fundamental objective in this work is to form a numerical strategy for Equation (1)
and perform the comparing numerical examination for the suggested method. Analytical
methods have the advantage of explaining the fundamentals of mechanical engineering
problems and physical connotation making it possible to analyze a variety of physical
and mechanical engineering problems and taking less time than the numerical method.
However, scholars found that obtaining exact solutions to PDEs is extremely complicated.
To obtain numerical solutions to FPDEs, a variety of numerical methods have been studied
and developed, including the homotopy perturbation methods, Adomian decomposition
method, spectral method, finite difference scheme, Galerkin method, and finite element
method [15–19].

By combining the compact difference method for spatial discretization and L1 approx-
imation for temporal discretization, a finite difference scheme was derived in [20–23]. For
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the diffusion problem in the time derivative term, Li and Xu [24] established a time–space
spectral system.

In 2019, Huang et al. [25] considered a two-dimensional nonlinear super-diffusion
problem in the time derivative term and proposed conservative linearized two ADI schemes
to obtain the approximate solution of the model. For the space and time fractional telegraph
equation, Li and Zhao [26] proposed a linearized fractional difference/finite element
approximation, and the unconditional stability of the suggested scheme was proven by
the mathematical induction and energy method. In [27], Sun and Wu introduced a finite
difference method by adding two additional parameters to turn the original equation into
a low order equation system enabling the analysis of the error. To construct a compact
difference method for diffusion-wave equations of fractional order, the equivalent integro-
differential equations and product trapezoidal law were used by Chen and Li [28]. In
2016, Wang et al. [29] studied finite difference methods for both temporal and spatial
fractional derivatives for differential equations. They also presented a precondition in order
to improve the effectiveness of the schemes’ implementation in this case.

Many of the published papers on this topic concerned both one specific type of frac-
tional derivatives and a specific range of parameters for of these derivatives. Therefore, the
novelty of the presented research lies in the difference between the considered combina-
tion of different fractional derivatives and the parameters of the fractional derivatives of
Equation (1) and assembles high-order numerical schemes by constructing the equivalent
partial integro-differential equation form. We also perform the corresponding numerical
evaluation for the proposed schemes. It is common knowledge that the numerical methods
for integral equations have higher numerical stability than those created for equivalent
differential equations. To reduce the requirement for smoothness in time, the considered
FDEs (1) are equivalently transformed by the Riemann–Liouville integral into their integro-
partial differential problems. We discretize the Riemann–Liouville derivative using the
Crank–Nicholson scheme combined with the weighted and shifted Grünwald-difference
scheme. The first order derivative uses the midpoint scheme, and the second order deriva-
tive is approximated using the classical central difference scheme, which refers to the
implicit difference scheme. Furthermore, we discuss their unconditional stability and
convergence. The convergence rates of these two schemes are the second-order accuracy in
time and space.

The manuscript proceeds as follows. In Section 2, the equivalence between the space–
time (FDEs) and a partial integro-differential equation is proved. Then, for this integro-
differential equation, we discuss two difference methods, and we derive some preparations
and essential lemmas. In Section 3, the first scheme for the space–time FDEs is derived and
studied; in addition, it is rigorously proven that the proposed method is convergent and
unconditionally stable. In Section 4, the second scheme is constructed and analyzed. To
validate our theoretical results, numerical experiments are performed in Section 5. Finally,
a brief conclusion of the manuscript is presented in the last section.

2. Two Difference Schemes

Considering Equation (1) with conditions (2) and (3), we find that if we assume for
Equation (1) an equivalent form, the precision of the discrete approximations could be
improved. We indicate readers to [25] for the details of this analogous form. For the
completeness of our analysis, we will only detail the main elements here.

From the Caputo derivative definition, clearly, CDβ
t is the composition of CDβ−1

t and
Dt, such that

CDβ
t w(x, t) =

1
Γ(1− (β− 1))

∫ t

0

∂

∂υ

∂w(x, υ)

∂υ
(t− υ)−(β−1)dυ

= CD(β−1)
t

C
Dtw(x, t) = CDθ

t
C

Dtw(x, t),
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where 0 < θ = β− 1 < 1. Let us integrate both sides of Equation (1) under θ−fractional
integral Riemann–Liouville 0 Jθ

t to obtain

wt(x, t) = ψ(x) +
1

Γ(θ)

∫ t

0

RDα
xu(x, υ)(t− υ)θ−1dυ

+
1

Γ(θ)

∫ t

0

∂2w(x, υ)

∂x2 (t− υ)θ−1dυ + F(x, t), (4)

where F(x, t) =0 Jθ
t f(x, t), so for a function f(x, t) we can define θ− fractional integral

Riemann–Liouville as

0 Jθ
t f(x, t) =

1
Γ(θ)

∫ t

0
(t− υ)θ−1f(x, υ)dυ.

