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Abstract: The seagull optimization algorithm (SOA) is a novel swarm intelligence algorithm proposed
in recent years. The algorithm has some defects in the search process. To overcome the problem of
poor convergence accuracy and easy to fall into local optimality of seagull optimization algorithm, this
paper proposed a new variant SOA based on individual disturbance (ID) and attraction-repulsion
(AR) strategy, called IDARSOA, which employed ID to enhance the ability to jump out of local
optimum and adopted AR to increase the diversity of population and make the exploration of solution
space more efficient. The effectiveness of the IDARSOA has been verified using representative
comprehensive benchmark functions and six practical engineering optimization problems. The
experimental results show that the proposed IDARSOA has the advantages of better convergence
accuracy and a strong optimization ability than the original SOA.

Keywords: seagull optimization algorithm; swarm intelligence; individual disturbance; attraction-
repulsion strategy; engineering design

1. Introduction

With the emergence of the concept of swarm intelligence in 1989 [1], many scholars
have proposed various swarm intelligence optimization algorithms in recent years, which
show more efficient and stable effects in solving complex practical problems. Compared
with traditional gradient descent algorithms, intelligent algorithms, such as novel whale
optimization algorithm (WOA) [2], hunger games search (HGS) [3], colony predation al-
gorithm (CPA) [4], slime mold algorithm (SMA) [5], Runge Kutta optimizer (RUN) [6],
Harris hawks optimization (HHO) [7], bat algorithm (BA) [8], teaching-learning-based
pathfinder algorithm (TLPFA) [9], wind-driven optimization algorithm(WDO) [10], salp
swarm algorithm (SSA) [11,12], grey wolf optimizer (GWO) [13], and its variants I-GWO
and Ex-GWO [14], usually have stronger optimization capabilities. These algorithms can
effectively solve complex optimization problems and have strong flexibility, robustness,
and self-organization. Furthermore, these algorithms have applications in many fields,
such as neural network training [15], multi-attribute decision making [16–19], traveling
salesman problem [20], object tracking [21,22], image segmentation [23,24], feature selec-
tion [25–29], engineering design problems [30–33], scheduling problem [34,35], medical
data classification [36–39], bankruptcy prediction [40–42], parameter optimization [43–46],
gate resource allocation [47,48], cloud workflow scheduling [49,50], fault diagnosis of
rolling bearings [51,52], power electronic circuit design [53,54], detection of foreign fiber in
cotton [55,56], and energy vehicle dispatch [57]. However, there are still common problems,
such as slow convergence speed, easy to fall into local optimum, and poor convergence
accuracy [23,58].

In 2019, Dhiman et al. [59] proposed a seagull optimization algorithm (SOA) based on
seagull migration and attack behavior. The author verified the performance of the SOA on
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44 well-known benchmark functions and applied SOA to optical buffers, pressure vessels,
reducers, welded beams, tension/compression springs, 25 bar truss, and rolling circle
problems. The results illustrate the effectiveness and practical value of SOA. However, like
other swarm intelligence algorithms, the SOA also has the problems of slow convergence
and low solution accuracy. Since the SOA was proposed recently, Lei et al. [60] introduced
the Lévy flight strategy and singer function to improve the problem of slow convergence
speed, and applied the improved SOA to find the lowest cost problem. To alleviate the
problem of early convergence of the SOA, Cao et al. [61] proposed the balanced SOA, which
was used to identify the best parameters of the exchange membrane fuel cell (PEMFC)
chimney. In 2021, Dhiman et al. [62] introduced the concept of the dynamic archive to the
SOA in the multi-objective problem. They then proposed the multi-objective SOA, relying
on roulette selection to determine the effective archive solutions, and applied it to the six
constraint problems of engineering design. Because SOA has been proposed in recent
years, it does not have many variants like other swarm intelligence algorithms, which
shows that SOA has a lot of room for improvement. There are not many cases where the
SOA is applied to solve practical problems. There are more possibilities in the areas where
the SOA can be applied. Since the realization of an SOA that requires fewer parameters
and the characteristics of easy implementation, SOA has a larger optimization space and
exploration prospects.

The idea of attraction and repulsion appeared in the attraction and repulsion particle
swarm optimization (ARPSO) [63]. Through the alternation between the two stages of
attraction and repulsion, it can enhance the ability of particle swarm to jump out of the local
optimum, improve the diversity of search space, and prevent the problem of premature
convergence to a great extent. Since ARPSO has a good ability to jump out of the local
optimal solution, it has a strong ability to find the global optimal solution. On this basis,
Pant et al. [64] proposed a diversity-guided particle swarm optimizer with three stages:
attraction, repulsion, and attraction-repulsion. Mohamed et al. [65] proposed a modified
multi-objective imperialist competitive algorithm for the shortcomings of a single-objective
empire competition algorithm when used in high-dimensional or complex multimodal
function problems. The algorithm introduced the concept of attraction and repulsion in the
assimilation stage. It improved the algorithm’s performance to achieve a better effect of
finding the global optimal solution.

