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Abstract: The paper deals with a nonlinear second-order one-dimensional evolutionary equation
related to applications and describes various diffusion, filtration, convection, and other processes. The
particular cases of this equation are the well-known porous medium equation and its generalizations.
We construct solutions that describe perturbations propagating over a zero background with a finite
velocity. Such effects are known to be atypical for parabolic equations and appear as a consequence
of the degeneration of the equation at the points where the desired function vanishes. Previously, we
have constructed it, but here the case of power nonlinearity is considered. It allows for conducting
a more detailed analysis. We prove a new theorem for the existence of solutions of this type in
the class of piecewise analytical functions, which generalizes and specifies the earlier statements.
We find and study exact solutions having the diffusion wave type, the construction of which is
reduced to the second-order Cauchy problem for an ordinary differential equation (ODE) that
inherits singularities from the original formulation. Statements that ensure the existence of global
continuously differentiable solutions are proved for the Cauchy problems. The properties of the
constructed solutions are studied by the methods of the qualitative theory of differential equations.
Phase portraits are obtained, and quantitative estimates are determined by constructing and analyzing
finite difference schemes. The most significant result is that we have shown that all the special cases
for incomplete equations take place for the complete equation, and other configurations of diffusion
waves do not arise.

Keywords: nonlinear partial differential equation; porous medium equation; diffusion wave; exis-
tence theorem; analytical solution; power series; majorant method; exact solution

MSC: 35K57

1. Introduction

This article continues our study of one special class of solutions to a second-order
nonlinear evolutionary equation [1]. We consider the equation having the following
general form:

Tt = (Φ1(T))xx + (Φ2(T))x + Φ3(T). (1)

Here t, x are independent variables: t is time, x is a spatial variable, T(t, x) is an
unknown function, and Φi, i = 1, 2, 3 are the specified functions. From a physical point
of view, the function Φ1 describes diffusion processes (diffusion term), Φ2 corresponds to
convection processes (convection term), and Φ3 is a source or a sink.

Equation (1) is parabolic if Φ′1(T) ≥ 0. Solutions that hold the parabolic type of the
equation are usually studied. However, for the completeness of the study, negative case
can also be considered.

A detailed bibliography overview is given in our first article devoted to the problem
considered [1]. Let us briefly recollect some essential points. First, we should mention
classical monographs that significantly influenced developing the theory of nonlinear
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parabolic equations [2–4]. Second, we point out the articles in which, apparently, the
authors presented diffusion wave-type solutions for the first time [5,6]. Let us especially
note book [7], which presents the mathematical theory of the porous medium equation and
thorough state-of-art.

Recall that the case where Φ1 is a power function, and Φ2 = Φ3 ≡ 0 is the porous
medium Equation [7]. It is rich in applications and describes the filtration of an ideal
gas in porous formations [6], the radiant (nonlinear) thermal conductivity [5], as well as
population dynamics processes [8].

If Φ1 and Φ3 are power functions, and Φ2 ≡ 0, then (1) becomes the generalized
porous medium Equation [7] or the nonlinear heat equation with a source [9]. This equation
describes the same processes as the porous medium equation, but allows us to consider the
inflow or outflow of matter or heat.

Assuming Φ3 ≡ 0, and Φ1 and Φ2 are nonzero leads Equation (1) to the convection-
diffusion Equation [10,11]. Several mathematical models of fluid mechanics, which simul-
taneously describe the diffusion and convective [12] mechanisms of energy and matter
transfer, are reduced to such an equation. The phonon transport within silicon structures,
which is subjected to internal heat generation, can also be explored [13,14]. In [15], the
authors proposed the equation considered as a suitable governing equation for the gas flow
through a Graphene Oxide membrane. A mathematical model describing the flow of a
mixture of ideal gases in a highly porous electrode for fuel cell engineering is proposed
in [16]. Its particular case is the well-known Burgers equation [7].

Finally, Equation (1), if Φ2(c) is a linear function, which describes the non-stationary
thermal conductivity in a medium moving at a constant speed, when the thermal conduc-
tivity coefficient and the reaction rate are arbitrary functions of the temperature [17].

Note that the problem is also being studied in the case of several spatial variables, and
solutions of different types are constructed. In [18,19], the author considers the anisotropic
case and construct weak solutions. In [20], the authors present weak supersolutions for
different functional spaces. Analytical travelling waves for the nonlinear convection-
diffusion equation are studied in [21], including the use of Lie symmetry [22]. Various
models of a similar but more general form are used, for example, in the study of diffusion
processes in metallurgy [23], as well as the thermal fields located in the permafrost area [24].
The list could be continued, so the study of Equation (1) is still relevant.

In this paper, we deal with the problem of constructing and studying diffusion-wave-
type solutions in the case of power functions Φi. The existence and uniqueness theorem is
proved. It, unlike the known ones, allows us to set the boundary condition at a moving
point. In addition, exact solutions are found and investigated in detail in one particular
case. Their construction is reduced to the integration of the Cauchy problem for an ordinary
differential equation.

In contrast to similar solutions that we dealt with in [1], this study is more systematic.
Firstly, here these Cauchy problems are investigated in a general formulation. Secondly,
we do not limit ourselves to considering cases when equations can be integrated explicitly
but perform their qualitative analysis and constructed phase portraits, which allowed us to
investigate the behavior of solutions. We also construct finite difference schemes and prove
their convergence, which, in particular, makes it possible to construct accurate estimates
for the solutions obtained.

2. Problem Formulation

If the functions Φ1(T), Φ2(T) are differentiable, Equation (1) can be written as:

Tt = (Φ′1(T)Tx)x + Φ′2(T)Tx + Φ3(T). (2)

We assume that Φi(T), i = 1, 2, 3 are power functions:

Φ′1(T) = λ1Tσ1 , Φ′2(T) = λ2Tσ2 , Φ3(T) = λ1Tσ3 ,
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where σi, i = 1, 2, 3 are positive constants, σ1 + σ3 > 1, λi, i = 1, 2, 3 are constants, and
λ1 > 0.

The substitution u = Φ′1(T) = λ1Tσ1 and effortless transformations lead Equation (2)
to the form:

ut = uuxx +
1
σ

u2
x + Auθux + Buβ. (3)

Here σ = σ1 > 0, θ = σ1/σ2 > 0, β = σ3/σ1 + 1 − 1/σ1 > 0, A = λ2λ−1/σ
1 ,

B = λ3λ1/σ−1/σ3
1 . Obviously, Equation (3) has the trivial solution u ≡ 0.

Let us set for Equation (3) the boundary conditions:

u(t, x)|x=a(t) = f (t), f (0) = 0, f ′(0) ≥ 0. (4)

Previously, the same conditions for the porous medium Equation [25] were consid-
ered. In this paper, we prove the solvability of problem (3) and (4) in the class of analyt-
ical functions. Moreover, we show that if there exists a sufficiently smooth solution to
problem (3) and (4), then together with the trivial one, it forms a diffusion wave.

3. Main Theorem

Let us formulate and prove the existence and uniqueness theorem. Here and further,
an analytical solution means a solution in the class of analytical functions, i.e., it coincides
in a neighborhood with its Taylor expansion.