The weighted and shifted Grünwald difference (WSGD) formula for the θ−fractional
integral Riemann–Liouville was used to developing our scheme described by Equation (4).
In order to discretize Equation (4), we introduced the temporal step size τ = T

N with a
positive integer N, and tn = nτ; n = 0, 1, ...,N; we also defined a grid function time Ωτ =
{tn|n ≥ 0}. For a spatial discretization, let h = L

M and xi = ih; 0 ≤ i ≤M, where M is a non-
zero integer number, and we also defined a grid function space Ωh = {xi| 0 ≤ i ≤M}.
Suppose on Ωh ×Ωτ , their exist grid functionsW =

{
wn

i | 0 ≤ i ≤M, n ≥ 0
}

, such that
for any w, g ∈ W , we define the following norms, semi-norm ‖.‖Ȟ , and the inner product,
as follows

wn+ 1
2

i =
1
2

[
wn+1

i + wn
i

]
, δtw

n+ 1
2

i =
1
τ

[
wn+1

i − wn
i

]
,

〈wn, gn〉 = h
M−1

∑
i=1

wigi, ‖wn‖2 = 〈w, w〉,

‖wn‖∞ = max
0≤i≤M

|wn
i |, 〈δ2

xw, g〉 = −〈δxw, δxg〉,

〈δxw, δxg〉Ȟ = 〈δxw, δxg〉 − h2

12
〈δ2

xw, δ2
xg〉, ‖δxw‖Ȟ =

√
〈δxw, δxw〉Ȟ .

Moreover, we utilized the discretization [30] for the spatial derivatives supplied by

RDα
x f(xi) =

1
Γ(4− α)hα

i+1

∑
s=0

qα
s f(xi−s+1) +O(h2), δ2

xwn
i =

wn
i+1 − 2wn

i + wn
i−1

h2 ,

where f ∈ C4(R) and is defined by

qα
s =


1, s = 0
23−α − 4, s = 1
33−α − 4× 23−α + 6, s = 2
(s + 1)3−α − 4s3−α + 6(s− 1)3−α − 4(s− 2)3−α + (s− 3)3−α, s ≥ 3,

(5)

and

Hwi =

{
(1 + h2

12 δ2
x)wi =

1
12 (wi−1 + 10wi + wi+1), 1 ≤ i ≤M− 1

wi, i = 0,M.

To raise the accuracy in ∂2w
∂x2 , we used the following lemma.

Lemma 1 ([31]). Suppose w(x) ∈ C6[xi−1, xi+1], 1 ≤ i ≤M− 1, let ξ(s) = (1− s)3[5− 3(1−
s)2]; then,
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1
12

[w′′(xi−1) + 10w′′(xi) + w′′(xi+1)] =
1
h2 [w(xi−1)− 2w(xi) + w(xi+1)]

+
h4

360

∫ 1

0
[w(6)(xi − sh) + w(6)(xi + sh)]ξ(s)ds.

For time discretization, the high-order accuracy of our suggested method is presented
on the second-order approximation of the θ—R˘L fractional integral; this approximation
established by the shifted operator for the θ—fractional integral Riemann–Liouville was
defined as:

θ
τ,ζ f(t) = τθ

∞

∑
j=0

vjf(t− (j− ζ)τ),

where ζ is an integer, and vj = (−1)j(−θ
j ) for j ≥ 0. The second-order estimate for

θ−fractional integral Riemann–Liouville was set out in [32–34].

Lemma 2 ([34]). Assume θ > 0, f(t) ∈ Lp(R), p ≥ 1. The Fourier transform belonging to Lp(R)
of the θ− fractional integral Riemann–Liouville holds that

ℵ[−∞ Iθ
t f(t)] = (iω)−θ f̂(ω),

such that f̂(ω) =
∫

R e−iωtf(t)dt is the Fourier transform of the function f(t).

Lemma 3 ([33]). Consider f(t),−∞ Iθ
t f(t) and its Fourier transform in L1(R), and let us state the

WSGD operator by

=θ
υ,p,qf(t) =

2q + θ

2(q− p)
θ
υ,pf(t) +

2p + θ

2(p− q)
θ
υ,qf(t);

so, we have
=θ

τ,p,qf(t) =−∞ Iθ
t f(t) +O(τ2),

for integers p 6= q; t ∈ R.