Inspired by predecessors, to solve the problems of poor optimization accuracy and
easy to fall into local optimum in SOA, this paper proposes an improved SOA variant,
called seagull optimization algorithm, based on individual disturbance and attraction-
repulsion strategy (IDARSOA). It is easy to fall into local optimum in the original SOA
when looking for the optimal forward direction. By adding the individual disturbance
strategy in the process of looking for the forward direction of the seagull population, it can
effectively increase the exploration and optimization ability of the algorithm and the ability
to jump out of the local optimum. The attraction-repulsion strategy adopted in this paper
makes the seagulls migrate in the optimal direction under the interaction of the global
optimal seagull individual attraction, and the global worst seagull individual repulsion
enhances the diversity and optimization ability of the algorithm population and makes the
search solution space more comprehensive in the algorithm exploitation stage. To evaluate
the performance of the IDARSOA, this paper uses 10 benchmark functions of IEEE CEC
2019 and 10 functions of IEEE CEC 2020 to effectively verify the effect of IDARSOA. The
comparison experiment includes parameters sensitivity analyses, the comparison between
the added mechanism and the original algorithm, the comparison with the widely used
algorithm, and the comparison with the excellent variant algorithm. According to Wilcoxon
signed-rank test and Friedman test, the performance of IDARSOA is better than the original
algorithm.

The structure of the paper is as follows, and an overview of the SOA can be found
in Section 2. Section 3 introduces the IDARSOA. The experimental results are described
and discussed in Section 4. Section 5 applies IDARSOA to engineering problems and
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analyzes the experimental results. The sixth part includes the conclusion of the full text
and summary of future work.

2. Overview of SOA

The SOA is a new meta-heuristic algorithm, first proposed in 2019 [59]. The SOA
mainly simulates the critical characteristics of seagulls’ social life migration behavior and
attack behavior. During the migration of seagulls, the position of each seagull is different
to avoid collisions. The entire population always migrates towards the optimal position,
guiding the forward position of each seagull. During the migration process, seagulls will
attack migratory birds in a spiral motion.

2.1. Population Initialization

Let the size of the population space be N × D, where N represents the number
of populations and the number of solutions, and D represents the dimension. The fit-
ness is expressed as F = [F1 F2 . . . FD]

T , and the position of seagulls is represented as
F = [F1 F2 . . . FD]

T , n = 1, 2, . . . , N. The upper bound of the search range is
ub = [ub1 ub2 . . . ubD] and the lower bound is lb = [lb1 lb2 . . . lbD]. The initialization
Equation (1) is shown below:

XN×D = rand(N, D)× (ub− lb) + lb (1)

2.2. Migration Behavior

During the migration process, the seagull moves to another new position through the
position calculation equation at the current position while avoiding collisions with other
seagulls. At the same time, the accessory variable A is introduced to calculate the new
position of the seagull.

CS(t) = A× X(t) (2)

where, CS(t) represents the new position of seagulls, and the new position of seagulls does
not collide with the position of other seagulls. X(t) denotes the initialized seagull position
before updating, t represents the number of iterations, A is the seagull motion behavior in
the search state, and the value range of A is [0, fC], and its equation is as follows:

A = fC −
t× fC

Maxiteration
(3)

where, Maxiteration is the maximum number of iterations, the value of fC is 2, and the
value of A decreases linearly from 2 to 0.

In the process of migration, seagulls will move towards the optimal position, and the
optimal direction expression is:

MS = B× (Xbest(t)− X(t)) (4)

where Xbest(t) is the optimal position of seagulls under the current iteration, and B is a
randomly generated number that balances global search and local search. The equation is
as follows:

B = 2× A2 × rd (5)

where rd is a random number between [0, 1]. The seagull flies in the optimal direction to
migrate to a better position. The updated position expression is as follows:

DS(t) = |CS(t) + MS(t)| (6)

2.3. Attack Behavior

When seagulls are migrating, they rely on their own wings and their own weight to
maintain the corresponding height, and constantly change the angle and speed of flight
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according to the position of the prey, thereby launching an attack on the prey. When prey is
found, the seagull attacks the prey in a spiral manner on a three-dimensional plane. The
plane behavior of x, y, z is expressed as follows:

x = r× cos(θ) (7)

y = r× sin(θ) (8)

z = r× θ (9)

r = u× eθv (10)

where r represents the radius of the seagull in the circling process, and θ is a random angle
value in the range of [0, 2π]. u and v are fixed values of the spiral state. e is the base of the
natural logarithm. The equation for the position change of the seagull during the attack is
as follows:

X(t) = DS(t)× x× y× z + Xbest(t) (11)

The pseudo-code of the traditional SOA is given as follows in Algorithm 1.

Algorithm 1. Pseudocode of SOA.

Set the size N, dim, maximum iterations, u, v, fc
Initialize seagulls’ positions X
t = 0
while (t < Maxiteration) do
The default global optimal solution is the position of the first seagull

for i = 1: size(X,1) do
update additional variable A using Equation (3)
Calculate Cs using Equation (2)
rd takes a random value on (0, 1)
Calculate Ms using Equation (4)
Calculate Ds using Equation (6)
Update r, x, y, z using Equations (7)–(10)
Calculate new seagull position using Equation (11)

end for
for i = 1: size(X,1) do

for j = 1: size(X,2) do
Border control

end for
end for
for i = 1: size(X,1) do

Calculate the fitness value of the new seagull position
end for
Sort the fitness value and update the optimal position and fitness value of the seagull
t← t + 1

end while
return the best solution

3. Improvement Methods Based on SOA

The improved SOA has two effective strategies. Firstly, the individual disturbance
strategy is added to improve the optimization ability of the algorithm. Then, embed
the attraction-repulsion strategy into the original SOA to increase the possibility of the
population approaching the optimal solution.