Recall that the diffusion wave-type solution means a piecewise smooth solution to
Equation (1), consisting of a trivial u ≡ 0 part and a nontrivial u = u(t, x) ≥ 0 one,
continuously joined on some line in the plane of variables t, x. This line is called the
wave front.

Theorem 1. Let the functions a(t) and f (t) be analytical in some neighborhood of t = 0; f ′(0) ≥ 0;
[a′(0)]2 + f ′(0) > 0; and let θ and β be natural (positive integer) numbers. Then problem (3)
and (4) has a nonzero analytical solution of diffusion-wave type in some neighborhood of the point
(t = 0, x = 0), which is unique if the direction of the diffusion-wave front moving is chosen.

Proof. Let us give a brief scheme of the further reasoning. First, we construct the solu-
tion in the form of a power series. Then we reduce problem (3) and (4), which is not a
Cauchy–Kovalevskaya type, to the standard form by the consequence of non-degenerate
substitutions. This standard form is subject to the Cauchy–Kovalevskaya theorem.

To simplify the boundary conditions, we make the substitution t1 = t, r = x− a(t).
It is easy to show that the Jacobian of the substitution is nonzero. As a result, we get
the problem:

ut − a′(t)ur = uurr +
1
σ

u2
r + Auθur + Buβ, (5)

u(t, r)|r=0 = f (t). (6)

Here and to further simplify the notation, the first independent variable retains t
without index 1.

We construct the solution to problem (5) and (6) as the series:

u(t, r) =
∞

∑
k,m=0

uk,m
tkrm

k!m!
, uk,m =

∂k+mu
∂tk∂rm

∣∣∣∣∣
t=r=0

. (7)

This method develops the method of special series, which was proposed and widely
used in the scientific school of A.F. Sidorov [26,27].

Since the construction essentially coincides [28] (see also [25]), we try to avoid repeti-
tions, focusing on new points in the proof and emerging difficulties.

Since the functions a(t), f (t) are analytical, they allow the expansions:



Mathematics 2022, 10, 232 4 of 22

f (t) =
∞

∑
n=0

fn
tn

n!
, a(t) =

∞

∑
n=0

an
tn

n!
.

Boundary condition (6) implies the equalities un,0 = fn, and f0 = 0. The remaining
coefficients of (7) are determined by recursive induction on the total order of differentiation
n = k + m.

First, we establish the induction base by considering the case k + m = 1. As it has
been shown, u1,0 = f1. Assume, that t = r = 0 in (5). Then it is possible to consider the
equation obtained as quadratic with respect to u0,1 and find its roots:

u±0,1 =
σ

2

(
−a1 ±

√
a2

1 + 4 f1

)
.

Since f ′(0) ≥ 0, [a′(0)]2 + f ′(0) > 0, both roots are real.
The direction of the diffusion wave moving depends on the choice of the sign of u0,1.

The value u−0,1 corresponds to a diffusion wave whose front lies to the right of the line
x = a(t) in the plane of variables t, x. A diffusion wave whose front is located to the left
of the line x = a(t) corresponds to u+

0,1. These cases can be considered separately, or one
can be chosen based on additional reasons. Looking ahead, we note that the procedure for
constructing a solution is similar in both cases.

If the sign is chosen, then the series (7) is constructed uniquely.
We differentiate (5) k times with respect to r, n− k times by t, and set t = r = 0. After

collecting terms, we arrive at the equality:

bn−kun−k−1,k+2 + ckun−k,k+1 + un−k+1,k = Rn−k,k, (8)

where:

bn−k = −(n− k) f1, ck = −
(

k +
2
σ

)
u0,1 − a1.

We do not show here the explicit form of Rn−k,k since it is cumbersome. Their form
for the particular case A = B = 0 can be found in [25], where it is presented since the
convergence proof technique used there requires direct estimates. Here, we use another
technique for constructing the majorant problem based on the hodograph transformation.
In this regard, it is enough to point out that Rn−k,k depend on the derivatives of the
unknown function of order at most n, which are known by the induction hypothesis. The
condition θ, β ∈ N ensures infinite differentiability of Equation (5).

Changing in (8) k from 0 to n and taking into account that un+1,0 = fn, and b0 = 0, we
obtain the following system of linear algebraic equations:

c0 bn 0 . . . 0 0 0
1 c1 bn−1 . . . 0 0 0

. . . . . .
0 0 0 . . . 1 cn−1 b1
0 0 0 . . . 0 1 cn

×


un,1
un−1,2

. . .
u1,n

u0,n+1

 =


R∗n,0

Rn−1,1
. . .

R1,n−1
R0,n

. (9)

Here R∗n,0 = Rn,0 − fn+1. You can see that the matrix An of system (9) is tridiagonal of
order n + 1, and the condition of diagonal dominance is not satisfied. Let us prove that its
determinant is nonzero.

Indeed, it is necessary to consider three cases: (1) f1 = 0; (2) f1 > 0, u0,1 = u+
0,1;

(3) f1 > 0, u0,1 = u−0,1.
1. Let f1 = 0. Then bk = 0 for all k, i.e., the matrix An is triangular two-diagonal and

its determinant is equal to the product of the elements of the main diagonal:

det An =
n

∏
i=0

ci.
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Two subcases are possible here: (a) u0,1 = u+
0,1 = 0, then ck = −a1 for all k;

(b) u0,1 = u−0,1 = −a1σ, then ck = (kσ + 1)a1. For the both subcases det An 6= 0 since
a1 6= 0.

2. Let f1 > 0, u0,1 = u+
0,1. Then bk < 0 for k ≥ 1 and ck > 0 for all k, i.e., all elements

on the main diagonal and subdiagonal are positive, and all elements of the superdiagonal
are negative. Hence, all the principal minors of the matrix An are positive, which means its
non-degeneracy.

3. Let f1 > 0, u0,1 = u−0,1. Then bk < 0 for k ≥ 1 and ck < 0 for all k. Let us introduce
an auxiliary numeric sequence ∆n,k as follows:

∆n,0 = 1, ∆n,1 = c0 < 0, ∆n,k = ck−1∆n,k−1 − bn−k+2∆n,k−2, k = 2, 3, . . . , n.

It can be shown by induction on k that ∆n,k consists of two positive terms for even
k and two negative ones for odd k. Hence we have that ∆n,k 6= 0 for all admissible n
and k. On the other hand, it is easy to show that ∆n,n = det An by induction on n. Thus,
det An 6= 0, moreover, det An > 0 for even n and det An < 0 for odd n.

Thus, we have proved that system (9) is non-degenerate, and the coefficients of
series (7) are uniquely determined if one of the two possible values of u±0,1 is chosen. This
finishes the first step of the proof.

We refuse the direct estimates applied in [25] in the proof of convergence. Here we
use an alternative methodology, which reduces the problem to a special form previously
considered in [1,28].

Since u0,0 = 0, u2
0,1 + u2

1,0 6= 0, then if series (7) converges, there exists a line r = g(t)
in the plane t, r, on which the unknown function vanishes:

u|r=g(t) = 0, g(0) = 0.

In problem (5) and (6), which is equivalent to the original one, let us make the substi-
tution t2 = t, s = r− g(t). We arrive at the problem that consists of one equation and two
boundary conditions:

ut − [a′(t) + g′(t)]us = uuss +
1
σ

u2
s + Auθus + Buβ, (10)

u(t, s)|s=−g(t) = f (t), u(t, s)|s=0 = 0. (11)

To simplify the notation, the first independent variable retains t without index 2.
The function g(t) is still unknown, and it will be determined simultaneously with the

construction of the function u. Thus, we obtain one of the problems with a free boundary.
The most famous of them for parabolic equations is the Stefan problem [29,30].