Without loss of generality, for t < 0, w(x, t) could be continuously expanded to
be equal to zero, via selecting (p, q) = (0,−1) in Lemma 2, which produces 2q+θ

2(q−p) =

1− θ
2 , 2p+θ

2(p−q) =
θ
2 , by indicating

RDα
xwk

i =
1

Γ(4− α)hα

i+1

∑
s=0

qα
s wk

i−s+1 +O(h2).

For the time discretization at point (xi, tn+1)

0 Jθ
t δα

x w(xi, tn+1) = τθ

[
(1− θ

2
)

n+1

∑
k=0

vkδα
x wn+1−k

i +
θ

2

n

∑
k=0

vkδα
x wn−k

i

]
+O(τ + h2)

= τθ
n+1

∑
k=0

λkδα
x wn+1−k

i +O(τ + h2), (6)

where

λ0 = (1− θ

2
)v0, λk = (1− θ

2
)vk +

θ

2
vk−1; k ≥ 1.

Lemma 4 ([16]). If f (t) ∈ C2([0,T]), then it holds that at t = tn+ 1
2
,

0 Jθ
t f (tn+ 1

2
) =

1
2

(
0

Jθ
t f (tn+1) +0 Jθ

t f (tn)
)
+O(τ2).
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Lemma 5 ([30]). For any α ∈ (1, 2), the sequence q(α)s , which is defined in Equation (5), fulfills
the next characteristics:

q(α)1 < 0, q(α)0 ≥ q(α)3 ... ≥ 0, q(α)0 + q(α)2 ≥ 0, q(α)2

{
> 0, α ∈ (α0, 2)
≤ 0, α ∈ (1, α0),

∞

∑
s=0

q(α)s = 0, ,

and α0 ≈ 1.5545 is the root of the Equation 33−α − 4× 23−α + 6; α ∈ (1, 2).

Lemma 6 (Grownall’s inequality [35]). Suppose that νn and ϑn are nonnegative sequences, and
{φn} is a sequence that satisfies

φ0 ≤ h̄0, φn ≤ h̄0 +
n−1

∑
s=0

ϑs +
n−1

∑
s=0

νsφs, h̄0 ≥ 0; n ≥ 1;

so, a sequence {φn} fulfills

φn ≤
(

h̄0 +
n−1

∑
s=0

ϑs

)
exp

(
n−1

∑
s=0

νs

)
; n ≥ 1.

Lemma 7 ([33]). Let
{

λ
γ
j

}∞

j=0
, defined as in Equation (6). Then, for any real vector

(w1, w2, ..., wk)
T ∈ Rk, k integer, the following inequality holds

k−1

∑
m=0

(
m

∑
j=0

λ
γ
j wm+1−j

)
wm+1 ≥ 0.

Then, using a weighted Crank–Nicolson method for Equation (4) at the point (xi, tn+ 1
2
)

and using Lemma 4, it can be written as

wn+1
i − wn

i
τ

= ψ(x) +
τθ

2

[
n+1

∑
k=0

λkδα
x wn+1−k

i +
n

∑
k=0

λkδα
x wn−k

i

]
(7)

+
τθ

2

[
n+1

∑
k=0

λkδ2
xwn+1−k

i +
n

∑
k=0

λkδ2
xwn−k

i

]

+
1
2
(Fn+1

i + Fn
i ) +O(τ2 + h2),

where 1 ≤ i ≤M− 1, 0 ≤ n ≤ N− 1, wn
i is a numerical value of w(xi, tn), ψi = ψ(xi), and

Fn
i = F(xi, tn).

3. Construction and Analysis of Scheme 1
3.1. Construction of Scheme 1

Rearranging Equation (7) yields

wn+1
i − wn

i = τψ(x) +
τθ+1

2

[
n+1

∑
k=0

λkδα
x wn+1−k

i +
n

∑
k=0

λkδα
x wn−k

i

]

+
τθ+1

2

[
n+1

∑
k=0

λkδ2
xwn+1−k

i +
n

∑
k=0

λkδ2
xwn−k

i

]
+

τ

2
(Fn+1

i + Fn
i ) + τO(τ2 + h2). (8)
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Denoting ρ = τθ+1/2, we suggest the following compact scheme for Equation (8),
which is based on Lemma 1.