3.1. Individual Disturbance

In the process of searching for the optimal direction for seagulls, the original algorithm
updates the optimal direction according to the seagull’s own position and optimal position,
which will cause the problem of falling into local optimality, causing the seagull population
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to lose its direction in the migration process, and misleading the seagull group to deviate
from the optimal migration route. In this paper, in the process of seagulls looking for the
migration direction, in addition to relying on their own position and optimal position,
another seagull individual is also used, and a weight is added to coordinate the seagulls’ ex-
ploration ability to find the optimal direction. The equation of updated seagull optimization
direction is as follows:

MS = X(t)−m× B× (Xbest(t)− XK(t)) (12)

where X(t) is the position of the seagull under the current iteration, Xbest(t) is the optimal
position of the current seagull, and XK(t) is the position of the random seagull. The weight
expression is as follows:

m =
Maxiteration− t

Maxiteration
(13)

m is a linear weight, which decreases linearly with the increase in iteration times to balance
global and local search.

3.2. Adopt an Attraction-Repulsion Strategy

The migration of the seagull population is often guided by the global optimal indi-
vidual to move towards the optimal solution. Still, if the global optimal individual falls
into the local optimal and cannot jump out, it is likely to stagnate the whole population.
To solve this problem, this paper adopts the attraction-repulsion strategy. The idea of
attraction-repulsion first appeared in the particle swarm optimization algorithm of attrac-
tion and repulsion in 2002 [63]. In this paper, a global best solution and a global worst
solution are added in Equation (14) through the attraction-repulsion strategy, which allows
the seagull population to move randomly under the effect of attraction and repulsion to
find the optimal solution. As the iterative process of the algorithm enters the later stage, the
diversity of the population will be significantly reduced, and the premature phenomenon
will eventually occur. The global worst position introduced at this point can play a role in
increasing the population diversity. It makes the population more comprehensive in the
local search process and overcomes the problem of premature maturity of the algorithm.
The search equation for the position of seagulls using the attraction-repulsion strategy is
as follows:

newDS = r× DS + (ω1 × (1− r))× (GBESTX− DS)− (ω2 × (1− r))× (GWORSTX− DS) (14)

where GWORSTX is the global worst position, GBESTX is the global optimal position,
X(t) is the seagull position under the current iteration, and r is a random number between
0 and 1. Through the experiment, it is found that when the ω1 and ω2 are 0.5 and 0.4,
respectively, the seagulls will be better affected by the interaction of attraction and repulsion
in the process of migration, be close to the optimal seagull individual, enhance the diversity
of seagull population, improve the optimization ability, and reduce the risk of falling into
the local optimum. The pseudo-code of IDARSOA is shown in Algorithm 2.

To better understand the idea and algorithm flow of this optimization algorithm, the
flow chart of IDARSOA is shown in Figure 1.
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Algorithm 2. Pseudocode of IDARSOA.

Set the size N, dim, maximum iterations, u, v, f c, ω1, ω2
Initialize seagulls’ positions X
t = 0
while (t < Maxiteration) do

Calculate and rank the fitness value of the seagull population
Get the best and worst positions in the population
for i = 1: size(X,1) do

Update additional variable A using Equation (3)
Calculate Cs using Equation (2)
Update m using Equation (13)
Randomly generate an integer in (1, D) and assign it to K
rd takes a random value on (0, 1)
Calculate Ms using Equation (4)
Calculate Ds using Equation (6)
Generate a random number at (0, 1) and assign it to R
Calculate new Ds according to the attraction and repulsion strategy using

Equation (14)
Update r, x, y, z using Equations (7)–(10)
Calculate new seagull position using Equation (11)

end for
for i = 1: size(X,1) do

for j = 1: size(X,2) do
Border control

end for
end for
for i = 1: size(X,1) do

Calculate the fitness value of the new seagull position
end for
Sort the fitness value and update the optimal position and fitness value of the

seagull
t← t + 1

end while
return the best solution
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The time complexity of the improved IDARSOA depends on the number of iterations
of the algorithm (S), the total number of seagulls (n), and the dimension of the case at
hand (d). Through analysis, the overall time complexity is O(IDARSOA) = O(initialize)
+ O(calculate the fitness of initialize) + O(select the best fitness from the fitness) + S ×
(O(calculate the CS) + O(perform individual disturbance strategy) + O(perform attraction
repulsion strategy) + O(attack) + O(boundary control) + O(update the positions of seagull)).
Initialization time complexity is O(n× d), calculate the fitness of the initial value of O(n), to
find the best fitness by the fitness order of O(n× log2n), calculated CS time complexity of
O(n), the time complexity required to implement perform individual disturbance strategy
is O(n), the attack behavior and boundary control of the local search require O(n× d), the
position of the updated seagull is O(n). Therefore, the final time complexity of IDARSOA is
as follows:

O(IDARSOA) = O(n× d ) + O(n) + O(n× log2n ) + S× (O(n) + O(n) + O(n) + O(n× d) + O(n) )
= O(n× d ) + O(n) + O(n× log2n ) + S× (4O(n) + O(n× d)).