The following substitution changes the roles of the unknown function u and the indepen-
dent variable s, i.e., it is a variant of the hodograph transformation. Equation (10) becomes:

usuu = Buβs3
u + [st + a′(t) + g′(t) + Auθ ]s2

u +
1
σ

su. (12)

Conditions (11) take the form:

s(t, u)|u= f (t) = −g(t), s(t, u)|u=0 = 0. (13)

Let us differentiate the first condition of (13) and substitute the resulting expression
[st + su f ′(t)]|u= f (t) = −g′(t) into Equation (12). We obtain that:

usuu = Buβs3
u +

{
st + a′(t)− [st + su f ′(t)]|u= f (t) + Auθ

}
s2

u +
1
σ

su. (14)
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The positive trait of Equation (14) is that it no longer contains the unknown function
g(t). The boundary condition for (14) takes the form:

s(t, u)|u=0 = 0. (15)

Having constructed a solution to problem (14) and (15) which, recall, does not contain
the function g(t), we can find g(t) from the first condition of (13). Thus, we have decom-
posed problem (10) and (11), which includes two unknown functions into two separate
tasks. They contain one unknown function and can be solved sequentially.

As a result of the substitutions performed, we have obtained the problem with the
known diffusion front, which was previously considered in [1]. As already noted, the
detailed proof of the similar theorem for the porous medium equation with two spatial
variables is given in [28]. In this regard, we will be brief so as to not overload the paper.

Completing the series of substitutions, let us introduce the variable y = u− f , which
allows us to make the surface u = f as a new coordinate plane. Next, the unknown function
is represented as s(u, y) = us1(y) + u2Z(u, y), where s1 is the known analytical function,
and Z = Z(u, y) is a new unknown function. Note that in this case, the second boundary
condition of (13) is satisfied automatically, and the problem is reduced to one equation of
the form:

Ψ0(y)Z|y=0 + Ψ1(y)u(Zu|y=0) + Ψ2(y)u2(Zuu|y=0)

+B0Z + B1uSu + u2Zuu = h0 + uh1 + u2h2 + u3h3.
(16)

Here B0 = 2(1 + 1/σ), B1 = (4 + 1/σ) are constants; Ψi, i = 0, 1, 2 and hj, j = 0, 1, 2, 3
are analytical functions of their variables. Moreover, h0 = h0(u, y), and the remaining
hj depend on independent variables and derivatives of the function Z with respect to u
of order at most j − 1. The functions Ψi(y) are positive for y = 0. Thus, Equation (16)
obeys Lemma 2 from [28]. Therefore, it is solvable in the class of analytical functions. The
construction of the majorant problem and the proof of the existence of its analytical solution
are also carried out similarly.

Remark 1. We have constructed an analytical solution to problem (3) and (4) and simultaneously
determined the line x = a(t) + g(t), which is the diffusion wave front. The non-negative part of
the specified solution u = u+ and the trivial solution u ≡ 0, which are joined on the diffusion front,
give the required diffusion wave.

Remark 2. A particular case of problem (3) and (4), when f (t) ≡ 0, is a problem about the moving
of a diffusion wave with a given diffusion front, which obeys the theorem proved in [1].

4. Exact Solutions

Theorem 1 ensures the existence and uniqueness of the solution to the problem of
diffusion wave initiating and, remarkably, gives an algorithm for its construction in the
form of a double series. Unfortunately, it is local, and, as attempts to use such constructions
for a numerical modeling show [31], the radius of convergence of the series is usually small.
Thus, the theorem does not allow us to study the global properties of diffusion waves.
Besides, the requirement that the parameters β and θ in Equation (3) are natural numbers
significantly limits the generality. In general, these problems are far from being solved, as
well as for most other nonlinear degenerate partial differential equations. Therefore, we
investigate the properties of diffusion-wave type solutions to Equation (3) for an arbitrary
β > 0 and θ > 0 in the particular case. Exact solutions of parabolic equations are widely
used in solving applied problems: From modeling the well clogging process [32] to the
description of bubble dynamics [33].
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4.1. Reduction to Ordinary Differential Equations (ODEs)

Consider for Equation (3) the boundary condition:

u(t, x)|x=a(t) = 0, (17)

which, as already noted, is a particular case of (4) when f ≡ 0. Problem (3) and (17) is the
problem of the diffusion wave moving with a given front.

Note that problem (3) and (17) has the trivial solution u ≡ 0. However, in this case, the
uniqueness of the solution is violated, and a nonzero solution can also exist. Its existence in
the class of analytical functions follows from Theorem 1.

Current and further sections are devoted to finding and studying non-trivial exact
solutions to problem (3) and (17), the constructing of which is reduced to the integration of
Cauchy problems for ODEs. Previously, we studied this problem in detail for the nonlinear
heat equation [34] and for the nonlinear heat equation with a source [35] and found new
classes of diffusion-wave type solutions. Those problems corresponded to the case A = 0.
Here let us consider the case when A 6= 0.

Following [1], we look for solutions to Equation (3) having the form:

u = ψ(t)v(x− a(t)). (18)

Solution (18) is a generalized traveling wave, which becomes a simple traveling wave
if a(t) is a linear function. Substituting (18) into Equation (3), we obtain:

vv′′ +
1
σ
(v′)2 + Aψθ−1(t)vθv′ + Bψβ−2(t)vβ +

a′(t)
ψ(t)

v′ − ψ′(t)
ψ2(t)

v = 0. (19)

In order for (19) to become an ODE with respect to v(z), z = x− a(t), it is necessary
and sufficient to satisfy the conditions:

a′(t)
ψ(t)

= const,
ψ′(t)
ψ2(t)

= const, ψθ−1(t) = const, ψβ−2(t) = const. (20)

Here the first two conditions form a first-order ODE system. The third and fourth
conditions are additional compatibility conditions that can be satisfied, for example, by
choosing θ and β.

Let us consider two possible cases.
1. Let ψ(t) = ψ = const. Without losing the generality of consideration, we can

set ψ = 1. Then a(t) = µt + η, where µ, η are constants, and (19) takes the form of the
following ODE:

vv′′ +
1
σ
(v′)2 + (Avθ + µ)v′ + Bvβ = 0. (21)

We assume that in this case η = 0, µ > 0, which also does not reduce the generality
of consideration.

2. Let now ψ(t) 6= const. Then from the first two equations of (20) we have that
ψ(t) = ω/(µt + η), a(t) = ω ln(µt + η), where µ, η, and ω are nonzero constants, η > 0.
You can see that the necessary and sufficient conditions to satisfy the third and fourth
equalities of (20) are θ = 1, β = 2. Then (19) takes the form of the following ODE:

vv′′ +
1
σ
(v′)2 + (Av + µ)v′ + Bv2 +

µ

ω
v = 0. (22)

We can bring (21) and (22) to the general form:

vv′′ +
1
σ
(v′)2 + (Avθ + µ)v′ + Bvβ + Cv = 0. (23)
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4.2. Cauchy Conditions for ODEs

It is easy to see that condition (17) becomes v(0) = 0 for a solution having the form
(18). Then, obviously, Equation (23) has the trivial solution v ≡ 0. Assuming v = 0 in (23),
we obtain the quadratic equation with respect to v1 = v′(0):

1
σ

v2
1 + µv1 = 0, (24)

which has roots v1 = 0 and v1 = −µσ. Accordingly, we will consider Equation (23) with
the Cauchy conditions of two types:

v(0) = 0, v′(0) = 0; (25)

v(0) = 0, v′(0) = −µσ. (26)

The trivial solution corresponds to conditions (25). However, as it is shown below,
there may also exist a non-trivial solution that is not analytical, i.e., it cannot be represented
as a Taylor series.