H(wn+1
i − wn

i ) = τHψ(x) + ρ

[
n+1

∑
k=0

λkδα
x wn+1−k

i +
n

∑
k=0

λkδα
x wn−k

i

]

+ ρ

[
n+1

∑
k=0

λkδ2
xwn+1−k

i +
n

∑
k=0

λkδ2
xwn−k

i

]
+

τ

2
H(Fn+1

i + Fn
i ) + τ$n+1

i , (9)

where $n+1
i ≤ O(τ2 + h4). Ignoring the truncation error term in Equation (9) and replacing

wn
i with its numerical solutionWn

i , we obtain the following scheme for Equation (9)

H(Wn+1
i −Wn

i ) = τHψ(x) + ρ

[
n+1

∑
k=0

λkδα
xWn+1−k

i +
n

∑
k=0

λkδα
xWn−k

i

]

+ ρ

[
n+1

∑
k=0

λkδ2
xWn+1−k

i +
n

∑
k=0

λkδ2
xWn−k

i

]
+

τ

2
H(Fn+1

i + Fn
i ), 1 ≤ i ≤M− 1, 0 ≤ n ≤ N− 1, (10)

Wn
0 =Wn

M = 0, 1 ≤ n ≤ N,

W0
i = ϕi, Wn

i = 0, 0 ≤ i ≤M. (11)

3.2. Analysis of Scheme 1

Theorem 1. Let w(x, t) ∈ C6,3
x,t ([0,L] × [0,T]) be the exact solution of Equations (1)–(3) and

W(x, t) be a numerical solution of scheme (10)–(11), which is defined as
{

Wn
i |0 ≤ i ≤M,

0 ≤ n ≤ N}. Then, for nτ ≤ T, it holds that

‖Wn − wn‖ ≤ c̃(τ2 + h4), 0 ≤ n ≤ N

Proof. Subtracting Equation (10) from Equation (9) and denoting the error En
i = wn

i −Wn
i ,

then we have

H(En+1
i − En

i ) = ρ
n

∑
s=0

λsδα
x(En+1−s

i + En−s
i ) + ρ

n

∑
s=0

λsδ2
x(En+1−s

i + En−s
i ) + τ$n+1

i , (12)

where E0
i = 0, 0 ≤ i ≤M.

We can readily rewrite Equation (12) in a matrix form and by multiplying with the
identity matrix I of size N, we obtain

C(En+1 − En) = ρ1

n

∑
s=0

λs A(En+1−s + En−s) + ρ2

n

∑
s=0

λsB(En+1−s + En−s) + τ$n+1, (13)
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where ρ1 = ρ/Γ(4− α)hα, ρ2 = ρ/h2, ‖$n+1‖ ≤ c(τ2 + h4), and

A =



q(α)1 q(α)0 0 · · · 0
q(α)2 q(α)1 q(α)0 · · ·

... q(α)2 q(α)1
. . .

...
... · · · . . . . . . q(α)0

q(α)N q(α)N−1 · · · q(α)2 q(α)1


, C =

1
12


10 2 · · · 0
1 10 1 · · ·
...

. . . . . . . . .
...

1 10 1
· · · 2 10

,

B =


2 −2 · · · 0
−1 2 −1 · · ·

...
. . . . . . . . .

...
−1 2 −1
· · · −2 2

. (14)

Multiplying Equation (13) by h(En+1 + En)T , we obtain

h(En+1 + En)TC(En+1 − En) =ρ1

n

∑
s=0

λs(En+1 + En)T A(En+1−s + En−s)

+ ρ2

n

∑
s=0

λs(En+1 + En)T B(En+1−s + En−s)

+ τh(En+1 + En)T$n+1. (15)

By the Gershgorin theorem, Lemma 5, and Lemma 7, we could investigate whether A
and B are negative definite matrices, following

(En+1 + En)T A(En+1−s + En−s) < 0, (En+1 + En)T B(En+1−s + En−s) < 0;

then, summing over n from 0 to J − 1, we deduce

h(En+1 + En)TC(En+1 − En) = h
[
(En+1)TCEn+1 − (En)TCEn

]
, h(E J)TCE J ≥ 2

3
‖E J‖2,

2
3
‖E J‖2 ≤τ

J−1

∑
n=0
〈$n+1, (En+1 + En)〉 ≤ 1

3
‖E J‖2 +

τ

3
‖E J−1‖2 +

3τ2

4
‖$J‖2 +

3τ

4
‖$J‖2

+
τ

3

J−1

∑
n=1
‖En‖2 +

τ

3

J−2

∑
n=1
‖En‖2 +

3τ

2

J−2

∑
n=0
‖$n+1‖2 ≤ 1

3
‖E J‖2 +

3τ2

4
‖$J‖2

+
2τ

3

J−1

∑
n=1
‖En‖2 +

3τ

2

J−1

∑
n=0
‖$n+1‖2, (16)