4. Experimental Results and Discussion

In this part, to verify the performance of the IDARSOA, 20 well-known functions
are used to test the efficiency of the proposed optimizer. There are four experiments: The
first is sensitivity analyses of the parameters in IDARSOA. The second is the comparison
experiment between IDARSOA and IDSOA, ARSOA, and the original SOA, which proves
that the SOA variant has an improved performance compared to the original algorithm,
and the improvement strategy is effective. The third is a comparative experiment between
IDARSOA and the novel swarm intelligence optimization algorithm to verify that IDAR-
SOA is superior to those popular intelligent algorithms. The last is to compare IDARSOA
with other algorithm variants. The results are used to verify the effects of IDARSOA.
To ensure the fairness of the experiment, all methods should be tested under the same
conditions [22]. All experiments in this paper use MATLAB2018 software; the dimension is
determined to be 30, the number of running layers is 30, and the search agent is set to 30.
The description of these 20 functions is shown in Table A1. F1–F10 are taken from CEC
2019 [66–71], F11–F20 are taken from CEC 2020. The bound is the search space range of the
test function, and F(min) is the minimum value of the test function.

4.1. IDARSOA’s Parameters Sensitivity Analyses

A in Equation (3) in IDARSOA represents the motion behavior of seagulls in a specified
space, which is mainly affected by the parameter fc. To explore the influence of the value
of fc on the performance of the seagull optimization algorithm, we set the value of fc to
1, 2, 3, 5, 7, and 9, which are represented by IDARSOAfc1, IDARSOAfc2, IDARSOAfc3,
IDARSOAfc5, IDARSOAfc7, and IDARSOAfc9, respectively. Table 1 shows how these
algorithms find the optimal solution in 20 test functions. It can be seen from the data in the
table that in the three functions F4, F19, and F20, the ability of IDARSOA with different
parameters to find the optimal solution is the same. In F1, the average value of the optimal
solution found by these algorithms is the same. However, through the comparison of STD,
it is found that IDARSOAfc1 has the best stability. In other functions, the value of fc is
different, and the optimization performance in functions is also different. Integrating 20 test
functions, IDARSOAfc2 has the best effect. Therefore, this paper sets the value of fc in
IDARSOA to two.
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Table 1. Comparison of different fc of IDARSOA.

F1 F2 F3

AVG STD AVG STD AVG STD

IDARSOAfc1 1.000000 × 100 5.758899 × 10−14 4.952258 × 100 1.817900 × 10−1 2.433492 × 100 1.186997 × 100

IDARSOAfc2 1.000000 × 100 2.667535 × 10−13 4.416804 × 100 2.696345 × 10−1 2.125574 × 100 9.741309 × 10−1

IDARSOAfc3 1.000000 × 100 1.427971 × 10−12 4.620769 × 100 3.408565 × 10−1 2.422004 × 100 1.022597 × 100

IDARSOAfc5 1.000000 × 100 7.603133 × 10−13 4.468247 × 100 2.786393 × 10−1 3.079520 × 100 1.460601 × 100

IDARSOAfc7 1.000000 × 100 3.477511 × 10−14 4.630774 × 100 3.173943 × 10−1 4.326896 × 100 1.815038 × 100

IDARSOAfc9 1.000000 × 100 2.433234 × 10−11 4.729463 × 100 3.398487 × 10−1 4.073180 × 100 1.644750 × 100

F4 F5 F6

AVG STD AVG STD AVG STD

IDARSOAfc1 3.688039 × 101 1.373013 × 101 5.821549 × 100 9.047358 × 100 5.491320 × 100 1.275813 × 100

IDARSOAfc2 2.463451 × 101 1.139996 × 101 2.194699 × 100 6.875180 × 10−1 5.664204 × 100 1.692936 × 100

IDARSOAfc3 2.239873 × 101 8.125202 × 100 1.998788 × 100 3.113314 × 10−1 4.818130 × 100 1.701835 × 100

IDARSOAfc5 2.424563 × 101 6.106529 × 100 2.061292 × 100 4.047150 × 10−1 5.185845 × 100 1.352847 × 100

IDARSOAfc7 2.731944 × 101 1.041899 × 100 2.108973 × 100 6.882413 × 10−1 5.632649 × 100 1.915015 × 100

IDARSOAfc9 2.859710 × 101 1.035596 × 101 2.131835 × 100 6.668301 × 10−1 5.873998 × 100 2.092584 × 100

F7 F8 F9

AVG STD AVG STD AVG STD

IDARSOAfc1 1.263735 × 103 3.365559 × 102 4.074083 × 100 4.138044 × 10−1 1.212927 × 100 7.951421 × 10−2

IDARSOAfc2 1.406561 × 103 4.167857 × 102 3.953226 × 100 3.750406 × 10−1 1.181665 × 100 7.032048 × 10−2

IDARSOAfc3 1.509095 × 103 3.868018 × 102 3.920128 × 100 4.127622 × 10−1 1.185820 × 100 8.267084 × 10−2