Theorem 1 implies that problem (23) and (26) for positive integer values of θ and β has
the unique analytic solution in the form of a convergent series in powers of z. Unfortunately,
the theorem does not hold for non-integer values of these constants.

Note that Equation (23), although it is an ODE, stays still complex to study. First, it is
nonlinear. Second, the Cauchy problems inherit singularities from the original statements,
which does not allow for using standard methods and theorems of ODE theory. Thus, the
general case is quite complex and cannot be explored within the framework of a single
article. Therefore, we consider here one of the particular cases. On the one hand, this case
is significant and has interesting properties. On the other hand, it gives a clear idea of the
difficulties encountered in studying the properties of the obtained classes of exact solutions
and what techniques can be applied to overcome them.

5. Traveling Wave. Qualitative Analysis

In this section, we consider the exact solutions having the form of traveling waves,
which, as shown above, are described by Equation (21) with Cauchy conditions (25) or (26).
We study them using the methods of ODE theory, including qualitative analysis with the
construction of a phase portrait and some quantitative estimates.

5.1. Transition to Phase Variables

Using the fact that the equation does not explicitly depend on z, we proceed to the
phase plane. Let us introduce a new independent variable w and an unknown function p:

w = vθ , p = v′. (27)

The substitution is non-degenerate if θ ≥ 1. Equation (21) takes the form:

θwp
dp
dw

+
p2

σ
+ Awp + µp + Bwβ/θ = 0. (28)

Let θ = β ≥ 1, i.e., in the third and fourth terms of Equation (21) v has the same degree.
Due to the linear change of variables, we can reduce the number of constants. Let,

w = w̃Ã, Ã =
µ

A
; p = p̃B̃, B̃ =

µ

β
.

Then Equation (28) takes the form (∼ is omitted for simplicity):

wp
dp
dw

+
p2

γ
+ wp + p + αw = 0, (29)
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where γ = σθ > 0, α = B/µ > 0. Note that Equation (29) is similar to (39) from [1],
however, the appearance of the term pw in (29) significantly complicates the study.

For (29), let us consider solutions corresponding to the initial condition given at w = 0.
Since θ > 0, nontrivial solutions of this kind generate solutions to the original problem
having the diffusion-wave type. Looking ahead, we note that some of them may not have
physical meaning.

If we substitute w = 0 into Equation (29), we obtain the algebraic relation p2(0)/γ +
p(0) = 0, which is an analogue of equality (24). You can make sure that it has roots
(1) p(0) = 0 and (2) p(0) = −γ, which correspond to conditions (26) and (25), respectively.
Now let us consider Equation (29) with Cauchy conditions (1) and (2) in more detail.

5.2. Singular Points

First, we study the singular points of Equation (29). Since it is autonomous, let us turn
to the phase plane (v, v′ = w). We use the classic technique proposed in [36] (see, also [34]).
The following dynamic system corresponds to Equation (29):

dw
dζ

= wp,
dp
dζ

= − p2

γ
− p− pw− αw, (30)

where dz = w dζ.
Consider now the equilibrium states (singular points) of system (30). There are two

equilibrium states (0,−γ) and (0, 0).
Let us introduce the following notation:

R(w, p) = wp, Q(w, p) = −p2/γ− p− pw− αw,

M(v, w) =

(
Rw Rp
Qw Qp

)
=

(
p w

−p− α −2p/γ− w− 1

)
,

∆(w, p) = det M(w, p) = −2p2

γ
− p + αw,

δ(w, p) = Tr M(w, p) =
(γ− 2)

γ
p− w− 1.

Let us define the type of each singular point.
1. Consider the point (0,−γ). Since ∆(0,−γ) = −γ 6= 0, it is a simple equilibrium

point. From det(M− λE)|w=0,p=−γ = (λ + γ)(λ− 1), it follows that λ1 = −γ and λ2 = 1
are the roots of the characteristic equation. Therefore, the point (0,−γ) is the topological
saddle since ∆ < 0, λ1, λ2 ∈ R and λ1λ2 < 0.

2. Consider the point (0, 0). Since ∆(0, 0) = 0, this is a compound equilibrium
point. Here δ(0, 0) = −1 6= 0, and the equation that is obtained from system (30) by the
elimination of the independent variable ζ can be written as:

wpdw− [lp− p2/γ− wp− αw] dw = 0,

where l = −1. We represent the solution to the equation:

−lp + p2/γ + pw + αw = 0

as a series in powers of w, which we substitute into pw. As a result, we have:

p = φ(w) = −αw + . . . , ξ(w) = (wp)|p=φ(w) = −αw2 + . . .

Since the lowest power of w in the expansion ξ(w) equals two, the point (0, 0) is a
saddle-node with one nodal and two saddle sectors. The nodal sector is stable because
l < 0. Moreover, if α < 0, then the trajectories of the nodal sector tend to (0, 0) when
ζ → −∞ on the left of the Op axis. If α > 0, as in the considered case, the trajectories of the
nodal sector tend to (0, 0) when ζ → +∞ on the right of the Op axis.
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5.3. Phase Portrait

Let us construct and explore the phase portrait of system (30) for γ, α > 0. Note that
in all the considered cases:

1. The phase trajectories change the direction of motion when passing through the
Ow axis, as well as when crossing the quadric p2/γ + p + pw + αw = 0, which, in
particular, singular points belong;

2. Both singular points have vertical semi-separatrices, since they are located on the
Op axis.

Let us first determine the properties of the second-order curve:

p2/γ + p + pw + αw = 0.

Bringing it to its canonical form, we obtain:

(
p +

γw
2

+
γ

2

)2
− γ2

4

(
w + 1− 2α

γ

)2
= α(γ− α). (31)

It is easy to see that for α = γ, we have a pair of intersecting straight lines
p1(w) = −γw− γ + α, p2(w) ≡ −α. If α 6= γ, then we obtain hyperbolas with the same
asymptotes p = p1(w) and p = p2(w) and different positions of the branches depending
on the sign of the difference γ− α.

Let us consider all possible cases. Note here that in all cases, there are three semi-
separatrices. The first is a monotonically decreasing curve coming to the singular point
(0, 0) and located in the second quadrant (bold curve S1 in Figure 1–3). The second and
third are vertical semi-separatrices lying on the Op axis.

Case γ = α. Figure 1 shows the phase portrait of system (30) for this case. As already
noted, the quadric (31) degenerates into two intersecting lines (dashed and green lines).
Besides the separatrices mentioned above, there is also a separatrix that coincides with the
line p = −γ (green line). The nodal sector is bounded by the Op axis and the straight line
p = −γ.

p

w

0

1
S

2
S

3
S -g

Figure 1. Phase portrait for γ = α.