which gives

‖E J‖2 ≤ 2τ
J−1

∑
n=1
‖En‖2 +

9τ2

4
‖$J‖2 +

9τ

2

J−1

∑
n=0
‖$n+1‖2 ≤ 2τ

J−1

∑
n=1
‖En‖2 + C(τ2 + h4)2;

then, the required results follow by Lemma 5.

Theorem 2. The numerical solution of scheme (10)–(11) Wn
i is stable, and for 1 < K < N, it

holds that

‖WK‖2
∞ ≤ 2‖W0‖2

Ȟ + 2τ
K−1

∑
n=0
‖Wn‖2 + τ

K−1

∑
n=0
‖τθλn+1(δ

α
x + δ2

x)W0 + 2Hψ + 2Hf
1
2 ‖2.
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Proof. Multiplying Equation (10) by hH(Wn+1
i +Wn

i ) and obtaining the sum over 1 ≤
i ≤M− 1,

〈H(Wn+1
i −Wn

i ),H(Wn+1
i +Wn

i )〉 =τ〈Hψ,H(Wn+1 +Wn)〉

+ ρ
n

∑
k=0

λk〈δα
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ ρ
n

∑
k=0

λk〈δ2
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ ρλn+1〈δα
xW0,H(Wn+1 +Wn)〉

+ ρλn+1〈δ2
xW0,H(Wn+1 +Wn)〉

+ τ〈HFn+1/2,H(Wn+1 +Wn〉. (17)

Further calculations provide

‖HWn+1‖2 − ‖HWn‖2 =τ〈Hψ,H(Wn+1 +Wn)〉+ ρλn+1〈δα
xW0,H(Wn+1 +Wn)〉

+ ρ
n

∑
k=0

λk〈δα
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ ρλn+1〈δ2
xW0,H(Wn+1 +Wn)〉

+ ρ
n

∑
k=0

λk〈δ2
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ τ〈HFn+1/2,H(Wn+1 +Wn)〉. (18)

After applying the Cauchy–Schwarz inequality and obtaining the sum of Equation (18)
over n from 0 to K− 1,

‖HWK‖2 − ‖HW0‖2 ≤τ
K−1

∑
n=0
〈Hψ,H(Wn+1 +Wn)〉

+ ρ
K−1

∑
n=0

n

∑
k=0

λk〈δα
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ ρ
K−1

∑
n=0

n

∑
k=0

λk〈δ2
x(Wn+1−k +Wn−k),H(Wn+1 +Wn)〉

+ ρ
K−1

∑
n=0

λn+1〈δα
xW0,H(Wn+1 +Wn)〉

+ ρ
K−1

∑
n=0

λn+1〈δ2
xW0,H(Wn+1 +Wn)〉

+ τ
K−1

∑
n=0
〈HFn+1/2,H(Wn+1 +Wn)〉. (19)

According to Lemmas 5 and 7, we infer that the first two terms on the whole right side
of Equation (19) are negative; then,
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‖HWK‖2 − ‖HW0‖2 ≤τ
K−1

∑
n=0
‖Hψ‖‖H(Wn+1 +Wn

i )‖

+ ρ
K−1

∑
n=0

λn+1‖δα
xW0‖‖H(Wn+1 +Wn)‖

+ ρ
K−1

∑
n=0

λn+1‖δ2
xW0‖‖H(Wn+1 +Wn)‖

+ τ
K−1

∑
n=0
‖HFn+1/2‖‖H(Wn+1 +Wn)‖. (20)

By applying Young’s inequality,

‖HWK‖2 ≤‖HW0‖2 +
τ

2

K−1

∑
n=0
‖Hψ‖2 +

τ

2

K−1

∑
n=0
‖H(Wn+1 +Wn)‖2 +

ρ

2

K−1

∑
n=0

λn+1‖δα
xW0‖2

+
ρ

2

K−1

∑
n=0

λn+1‖δ2
xW0‖2 +

ρ

2

K−1

∑
n=0

λn+1‖H(Wn+1 +Wn)‖2

+
ρ

2

K−1

∑
n=0

λn+1‖H(Wn+1 +Wn)‖2 +
τ

2

K−1

∑
n=0
‖HFn+1/2‖2 +

τ

2

K−1

∑
n=0
‖H(Wn+1 +Wn)‖2. (21)

Then, we obtain

‖WK‖2
∞ ≤2‖W0‖2

Ȟ + 2τ
K−1

∑
n=0
‖Hψ‖2 + 2τ

K−1

∑
n=0
‖Wn‖2 + τθ+1

K−1

∑
n=0

λn+1‖δα
xW0‖2

+ τθ+1
K−1

∑
n=0

λn+1‖δ2
xW0‖2 + 2τ

K−1

∑
n=0
‖HFn+1/2‖2.