IDARSOAfc5 1.468453 × 103 5.192703 × 102 4.002200 × 100 3.019612 × 10−1 1.224425 × 100 7.752889 × 10−2

IDARSOAfc7 1.619661 × 103 4.745775 × 102 4.158420 × 100 3.717104 × 10−1 1.261381 × 100 8.587691 × 10−2

IDARSOAfc9 1.646884 × 103 4.487442 × 102 4.139863 × 100 3.270712 × 10−1 1.260103 × 100 9.578651 × 10−2

F10 F11 F12

AVG STD AVG STD AVG STD

IDARSOAfc1 2.124024 × 101 1.382577 × 10−1 8.891585 × 109 6.785941 × 109 6.663063 × 103 6.116660 × 102

IDARSOAfc2 2.098561 × 101 1.830573 × 100 4.385372 × 109 4.046630 × 109 7.024390 × 103 6.603009 × 102

IDARSOAfc3 2.125866 × 101 1.031388 × 10−1 2.122388 × 109 1.018590 × 109 6.815012 × 103 6.312405 × 102

IDARSOAfc5 2.130665 × 101 1.963167 × 10−1 2.727998 × 109 2.547515 × 109 7.080456 × 103 5.757104 × 102

IDARSOAfc7 2.142574 × 101 2.103051 × 10−1 2.055958 × 109 1.768645 × 109 7.111943 × 103 6.878647 × 102

IDARSOAfc9 2.138810 × 101 2.077814 × 10−1 2.791952 × 109 1.488388 × 109 7.212336 × 103 8.694651 × 102

F13 F14 F15

AVG STD AVG STD AVG STD

IDARSOAfc1 1.205610 × 103 7.625843 × 101 1.900000 × 103 0.000000 × 100 2.114255 × 107 5.741210 × 107

IDARSOAfc2 1.051132 × 103 8.194302 × 101 1.900000 × 103 0.000000 × 100 1.031563 × 107 2.481495 × 107

IDARSOAfc3 1.019698 × 103 5.671150 × 101 1.900000 × 103 0.000000 × 100 7.595739 × 107 1.634042 × 108

IDARSOAfc5 1.053406 × 103 6.639036 × 101 1.900000 × 103 0.000000 × 100 4.953248 × 107 1.150416 × 108

IDARSOAfc7 1.087131 × 103 8.449326 × 101 1.900000 × 103 0.000000 × 100 3.026353 × 107 1.108006 × 108

IDARSOAfc9 1.097117 × 103 1.210897 × 102 1.900000 × 103 0.000000 × 100 1.629272 × 107 2.692786 × 107

F16 F17 F18

AVG STD AVG STD AVG STD

IDARSOAfc1 3.134750 × 103 3.749393 × 102 1.286831 × 108 2.581530 × 108 2.459859 × 103 2.249968 × 101

IDARSOAfc2 2.929809 × 103 4.989991 × 102 8.429436 × 107 1.946799 × 108 2.438595 × 103 2.656722 × 101

IDARSOAfc3 2.823617 × 103 3.599560 × 102 1.542068 × 108 2.822871 × 108 2.443144 × 103 2.455074 × 101

IDARSOAfc5 3.009103 × 103 4.150459 × 102 1.561803 × 108 2.815656 × 108 2.439564 × 103 3.676659 × 101

IDARSOAfc7 2.951470 × 103 2.636037 × 102 2.118624 × 108 2.940915 × 108 2.446642 × 103 3.351741 × 101

IDARSOAfc9 3.098547 × 103 3.829978 × 102 2.434406 × 108 4.983535 × 108 2.489955 × 103 6.573209 × 101

F19 F20
Mean Level Rank

AVG STD AVG STD

IDARSOAfc1 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 3.35 4
IDARSOAfc2 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 2.1 1
IDARSOAfc3 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 2.2 2
IDARSOAfc5 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 2.9 3
IDARSOAfc7 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 3.75 5
IDARSOAfc9 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 4.45 6
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In order to explore the best combination value of the attraction weight ω1 of the best
individual, and the repulsion weight ω2 of the worst individual in the attraction-repulsion
strategy, and considering that attraction-repulsion is a pair of interaction forces, this section
selects another weight between 0.1–0.9 when ω1 and ω2 are 0.5 respectively, to obtain the
most suitable weight. As shown in Table 2, after the combination of different weights, there
are 17 combination forms, and the specific ω1 and ω2 values are shown in the table.

Table 2. Parameter settings of IDARSOA.

Algorithm Parameters Algorithm Parameters

IDARSOA01 ω1 = 0.5; ω1 = 0.1 IDARSOA10 ω1 = 0.1; ω1 = 0.5
IDARSOA02 ω1 = 0.5; ω1 = 0.2 IDARSOA11 ω1 = 0.2; ω1 = 0.5
IDARSOA03 ω1 = 0.5; ω1 = 0.3 IDARSOA12 ω1 = 0.3; ω1 = 0.5
IDARSOA04 ω1 = 0.5; ω1 = 0.4 IDARSOA13 ω1 = 0.4; ω1 = 0.5
IDARSOA05 ω1 = 0.5; ω1 = 0.5 IDARSOA14 ω1 = 0.6; ω1 = 0.5
IDARSOA06 ω1 = 0.5; ω1 = 0.6 IDARSOA15 ω1 = 0.7; ω1 = 0.5
IDARSOA07 ω1 = 0.5; ω1 = 0.7 IDARSOA16 ω1 = 0.8; ω1 = 0.5
IDARSOA08 ω1 = 0.5; ω1 = 0.8 IDARSOA17 ω1 = 0.9; ω1 = 0.5
IDARSOA09 ω1 = 0.5; ω1 = 0.9