Case γ > α. Figure 2 shows the phase portrait of system (30). You can see that half-
hyperbolas (31) are located in the right upper and left lower quarters, into which the lines
p1(w) = −γw− γ + α, p2(w) ≡ −α divide the coordinate plane (dashed curves). Here we
have two additional separatrices S2 and S3 coming into the point (0,−γ) (purple curves).
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Both S2 and S3 are monotonically decreasing functions; S2 tends to −∞ when ζ → +∞;
S3 tends to p = −α when ζ → −∞. The nodal sector is bounded by the Op axis and the
semi-separatrix S2 located in the fourth quadrant.

p

w

0

1
S

2
S

3
S

-g

Figure 2. Phase portrait for γ > α.

Case γ < α. Here half-hyperbolas (31) are located in the left upper and right lower
quarters, into which the lines p1(w) = −γw− γ + α, p2(w) ≡ −α divide the coordinate
plane (see Figure 3). Again, in addition to the same separatrices for all cases, we have two
semi-separatrices going out the point (0,−γ) (blue curves). The separatrix S2 first increases
to the intersection with the Ow axis, then decreases and asymptotically tends to the Op axis
when ζ → +∞, bounding the nodal sector. The separatrix S3 is a monotonically increasing
function and tends to the line p = −α when ζ → −∞.

p

w

0

1
S

2
S

-g
3

S

Figure 3. Phase portrait for γ < α.

The properties of separatrices that do not coincide with the Op axis and the interpreta-
tion of the results from the original problem point of view will be discussed below.
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6. Zero Initial Condition

Let us first consider the case when the initial condition for Equation (29) has the form:

p(0) = 0. (32)

Previously, this case has not been considered. The only exception is paper [34], where
we showed the existence of a semi-separatrix lying in the second quadrant and passing
through the origin for the porous medium equation. However, the properties of the
corresponding solution were not studied.

Obviously, in this case, the classical existence theorems are inapplicable due to degen-
eracy. Therefore, we attempt to eliminate the singularity.

6.1. Solution in the Form of a Series

Following [35], we try to construct an analytical solution to problem (29) and (32) as
the series:

p(w) =
∞

∑
k=0

pk
k!

zk, pk = p(k)(0). (33)

Let us construct the coefficients for (33) using the following recurrent procedure.
From (32) we have p0 = p(0) = 0. To find p1, we differentiate Equation (29) with respect
to w, set w = 0, p(0) = 0, and obtain that p1 = p′(0) = −α < 0. Similarly, we get
p2 = 2α(1− α− α/γ). Thus, the induction base is found.

Assume that p0, p1, . . . , pk−1, k ≥ 3 are determined. To find pk, we differentiate
Equation (29) k times with respect to w and set w = 0. Then we arrive at the equality:

k
k−1

∑
i=0

Ci
k−1 pi pk−i +

1
γ

k

∑
i=0

Ci
k pi pk−i + kpk−1 + pk = 0, (34)

where Ci
k = k!/[i!(k− i)!], k ≥ i. Resolving (34) with respect to pk and taking into account

p0 = 0, p1 = −α, we have that:

pk = k
(

αk +
2α

γ
− 1
)

pk−1 − k
k−2

∑
i=2

Ci
k−1 pi pk−i −

1
γ

k−2

∑
i=2

Ci
k pi pk−i. (35)

You can see that all terms on the right-hand side of (35) are known by the induc-
tion hypothesis. Thus, all the coefficients of series (33) are uniquely determined by the
formul obtained.

Now we study the properties of the constructed series. To do this, consider:

p2 = 2α

[
1− α(1 + γ)

γ

]
.

If α = γ/(1 + γ) we have p2 = 0. Then, it is easy to show by induction on k that
p3 = p4 = . . . = pk = . . . = 0. This means that the series breaks off, and the solution has
the form p = −αw.

If α > γ/(1 + γ), then p2 < 0, and we can make sure that pk < 0, k = 3, . . . Therefore,
from (35) we have that:

pk < k
(

αk +
2α

γ
− 1
)

pk−1 < 0.

Hence we get that:

lim
k→∞

|pk|(k− 1)!
|pk−1|k!

> lim
k→∞

k(k− 1)!
k!

(
αk +

2α

γ
− 1
)
= +∞.

Thus, we have proved the divergence of series (33) and the validity of the following
proposition.
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Proposition 1. Problem (29) and (32) has:

1. The analytical solution p = −αw, if α = γ/(1 + γ);
2. The solution having the form of a formal power series that converges only at the point w = 0,

if α > γ/(1 + γ).

Note that for 0 < α < γ/(1 + γ) the terms in formula (35) have, generally speaking,
different signs, and the question of the convergence or divergence of series (33) is much
more challenging. Nevertheless, the results of numerical calculations allow us to make a
reasonable assumption that the series diverges.

Remark 3. There are also simpler examples based on a similar idea. Indeed, consider the Cauchy problem:

xyy′ − y + x + 1 = 0, y(0) = 1.

We can easily make sure that in this case y′(0) = 1, y′′(0) = 2, and y(k)(0) ≥ k2y(k−1)(0) > 0,
k ≥ 2, which means the divergence of the Maclaurin series for the function y(x) at x 6= 0.

6.2. Euler Polygonal Approximations

As you know, the absence of an analytical solution to the Cauchy problem does not
mean that it is impossible to construct a smooth (classical) solution. The simplest example is
the problem y′ =

√
x, y(0) = 0, which has a unique continuously differentiable solution for

x ≥ 0. In this section, we show that problem (29) and (32) has a similar property for w ≤ 0,
especially since the results of qualitative analysis evidence the existence of such a solution.

We use the classical Euler method. Therefore, it is necessary to construct a finite
difference approximation of Equation (29). Calculations have shown that explicit difference
schemes, in this case, turn out to be unstable. Therefore, we consider an implicit one, which
at an arbitrary point wk, k ≥ 1 has the form:

wk pk
pk − pk−1
wk − wk−1

+
1
γ

p2
k + pk + wk pk + αwk = 0. (36)

From Cauchy condition (32) we have that p0 = p(0) = 0. For convenience, we use
a finite difference approximation with a constant step h, i.e., wk = kh. Then (36) takes
the form (

k +
1
γ

)
p2

k + (1 + kh− kpk−1)pk + αkh = 0. (37)

The roots of Equation (37) are:

pk =
−1− kh + kpk−1

2(k + 1/γ)
±

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

.

We choose the root that corresponds to + sign, otherwise p1 → −γ/(1 + γ) if h→ 0,
i.e., there is a discontinuity of the first kind at zero. So, we have the recurrent sequence:

p0 = 0, pk =
−1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

, k = 1, 2, . . . (38)

For h > 0, the radical expression in (38) rapidly becomes negative as k increases, i.e.,
the scheme is not applicable in this case. This fact goes with the results of the qualitative
analysis, which showed that if α 6= γ/(γ + 1) problem (29) and (32) for w > 0 does not
have a solution.

We investigate the properties of the sequence pk for w < 0, i.e., when h < 0. To do this,
we formulate the following auxiliary lemma.