This implies,

‖WK‖2
∞ ≤ e2T

(
2‖W0‖2

Ȟ + τ
K−1

∑
n=0
‖2Hψ + τθλn+1(δ

α
x + δ2

x)W0 + 2HFn+1/2‖2

)
.

4. Construction and Analysis of Scheme 2
4.1. Construction of Scheme 2

Similarly, if the Crank–Nicolson method is used to discretize Equation (4) at the
point (xi, tn+1), for the time derivative, with the help of Equation (6), the second scheme
presented in Section 4 is applied.

wn+1
i − wn

i = τψ(x) + τθ+1
n+1

∑
k=0

λkδα
x wn+1−k

i + τθ+1
n+1

∑
k=0

λkδ2
xwn+1−k

i + τFn+1
i +O(τ2 + τh4) (22)

Denoting ρ = τθ+1/2, we suggest the following compact Crank–Nicolson scheme at
the point (xi, tn+1), which is based on Lemma 1.

H(wn+1
i − wn

i ) = τHψ(x) + ρ
n+1

∑
k=0

λkδα
x wn+1−k

i + ρ
n+1

∑
k=0

λkδ2
xwn+1−k

i + τHFn+1
i + τO(τ + h4), (23)

ignoring the truncation error term O(τ2 + τh4) from Equation (23) and replacing wn
i with

its numerical solutionWn
i , we obtain the following scheme for Equation (23)
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H(Wn+1
i −Wn

i ) =τHψ(x) + ρ
n+1

∑
k=0

λkδα
xWn+1−k

i + ρ
n+1

∑
k=0

λkδ2
xWn+1−k

i + τHFn+1
i ,

1 ≤ i ≤M− 1, 0 ≤ n ≤ N− 1. (24)

4.2. Analysis of Scheme 2

Similar to Theorems 1 and 2, and after utilizing the matrix form of Equation (24), we
can easily obtain the following theorems

Theorem 3. The numerical solution of scheme (24)Wn
i is stable, and for 1 < K < N, it holds that

‖WK‖2
∞ ≤ ‖W0‖2

Ȟ + τ
K−1

∑
n=0
‖ρλn+1H(δα

x + δ2
x)W0 +Hψ +Hfn+1‖2.

Proof. Similar to proving Theorem 2, multiplying Equation (24) by hHWn+1
i and obtaining

the sum over 1 ≤ i ≤M− 1, we obtain

〈H(Wn+1
i −Wn

i ),HWn+1
i 〉 =τ〈Hψ,HWn+1〉+ ρ

n

∑
k=0

λk〈δα
xWn+1−k,HWn+1〉

+ ρ
n

∑
k=0

λk〈δ2
xWn+1−k,HWn+1〉+ ρλn+1〈δα

xW0,HWn+1〉

+ ρλn+1〈δ2
xW0,HWn+1〉+ τ〈HFn+1,HWn+1〉. (25)

Applying the Cauchy–Schwarz inequality, further calculations give

‖HWn+1‖2 − ‖HWn‖2

2
=τ〈Hψ,HWn+1〉+ ρ

n

∑
k=0

λk〈δα
xWn+1−k,HWn+1〉

+ ρ
n

∑
k=0

λk〈δ2
xWn+1−k,HWn+1〉+ ρλn+1〈δα

xW0,HWn+1〉

+ ρλn+1〈δ2
xW0,HWn+1〉+ τ〈HFn+1,HWn+1〉. (26)

Summing Equation (26) over n, from 0 to K− 1, yields

‖HWK‖2 − ‖HW0‖2

2
≤τ

K−1

∑
n=0
〈Hψ,HWn+1〉+ ρ

K−1

∑
n=0

n

∑
k=0

λk〈δα
xWn+1−k,HWn+1〉

+ ρ
K−1

∑
n=0

n

∑
k=0

λk〈δ2
xWn+1−k,HWn+1〉+ ρ

K−1

∑
n=0

λn+1〈δα
xW0,HWn+1〉

+ ρ
K−1

∑
n=0

λn+1〈δ2
xW0,HWn+1〉+ τ

K−1

∑
n=0
〈HFn+1,HWn+1〉. (27)