The comparison of different weight values among the 20 tested functions is displayed
in Table 3, where different combinations of weights have different effects in various func-
tions. Mean level in the table indicates the average ranking value of the algorithm among
the 20 functions, and rank is the final ranking obtained from mean level. The data in
the table show that too much or too little attraction and too much or too little repulsion
will affect the search capability. This is because when the attraction weight is too large, it
will suppress the effect of repulsion. If the globally optimal individual falls into the local
optimum, the weight given to the repulsion is not enough to get rid of the local optimal
solution space. Only a larger weight is given to the repulsion, but this will lead to the
current individual crossing the boundary, and the optimal solution is not true. When the
attraction is too small, the present individual will approach the optimal solution. If the
weight of the repulsion is small at this time, the effect of attraction and repulsion strategy
will be weakened. However, if the weight given to the repulsion is too large, it will cause
the individual to move away from the optimal solution. The average ranking value of
IDARSOA04 is the best in all combinations, and the rank value is the first. This shows that
when the attraction weight is 0.5 and the repulsion weight is 0.4, the performance of the
attraction-repulsion strategy can play the best.

Table 3. Comparison of parameters settings.

F1 F2 F3

AVG STD AVG STD AVG STD

IDARSOA01 1.0000 × 100 7.1098 × 10 −13 4.5221 × 100 3.0290 × 10−1 2.2998 × 100 9.4177 × 10−1

IDARSOA02 1.0000 × 100 3.8050 × 10 −12 4.6309 × 100 3.3643 × 10−1 2.5054 × 100 8.1540 × 10−1

IDARSOA03 1.0000 × 100 2.1336 × 10 −13 4.5643 × 100 3.4439 × 10−1 2.7870 × 100 1.3151 × 100

IDARSOA04 1.0000 × 100 1.7623 × 10 −12 4.4649 × 100 2.7740 × 10−1 2.1095 × 100 9.5977 × 10−1

IDARSOA05 1.0000 × 100 6.2818 × 10 −12 4.4148 × 100 2.4449 × 10−1 1.9846 × 100 8.1660 × 10−1

IDARSOA06 1.0000 × 100 9.8255 × 10 −13 4.4005 × 100 2.4310 × 10−1 2.8128 × 100 1.4789 × 100

IDARSOA07 1.0000 × 100 5.1951 × 10 −12 4.4686 × 100 3.0250 × 10−1 2.7536 × 100 1.3484 × 100

IDARSOA08 1.0000 × 100 2.5142 × 10 −12 4.5113 × 100 3.2751 × 10−1 3.1051 × 100 1.6605 × 100

IDARSOA09 1.0000 × 100 1.9889 × 10 −13 4.5311 × 100 3.4123 × 10−1 3.1209 × 100 1.4098 × 100

IDARSOA10 1.0000 × 100 0.0000 × 100 4.6013 × 100 3.3527 × 10−1 3.8233 × 100 1.4639 × 100

IDARSOA11 1.0000 × 100 1.3380 × 10 −15 4.5414 × 100 3.3407 × 10−1 3.6497 × 100 1.5097 × 100

IDARSOA12 1.0000 × 100 4.1233 × 10 −17 4.5305 × 100 3.4018 × 10−1 3.0959 × 100 1.2182 × 100

IDARSOA13 1.0000 × 100 6.6097 × 10 −15 4.4954 × 100 3.3859 × 10−1 2.5881 × 100 1.3068 × 100

IDARSOA14 1.0000 × 100 9.3677 × 10 −12 4.5112 × 100 3.0444 × 10−1 2.1808 × 100 8.4346 × 10−1

IDARSOA15 1.0000 × 100 9.0943 × 10 −13 4.6305 × 100 3.1351 × 10−1 2.8134 × 100 1.5691 × 100

IDARSOA16 1.0000 × 100 1.2898 × 10 −11 4.4263 × 100 2.4384 × 10−1 2.9569 × 100 1.4764 × 100

IDARSOA17 1.0000 × 100 2.6900 × 10 −12 4.6626 × 100 3.1935 × 10−1 2.6036 × 100 1.0676 × 100
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Table 3. Cont.