Lemma 1. Let x > y, A ≥ B > 0. Then x +
√

x2 + A− y−
√

y2 + B > 0.
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Proof. If y ≥ 0, then the lemma is obvious. Let −y > 0, y2 > x2. Since A ≥ B, the
inequality holds:

x +
√

x2 + A− y−
√

y2 + B ≥ x +
√

x2 + A− y−
√

y2 + A.

To prove the Lemma, it is enough to show that the right-hand side is greater than
zero. We use the rule of contraries. Let x +

√
x2 + A− y−

√
y2 + A < 0, then x − y <√

y2 + A−
√

x2 + A. Since x > y, we can square this inequality and collect the terms:

xy + A >
√
(y2 + A)(x2 + A).

If we square this inequality one more time and collect the terms, we obtain the inequality:

2xy > y2 + x2,

which is wrong. The contradiction proves the Lemma.

Now we formulate and prove the lemma about the properties of the sequence pk.

Lemma 2. Let h < 0, α > 0, γ > 0. Then the sequence pk is monotonically increasing with
respect to k, and the estimate holds:

pk ≥ −kh min
{

α,
γ

γ + 1

}
, k = 0, 1, 2 . . . (39)

Proof. We carry out the proof by induction on k. Assume for certainty that α ≤ γ/(γ+ 1) =
1/(1 + 1/γ). Then,

p1 − p0 = p1 ≥ −
(h + 1)α

2
+

√
(h + 1)2α2

4
− hα2 = − (h + 1)α

2
+

√
(1− h)2α2

4
= −αh,

and the induction base is determined.
Let 0 = p0 < p1 < . . . < pk. Consider the difference pk+1 − pk. Using (38), we can

rewrite it as:

pk+1 − pk =
−1− (k + 1)h + (k + 1)pk

2(k + 1 + 1/γ)
− −1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− (k + 1)h + (k + 1)pk)2

4(k + 1 + 1/γ)2 − α(k + 1)h
k + 1 + 1/γ

−

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

.

Consider the first difference on the right side:

−1− (k + 1)h + (k + 1)pk
2(k + 1 + 1/γ)

− −1− kh + kpk−1
2(k + 1/γ)

=

(k + 1)(k + 1/γ)(pk − pk−1) + pk−1/γ + 1− h/γ

2(k + 1 + 1/γ)(k + 1/γ)
> 0.

It is valid since all terms and factors are positive both in the numerator and in the
denominator by the Lemma condition and the assumption of induction. It is easy to make
sure that the inequality holds:

− α(k + 1)h
k + 1 + 1/γ

> − αkh
k + 1/γ

> 0.

Thus, we can apply Lemma 1 to the difference of the roots, which ensures that it is
positive. Therefore, we obtain that pk+1 − pk > 0. The monotonic increase of the sequence
pk is proved.
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Let us turn to justify estimate (39). We carry out the proof again by induction on k.
The induction base was determined earlier. Let pi ≥ −iαh, i = 1, 2 . . . , k− 1. Then,

pk ≥ −
1 + kh + k(k− 1)αh

2(k− 1 + 1/α)
+

√
(1 + kh + k(k− 1)αh)2

4(k− 1 + 1/α)2 − kαh
k− 1 + 1/α

= − khα

2
− 1

2(k− 1 + 1/α)
+

√[
1

2(k− 1 + 1/α)
− khα

2

]2
= −khα.

The case α ≥ γ/(γ + 1) is treated similarly.

Remark 4. In the case α = γ/(γ + 1), the double unstrict inequality (39) becomes an equality,
and we get the previously found linear solution p = −αw.

With the help of the lemmas, we now prove the main theorem of this section. Let us
introduce the notation:

αm = min
{

α,
γ

γ + 1

}
, αM = max

{
α,

γ

γ + 1

}
.

Theorem 2. Problem (29) and (32) for w ≤ 0 has a decreasing continuously differentiable solution
p = p(w) satisfying the inequality:

αmw ≤ p(w) ≤ αMw ≤ 0. (40)

Proof. To prove the existence of the solution with the desired properties, we consider and
estimate the difference:

∆pk = pk − pk−1 =
−1− kh + kpk−1

2(k + 1/γ)
+

√
(−1− kh + kpk−1)2

4(k + 1/γ)2 − αkh
k + 1/γ

− pk−1 =

− 1
2(k + 1/γ)

+
k(pk−1 − h)
2(k + 1/γ)

+

√[
− 1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

+
−αkh

k + 1/γ
− pk−1.

It follows from Lemma 2 that ∆pk > 0.
Let first, as in the proof of Lemma 2, α ≤ γ/(γ + 1). Then by Lemma 2, the following

chain of inequalities holds:

k(pk−1 − h)
k + 1/γ

≥ −αkh(k− 1 + 1/α)

k + 1/γ
≥ −αkh(k− 1 + 1 + 1/γ)

k + 1/γ
= −αkh > 0.

Hence we get that:

∆pk ≤ −
1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

+

√[
− 1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

+
k(pk−1 − h)
(k + 1/γ)2

−pk−1 = − 1
2(k + 1/γ)

+
k(pk−1 − h)
2(k + 1/γ)

+

√[
1

2(k + 1/γ)
+

k(pk−1 − h)
2(k + 1/γ)

]2

− pk−1

=
k(pk−1 − h)

k + 1/γ
− pk−1 = − pk−1

kγ + 1
− h ≤ − γh

γ + 1
.

The case α ≥ γ/(γ + 1) is treated similarly and gives the estimate 0 < ∆pk ≤ −αh.
Thus, it has been shown that:

0 < ∆pk ≤ −max
{

α,
γ

γ + 1

}
h, k = 1, 2, . . . (41)
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It follows from (41) that the constructed difference scheme is stable. According to the
Lax equivalence theorem, since it also has the approximation property (by construction), it
is convergent. This means that the sequence of Euler polygonal lines with vertices at the
points (kh, pk) converges to a continuously differentiable solution to problem (29) and (32)
if k → ∞, h → 0. Moreover, the estimates show that the solution exists for all w ≤ 0
and decreases.

Inequality (41) also gives the upper estimate from (40). The lower estimate (40) follows
from Lemma 2.

Remark 5. As the results of the qualitative analysis show, if w > 0, Problem (29) and (32) is
solvable only for α = γ/(γ + 1). This explains the divergence of series (33) for α 6= γ/(γ + 1).

7. Nonzero Initial Condition

Let us now consider the second case when the initial condition for Equation (29) is
p(0) = −γ, i.e., the problem:

wp
dp
dw

+
p2

γ
+ wp + p + αw = 0, p(0) = −γ. (42)

Looking ahead, we note that this case leads to results that can be clearly interpreted
from the point of view of Problem (3) and (17).

7.1. Solution in the Form of a Series

Let us show that the solution to problem (42) can be found as a power series that
converges in a small neighborhood of zero. We construct the series having form (33).

From the boundary condition, we have p0 = p(0) = −γ. To find p1, we differentiate
Equation (42) with respect to w, set w = 0, p(0) = −γ, and obtain that p1 = (α−γ)/(γ+ 1).
Similarly, we get:

p2 =
2α(α− γ)

γ(γ + 1)(2γ + 1)
.