According to Lemmas 5 and 7, we infer that the first two terms on the whole right side
of Equation (27) are negative; therefore,

‖HWK‖2 ≤2‖HW0‖2 + 2τ
K−1

∑
n=0
‖Hψ‖‖HWn+1‖+ 2ρ

K−1

∑
n=0

λn+1‖δα
xW0‖‖HWn+1‖

+ 2ρ
K−1

∑
n=0

λn+1‖δ2
xW0‖‖HWn+1‖+ 2τ

K−1

∑
n=0
‖HFn+1‖‖HWn+1‖, (28)

and by applying Young’s inequality, then,
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‖HWK‖2 ≤2‖HW0‖2 + τ
K−1

∑
n=0
‖Hψ‖2 + τ

K−1

∑
n=0
‖HWn+1‖2 + ρ

K−1

∑
n=0

λn+1‖δα
xW0‖2

+ ρ
K−1

∑
n=0

λn+1‖δ2
xW0‖2 + ρ

K−1

∑
n=0

λn+1‖HWn+1‖2 + ρ
K−1

∑
n=0

λn+1‖HWn+1‖2

+ τ
K−1

∑
n=0
‖HFn+1‖2 + τ

K−1

∑
n=0
‖HWn+1‖2, (29)

which implies that

‖WK‖2
∞ ≤ 2‖W0‖2

Ȟ + τ
K−1

∑
n=0
‖Hψ + τθλn+1(δ

α
x + δ2

x)W0 +HFn+1‖2. (30)

This completes the proof.

Theorem 4. Let w(x, t) ∈ C6,3
x,t ([0,L]× [0,T]) be the exact solution of Equations (1)–(3) and the

numerical solution of scheme (24), which is defined as Wn
i . Then, for nτ ≤ T, it holds that

‖Wn − wn‖ ≤ c̃(τ + h4).

Proof. Subtracting Equation (24) from Equation (23) and denoting the error En
i = wn

i −Wn
i ,

we have

H(En+1
i − En

i ) = ρ
n+1

∑
k=0

λkδα
x(En+1−k

i + ρ
n

∑
k=0

λkδ2
x(En+1−k

i + En−s
i ) + τ$n+1

i , (31)

where E0
i = 0, 0 ≤ i ≤M, $n+1

i < c(τ + h4), c > 0.
Similar to proving Theorem 1, it is easy to check the convergence of scheme 2.

5. Numerical Example

In this section, we introduce numerical examples to demonstrate the computational
performance and theoretical findings of our proposed methods.

Example 1. Consider the following 1-D time–space FDEs

CDβ
t w(x, t) =R Dα

xw(x, t) +
∂2w(x, t)

∂x2 + f(x, t), 1 < β, α < 2 (32)

w(0, t) = w(1, t) = 0, 0 < t < 1,

w(x, 0) = 0, wt(x, 0) = 0, 0 < x < 1,

where

f(x, t) =
Γ(2 + β)

Γ(2)
x2(1− x)2t− (12x2 − 12x + 2)t1+β

− t1+β

(
Γ(5)

Γ(5− α)
x4−α − 2

Γ(4)
Γ(4− α)

x3−α +
Γ(3)

Γ(3− α)
x2−α

)
is the exact solution of (32), given as w(x, t) = x2(1− x)2t1+β.

First, we note that the exact solution w(x, t) of Equation (32) fulfills all the smoothness
conditions needed by the schemes (10) and (24). In Figure 1, the approximate and the exact solution
of scheme (10) are shown for β = 1.5 and α = 1.5, respectively. Then, in Figures 2 and 3, we take
step size τ = h = 0.025 to plot the curves of the exact and numerical solutions of the two schemes
at t = T = 1 for α = 1.5 and β = 1.5. This assures us that the exact solutions accord well with the



Mathematics 2022, 10, 3651 13 of 16

numerical results of the two schemes. To analyze the error in the numerical solution, we consider
the L2-norm

E(τ, h) =

√√√√h
M−1

∑
i=1
|wN

i −WN
i |2,

where we can approximately calculate the order of the convergence rate of Rx and Rt from

Rx ' log2[ε(τ, 2h)/ε(τ, h)], τ −→ 0

Rt ' log2[ε(τ, h)/ε(2τ, h)], h −→ 0.