F4 F5 F6

AVG STD AVG STD AVG STD

IDARSOA01 2.4581 × 101 1.0205 × 101 2.6664 × 100 1.0053 × 100 5.3757 × 100 1.3387 × 100

IDARSOA02 2.4620 × 101 9.5404 × 100 2.3394 × 100 7.2482 × 10−1 5.6362 × 100 1.7517 × 100

IDARSOA03 2.6353 × 101 1.0136 × 101 2.3466 × 100 8.4829 × 10−1 5.6669 × 100 1.6688 × 100

IDARSOA04 2.8527 × 101 1.1019 × 101 2.1741 × 100 9.0196 × 10−1 5.6726 × 100 1.6060 × 100

IDARSOA05 2.8420 × 101 1.0021 × 101 2.1779 × 100 1.3784 × 100 5.4521 × 100 1.3099 × 100

IDARSOA06 2.6725 × 101 9.2999 × 100 3.2507 × 100 3.1355 × 100 5.6015 × 100 1.8411 × 100

IDARSOA07 2.6327 × 101 8.6022 × 100 3.2597 × 100 1.5464 × 100 5.9124 × 100 1.3527 × 100

IDARSOA08 2.5881 × 101 6.1845 × 100 3.2389 × 100 2.0344 × 100 5.6661 × 100 1.2747 × 100

IDARSOA09 2.6593 × 101 8.0807 × 100 3.4279 × 100 1.4143 × 100 6.0165 × 100 1.4066 × 100

IDARSOA10 3.8186 × 101 7.9266 × 100 6.1616 × 100 2.0080 × 100 6.6093 × 100 9.2928 × 10−1

IDARSOA11 3.3962 × 101 7.3061 × 100 4.1841 × 100 1.4833 × 100 6.2598 × 100 1.1306 × 100

IDARSOA12 2.9104 × 101 6.2466 × 100 3.5271 × 100 1.2830 × 100 5.7546 × 100 1.4611 × 100

IDARSOA13 2.7372 × 101 7.7938 × 100 2.8897 × 100 1.1336 × 100 5.7283 × 100 1.9894 × 100

IDARSOA14 2.8092 × 101 8.7542 × 100 3.2801 × 100 3.5517 × 100 5.9541 × 100 1.8852 × 100

IDARSOA15 2.4409 × 101 8.0677 × 100 2.8339 × 100 1.6447 × 100 5.5501 × 100 1.5394 × 100

IDARSOA16 2.9955 × 101 1.1018 × 101 3.5394 × 100 2.3300 × 100 5.9731 × 100 1.9348 × 100

IDARSOA17 2.6693 × 101 1.0648 × 101 3.0238 × 100 1.2134 × 100 5.9119 × 100 2.0688 × 100

F7 F8 F9

AVG STD AVG STD AVG STD

IDARSOA01 1.4524 × 103 3.9054 × 102 4.0606 × 100 4.0185 × 10−1 1.2206 × 100 7.9805 × 10−2

IDARSOA02 1.3058 × 103 3.7027 × 102 3.9924 × 100 4.0475 × 10−1 1.1941 × 100 6.3549 × 10−2

IDARSOA03 1.4908 × 103 4.2485 × 102 4.0050 × 100 3.5385 × 10−1 1.2189 × 100 1.0129 × 10−1

IDARSOA04 1.3631 × 103 3.0353 × 102 4.0836 × 100 3.4300 × 10−1 1.1955 × 100 7.6053 × 10−2

IDARSOA05 1.4481 × 103 4.6512 × 102 3.9618 × 100 4.4447 × 10−1 1.2555 × 100 1.1981 × 10−1

IDARSOA06 1.5382 × 103 4.0746 × 102 4.0030 × 100 3.6576 × 10−1 1.2387 × 100 1.0696 × 10−1

IDARSOA07 1.5988 × 103 4.3166 × 102 4.2008 × 100 2.4802 × 10−1 1.2737 × 100 7.0067 × 10−2

IDARSOA08 1.6605 × 103 3.6934 × 102 4.2143 × 100 3.4708 × 10−1 1.3011 × 100 6.8430 × 10−2

IDARSOA09 1.6913 × 103 4.4211 × 102 4.2161 × 100 3.0293 × 10−1 1.3086 × 100 7.1227 × 10−2

IDARSOA10 1.5330 × 103 3.8835 × 102 4.4975 × 100 4.4491 × 10−1 1.4773 × 100 2.6855 × 10−1

IDARSOA11 1.5015 × 103 3.5299 × 102 4.3507 × 100 3.2739 × 10−1 1.3384 × 100 7.9786 × 10−2

IDARSOA12 1.5489 × 103 4.5487 × 102 4.2247 × 100 2.2252 × 10−1 1.3136 × 100 6.0874 × 10−2

IDARSOA13 1.5232 × 103 4.0966 × 102 4.0739 × 100 3.4958 × 10−1 1.2415 × 100 6.6822 × 10−2

IDARSOA14 1.4081 × 103 4.2644 × 102 3.9631 × 100 3.8229 × 10−1 1.2280 × 100 1.0433 × 10−1

IDARSOA15 1.4451 × 103 4.3183 × 102 4.0201 × 100 3.7615 × 10−1 1.2287 × 100 1.0141 × 10−1

IDARSOA16 1.5349 × 103 4.1635 × 102 3.9816 × 100 2.6288 × 10−1 1.2260 × 100 1.2272 × 10−1

IDARSOA17 1.6059 × 103 4.9431 × 102 4.0404 × 100 3.5546 × 10−1 1.2206 × 100 1.1546 × 10−1

F10 F11 F12

AVG STD AVG STD AVG STD