Thus, the induction base is found.
Assume that p0, p1, . . . , pk−1, k ≥ 3 are determined. To find pk, we differentiate

Equation (42) k times with respect to w and set w = 0. Then we arrive at the equality
(34). Resolving with respect to pk gives:

pk =
1

γk + 1

[
k−1

∑
i=1

Ci
k

(
k− i +

1
γ

)
pi pk−i + kpk−1

]
. (43)

You can see that all terms on the right-hand side of (43) are known by the induction
hypothesis. Thus, all the coefficients of series (33) are uniquely determined by formula (43).
If γ = α, then pi = 0, i = 1, 2, . . ., i.e., the series breaks off and p ≡ −γ = −α.

The local convergence of series (43) follows from Theorem 1 (see also Theorem 1 in [1]).
We have not yet estimated the radius of convergence, but the results of previous studies
allow us to make a reasonable assumption that it is small [37]. Thus, we have justified the
following proposition.

Proposition 2. Problem (42) has an analytical solution having the form of the locally convergent
series (33), whose coefficients are determined by formula (43). The series breaks off if α = γ, and the
solution is p = −γ.

7.2. Euler Polygonal Approximations

The constructed series locally converges in some neighborhood of the point (0,−γ).
To find the global properties of the solution to problem (42), as above, we use the Euler
method. Consider the following finite difference approximation of (42):



Mathematics 2022, 10, 232 17 of 22

wk pk−1
pk − pk−1

h
+

1
γ

pk pk−1 + pk−1(1 + wk) + αwk = 0,

where wk = kh. Then we yield the recurrent formula:

pk =
1

1 + 1/(kγ)

(
pk−1 − h− 1

k
− αh

pk−1

)
. (44)

From the Cauchy condition, we have p0 = −γ.

Lemma 3. The following formula is valid:

pk+1 = −γ− (k + 1)γh
γ + 1

− αh
k+1

∑
j=1

1

pj−1
k+1
∏
i=j

[1 + 1/(iγ)]
. (45)

The lemma is proved by induction on k. The proof is simple and based on direct sub-
stitutions.

Lemma 3 is the basis for proving the properties of the difference scheme, which are
given below.

Proposition 3. Sequence (45) for h > 0, γ > α is decreasing, and 0 < (γ− α)h/(γ + 1) ≤
pk−1 − pk < (α/γ + γ)h/(γ + 1), lim

k→∞
(pk−1 − pk) = γh/(γ + 1).

Proof. We carry out the proof by induction on k. Indeed,

p0 − p1 = −γ + γ +
(γ− α)h

γ + 1
=

(γ− α)h
γ + 1

> 0.

Thus, the induction base is found. Let −γ = p0 > p1 > . . . > pk−1, then

pk−1 − pk =
γh

γ + 1
+ αh

k

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]
− αh

k−1

∑
j=1

1

pj−1
k−1
∏
i=j

[1 + 1/(iγ)]
=

=
γh

γ + 1
− αh

kγ

k−1

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]
+

αh
pk−1[1 + 1/(γk)]

≥

≥ γh
γ + 1

− αh
kγpk−1

kγ

γ + 1
=

γh
γ + 1

+
αγh

(γ + 1)pk−1
≥ γh

γ + 1
− αγh

(γ + 1)γ
=

(γ− α)h
γ + 1

> 0.

On the other hand, the last estimates show that:

pk−1 − pk <
γh

γ + 1
− αh

kγ

k−1

∑
j=1

1

pj−1
k

∏
i=j

[1 + 1/(iγ)]

if we cast out the negative term. Hence, we have that:

pk−1 − pk <
γh

γ + 1
− αh

kγp0

k−1

∑
j=1

1
k

∏
i=j

[1 + 1/(iγ)]
=

γh
γ + 1

+
αh
kγ2

k
1 + 1/γ

=
γ + α/γ

γ + 1
h < h.
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Proposition 4. Sequence (45) for h > 0, γ < α is increasing, and 0 < (α − γ)h/(γ + 1) ≤
pk − pk−1. Moreover, there exists k∗ < γ(γ + 1)/[(α− γ)h] such that pk∗ ≥ 0.

Proof. The inequality pk − pk−1 ≥ (α− γ)h/(γ + 1) > 0 is proved similarly to Proposi-
tion 3. The difference is that due to the change of the sign of γ− α, the sign of the difference
estimate ∆pk = pk − pk−1 changes, starting from ∆p1. Hence, in particular, it follows
that pk ≥ −γ + (α− γ)kh/(γ + 1). The right side of the last inequality equals to zero for
k∗ = γ(γ + 1)/[(α− γ)h]. If the resulting value is not an integer, then it is necessary to
round it with excess, and then we obtain pk∗ > 0.

Proposition 5. Sequence (45) for h < 0, γ > α is increasing, and for h < 0, γ < α is decreasing,
and in both cases lim

k→∞
pk = −α.

Proof. The increase and decrease of the sequence pn for h < 0 are proved similarly to
Propositions 3 and 4, respectively. On the other hand, since the signs in front of pk−1 and
1/pk−1 on the right side of (44) in this case are the same, the limit is not equal to infinity.
Obviously, the limiting value p∞ satisfies the following equation, which is obtained if we
tend k→ ∞ in (44):

p∞ = p∞ − h− αh
p∞

.

It is easy to see that the solution is p∞ = −α.

Theorem 3. Problem (44) has a continuously differentiable solution, which monotonically tends to
−α when w→ −∞. For w > 0, three cases are possible:

1. If γ > α, then the solution is monotonically decreasing, and the estimate holds:

−γ− α/γ + γ

γ + 1
w < p ≤ −γ− γ− α

γ + 1
w;

2. If γ > α, then the solution monotonically increases and at some point w = w∗ < γ(γ +
1)/(α− γ) vanishes;

3. If γ = α, then the solution is the constant p ≡ −γ = −α.

The theorem statement follows from Propositions 3–5 by the reasoning similar to those
we carried out in the proof of Theorem 2.

8. Discussion

This section is devoted to interpreting the results obtained in the previous sections from
the point of view of the corresponding diffusion waves properties. Recall that Equation (29)
has been obtained from Equation (21) by changing variables. Equation (21), in turn, follows
from Equation (3) if the diffusion-wave front x = a(t) is a linear function.

The results for problem (29) and (32) appear to be non-physical. At any rate, we cannot
interpret the negative values of w (for which the solution was constructed) from the point
of view of applications. The same situation occurs to the «left branches» of the solution to
problem (42).

However, the «right branches» of solutions (42), along which w ≥ 0, allow a clear
physical interpretation.

We have the function p = p∗(w), which is the solution to problem 42 for w ≥ 0.
Returning to the space of variables z, w, we obtain that:

z =

w∫
0

dζ

p∗(ζ)
. (46)

As shown above, there are three different cases in which the function p(w) behaves
differently. Let us consider them separately.
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Case γ = α. Here p∗(w) ≡ −γ, whence we have that v = −γz, i.e., u = −σµ(x− µt)
for µσ = B/A (see Figure 4). Previously, we constructed a similar solution for the porous
medium Equation [1]. In this case, the diffusion wave has the form of a plane in the space
of variables t, x, and u.

v

z

v

t

x

x t= m

Figure 4. Solution v(z) = −γz and diffusion wave u = −σµ(x− µt).