Furthermore, in Table 1, we fix the time at τ = 0.02, and analyze how the error ε(τ, h) and
the convergence orders of scheme 1 with non-compact form change with M for different values of
α, β. Moreover, in Table 2, we compute the errors and the convergence orders of scheme 1 with
compact form, for different step sizes and in Table 3, we refer to the errors and the convergence
orders of scheme 2 for different values of α, β. with change in time steps. The errors of the two
methods reduced as the step size τ and h decreased; we used high-level technical computing language
(Wolfram Mathematica) to calculate the numerical results in Tables 1 and 2.

Table 1. The errors and the convergence orders of (32) with finite difference scheme (8), for different
α and β, when τ = 0.02.

β = 1.3, α = 1.8 β = 1.5, α = 1.5 β = 1.7, α = 1.2

h ε(τ, h) Rx ε(τ, h) Rx ε(τ, h) Rx

1/4 9.770× 10−3 8.711× 10−3 6.931× 10−3

1/8 2.485× 10−3 1.975 2.237× 10−3 1.961 1.790× 10−3 1.9528
1/16 6.274× 10−4 1.985 5.648× 10−4 1.986 4.511× 10−4 1.988
1/32 1.581× 10−4 1.988 1.418× 10−4 1.994 1.127× 10−4 1.999
1/64 3.983× 10−5 1.988 3.550× 10−5 1.998 2.798× 10−5 2.0107

Table 2. The errors and the convergence orders of (32) with finite difference schemes (10) and (11),
for different α and β, when τ = 0.001.

β = 1.7, α = 1.3 β = 1.5, α = 1.5 β = 1.2, α = 1.9

h ε(τ, h) Order ε(τ, h) Order ε(τ, h) Order

1/4 9.727× 10−4 1.323× 10−3 1.999× 10−3

1/8 6.632× 10−5 3.874 8.361× 10−5 3.9843 1.369× 10−4 3.868
1/16 4.099× 10−6 4.016 4.998× 10−6 4.064 8.695× 10−6 3.976
1/32 2.690× 10−7 3.929 3.163× 10−7 3.981 5.312× 10−7 4.032
1/64 1.443× 10−8 4.220 1.909× 10−8 4.050 3.083× 10−8 4.106

Table 3. The errors and the convergence orders of (32) with finite difference scheme (24), for different
α and β, when h = 0.02.

β = 1.7, α = 1.3 β = 1.5, α = 1.5 β = 1.2, α = 1.9

τ ε(τ, h) Order ε(τ, h) Order ε(τ, h) Order

1/10 9.102× 10−4 5.453× 10−4 2.905× 10−4

1/20 4.363× 10−4 1.060 2.620× 10−4 1.057 1.482× 10−4 0.971
1/40 2.169× 10−4 1.008 1.321× 10−4 0.987 8.044× 10−5 0.881
1/80 1.098× 10−4 0.981 6.947× 10−5 0.927 4.208× 10−5 0.934
1/160 5.686× 10−5 0.950 3.881× 10−5 0.839 2.052× 10−5 1.035
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Figure 1. The exact and numerical solution (32) at α = 1.5 and β = 1.5.

Figure 2. A comparison between the exact solution and the numerical solution of Equation (32)
according to numerical scheme (10) for α = 1.5, β = 1.5, and t = T = 1.

Figure 3. A comparison between the exact solution and the numerical solution of Equation (32)
according to numerical scheme (24) for α = 1.5, β = 1.5, and t = T = 1.

6. Conclusions

In this manuscript, we considered a special form of time–space FDEs with viscoelastic
damping, associated with using two types of fractional derivatives operators Caputo and
Riemann–Liouville in the temporal and spatial directions, respectively, by fractional order
derivatives in interval (1, 2). We used two linearized Crank–Nicolson finite difference
schemes to deduce the numerical solution of the problem (1). The suggested Crank–
Nicolson scheme was demonstrated to be unconditionally stable and with a convergence
with a second order of accuracy in space for a noncompact weighted and shifted Grunwiald
difference approximation scheme and a fourth order for a compact weighted and shifted
Grunwiald difference approximation scheme. Moreover, there was a convergence in time
with a second order of accuracy at a point t = tn+ 1

2
and a first order of accuracy at a point

t = tn+1, which was in perfect agreement with the exact solution of (1). Both the numerical
schemes and the theoretical analysis showed that the suggested methods were efficient for
solving one-dimensional time and space FDEs.
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