Case γ > α. Then p = p∗(w) is infinitely decreasing, and it is bounded upper and
below by two straight lines. Hence we have that the function w(z) = vθ(z) located between
two exponents with negative powers when z→ ∞. Returning to the plane of variables v, z,
we obtain a monotone infinitely decreasing function, which is defined for all z ∈ [0,−∞).
The diffusion wave is a cylindrical surface in the space of variables t, x, u, and the unknown
function increases with exponential velocity along the generatrix of the cylinder with
distance from the wave front (Figure 5).

v

z

v

t

x

x t= m

Figure 5. Solution v(z) and the diffusion wave.

Case γ < α. The study has shown that the function p(w) first increases, and there is
a point w∗ > 0 such that p(w∗) = 0, lim

w→w∗−0
p′(w) = +∞. The point can be determined

numerically, since the problem does not have singularities on the interval [0, w∗). Consider
the problem:

dw
dp

= − wp
p2

γ + wp + p + αw
= 0, w(0) = w∗, (47)

where w is an unknown function, and p is an independent variable. It follows from the
results of the qualitative analysis that the solution to problem (47) is decreasing on the ray
[0,+∞), and lim

p→+∞
w(p) = +0. Returning to the plane of variables v, z, we get the solution

v = v∗(x). From the original problem point of view, there exists a solution u = v∗(x− µt),
which is a solitary wave (soliton) (see Figure 6).

v

z

u

t

x

Figure 6. Solution v(z) and the soliton.
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Summing up, we note that for different values of the coefficients γ = σθ > 0,
α = B/µ > 0, we obtained the same basic configurations of diffusion waves that we
described earlier (see [1]) for incomplete variants of Equations (3):

• A linear heat wave for the porous medium equation;
• An infinitely increasing wave with a nonzero second derivative with distance from

the wave front for the convection–diffusion equation;
• A diffusion wave in the form of a soliton for the generalized porous medium equation

(the heat equation with source).

Parameter γ characterizes the diffusion and convection terms, and parameter α char-
acterizes the source and velocity of the wave front. It seems pretty natural that if γ > α,
then the diffusion wave for the complete Equation (3) behaves similarly to the case with-
out a source but with a convection term (the convection-diffusion equation). The case
γ < α corresponds to the case without convection term but with a source (the generalized
porous medium equation). Finally, if the parameters are equal, the diffusion wave behaves
similarly to the case when there is neither a source nor a convection term (the porous
medium equation).

9. Conclusions

For a second-order one-dimensional singular evolutionary equation with power non-
linearities, we studied diffusion-wave-type solutions propagating along a zero background
with a finite velocity. Such properties of solutions usually appear for hyperbolic equations
and are atypical for parabolic ones. Apparently, their occurrence is associated with the
degeneracy mentioned above, which, in turn, is caused by vanishing the term multiplying
the highest (second) derivative. Besides being a fascinating mathematical object, such
solutions are also valuable for applications. They allow us to describe nonlinear filtration
and diffusion processes with a finite velocity of perturbation propagation by parabolic
models. Such models are considered better described physical processes at a distance from
the degeneracy line.

This paper is the second step in a large research cycle started in [1]. We have considered
an equation with power nonlinearities, a specification of the general equation discussed
earlier. The choice of the type of functions was related to the fact that such nonlinearities
usually arise in applications. Due to this, we have been able to get more profound results.
Thus, in the existence and uniqueness theorem, we have chosen a more complex type
of boundary conditions, raising a diffusion wave. As a result, both the technique of
constructing the solution and the procedure for proving the convergence of series have
become significantly more complicated. Besides, we have studied in detail one of the
particular but quite natural cases, where the degree of the convection term coincides with
the degree of the source. We have performed both a qualitative analysis of ODEs with the
construction of phase portraits and obtained quantitative estimates for the solutions.

The most significant result is that we have shown that all the special cases for incom-
plete equations take place for the complete equation, and other configurations of diffusion
waves do not arise. In addition, a nontrivial solution to the Cauchy problem with zero
initial conditions has been found. Although this solution has no physical interpretation
since it is negative, its presence is an interesting and non-obvious mathematical fact.

Further research in this direction in the short term, in our opinion, should be associated
with the development of a practical computational technique for diffusion waves construc-
tion. In this context, the boundary element approach, which we have been developing
in recent years in collaboration with colleagues, looks promising. It is also advisable to
consider other special cases, for example, to construct and study generalized self-similar
solutions to the considered problem.

In the long term, it would be helpful to increase the dimensionality and consider
cases where an unknown function depends on two or three spatial variables, as well as
consider systems of partial differential equations. In the end, the final stage of the research
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cycle should be the application of the developed model-algorithmic apparatus for solving
applied problems related to modeling diffusion processes occurring in Lake Baikal.

Author Contributions: Conceptualization, A.K.; Formal analysis, A.K.; Investigation, A.K. and A.L.;
Methodology, A.K.; Validation, A.L.; Visualization, A.L.; Writing—original draft, A.K.; Writing—
review & editing, A.L. All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was funded by the Ministry of Education and Science of the Russian Federation
within the framework of the project “Analytical and numerical methods of mathematical physics
in problems of tomography, quantum field theory and fluid mechanics” (no. of state registration:
121041300058-1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kazakov, A. Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type. Symmetry 2021, 13, 871.

[CrossRef]
2. Friedman, A. Partial Differential Equations of Parabolic Type; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
3. Ladyzenskaja, O.; Solonnikov, V.; Ural’ceva, N. Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical

Monographs; American Mathematical Society: Providence, RI, USA, 1988; Volume 23.
4. DiBenedetto, E. Degenerate Parabolic Equations; Springer: New York, NY, USA, 1993. [CrossRef]
5. Zeldovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Dover Publications: New York,

NY, USA, 2002. [CrossRef]
6. Barenblatt, G.; Entov, V.; Ryzhik, V. Theory of Fluid Flows through Natural Rocks; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1990.
7. Vazquez, J. The Porous Medium Equation: Mathematical Theory; Clarendon Press: Oxford, UK, 2007.
8. Murray, J. Mathematical Biology: I. An Introduction, Third Edition. Interdisciplinary Applied Mathematics; Springer: New York, NY,

USA, 2002; Volume 17. [CrossRef]
9. Samarskii, A.; Galaktionov, V.; Kurdyumov, S.; Mikhailov, A. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyte: Berlin,

Germany, 1995. [CrossRef]
10. Lu, Y.; Klingenbergm, C.; Koley, U.; Lu, X. Decay rate for degenerate convection diffusion equations in both one and several

space dimensions. Acta Math. Sci. 2015, 35, 281–302. [CrossRef]
11. Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun.

Nonlinear Sci. Numer. Simul. 2019, 73, 379–390. [CrossRef]
12. Andreev, V.K.; Gaponenko, Y.A.; Goncharova, O.N.; Pukhnachev, V.V. Mathematical Models of Convection; Walter de Gruyte: Berlin,

Germany, 2012. [CrossRef]
13. Wong, B.; Francoeur, M.; Mengüç, M.P. A Monte Carlo simulation for phonon transport within silicon structures at nanoscales

with heat generation. Int. J. Heat Mass Transf. 2011, 54, 1825–1838. [CrossRef]
14. Valenzuela, C.; del Pino, L.; Curilef, S. Analytical solutions for a nonlinear diffusion equation with convection and reaction. Phys.

A Stat. Mech. Its Appl. 2014, 416, 439–451. [CrossRef]
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