IDARSOA01 2.1280 × 101 1.7507 × 10−1 2.1382 × 108 3.4416 × 108 2.0200 × 103 2.8335 × 102

IDARSOA02 2.1286 × 101 1.6340 × 10−1 1.2274 × 108 1.4623 × 108 2.1510 × 103 3.2795 × 102

IDARSOA03 2.1269 × 101 1.5574 × 10−1 4.2864 × 108 1.6445 × 109 2.0298 × 103 3.3485 × 102

IDARSOA04 2.1279 × 101 1.2501 × 10−1 1.1905 × 108 3.1222 × 108 1.9318 × 103 3.0480 × 102

IDARSOA05 2.1321 × 101 1.7899 × 10−1 1.8711 × 108 6.2487 × 108 1.9360 × 103 3.2684 × 102

IDARSOA06 2.1322 × 101 1.8987 × 10−1 9.8061 × 108 2.2807 × 109 2.1234 × 103 3.8321 × 102

IDARSOA07 2.1420 × 101 2.1176 × 10−1 3.6423 × 108 1.2382 × 109 2.1887 × 103 3.9374 × 102

IDARSOA08 2.1464 × 101 2.0693 × 10−1 4.6418 × 108 1.6441 × 109 2.1188 × 103 3.4011 × 102

IDARSOA09 2.1392 × 101 1.9553 × 10−1 8.3583 × 108 2.2192 × 109 2.3045 × 103 3.2662 × 102

IDARSOA10 2.1570 × 101 1.5581 × 10−1 9.3577 × 108 2.2582 × 109 2.1975 × 103 2.7247 × 102

IDARSOA11 2.1482 × 101 2.0087 × 10−1 5.0671 × 108 1.6407 × 109 2.2381 × 103 2.6707 × 102

IDARSOA12 2.1438 × 101 1.8690 × 10−1 2.2028 × 108 2.1073 × 108 2.1718 × 103 2.1766 × 102

IDARSOA13 2.1385 × 101 2.0300 × 10−1 4.1066 × 108 1.6480 × 109 2.1200 × 103 3.3548 × 102

IDARSOA14 2.1291 × 101 1.8167 × 10−1 3.9643 × 108 1.6447 × 109 2.2573 × 103 4.5010 × 102

IDARSOA15 2.1225 × 101 1.1628 × 10−1 2.4735 × 108 5.3249 × 108 2.1028 × 103 4.2773 × 102

IDARSOA16 2.1260 × 101 1.4831 × 10−1 1.4818 × 108 1.4395 × 108 2.1507 × 103 3.4058 × 102

IDARSOA17 2.1298 × 101 1.6992 × 10−1 2.2210 × 108 4.2484 × 108 2.1251 × 103 3.6144 × 102
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Table 3. Cont.

F13 F14 F15

AVG STD AVG STD AVG STD

IDARSOA01 7.3352 × 102 7.8137 × 100 1.9000 × 103 0.0000 × 100 1.9923 × 106 9.7803 × 106

IDARSOA02 7.3522 × 102 8.2661 × 100 1.9000 × 103 0.0000 × 100 1.9171 × 106 9.7928 × 106

IDARSOA03 7.3240 × 102 9.9243 × 100 1.9000 × 103 0.0000 × 100 5.2395 × 104 1.8689 × 105

IDARSOA04 7.3718 × 102 1.2167 × 101 1.9000 × 103 0.0000 × 100 1.6897 × 105 3.0976 × 105

IDARSOA05 7.3812 × 102 1.4718 × 101 1.9000 × 103 0.0000 × 100 3.7445 × 106 1.3596 × 107

IDARSOA06 7.3422 × 102 9.1288 × 100 1.9000 × 103 0.0000 × 100 2.1241 × 105 3.2841 × 105

IDARSOA07 7.3583 × 102 7.0423 × 100 1.9000 × 103 0.0000 × 100 1.9924 × 106 9.7802 × 106

IDARSOA08 7.3996 × 102 1.0126 × 101 1.9000 × 103 0.0000 × 100 2.7562 × 106 1.0101 × 107

IDARSOA09 7.3726 × 102 6.7043 × 100 1.9000 × 103 0.0000 × 100 9.6037 × 106 2.0197 × 107

IDARSOA10 7.4737 × 102 6.7846 × 100 1.9000 × 103 0.0000 × 100 2.4328 × 106 9.9372 × 106

IDARSOA11 7.4906 × 102 6.9347 × 100 1.9000 × 103 0.0000 × 100 3.0081 × 105 3.3392 × 105

IDARSOA12 7.4096 × 102 7.4914 × 100 1.9000 × 103 0.0000 × 100 2.0581 × 106 9.7678 × 106

IDARSOA13 7.3780 × 102 7.5538 × 100 1.9000 × 103 0.0000 × 100 3.7639 × 106 1.3590 × 107

IDARSOA14 7.3852 × 102 1.0807 × 101 1.9000 × 103 0.0000 × 100 7.5295 × 104 2.2042 × 105

IDARSOA15 7.3825 × 102 1.1380 × 101 1.9000 × 103 0.0000 × 100 9.3968 × 104 2.3985 × 105

IDARSOA16 7.3843 × 102 1.2874 × 101 1.9000 × 103 0.0000 × 100 2.2068 × 105 3.2102 × 105

IDARSOA17 7.3505 × 102 8.0908 × 100 1.9000 × 103 0.0000 × 100 1.3849 × 105 2.5673 × 105

F16 F17 F18

AVG STD AVG STD AVG STD

IDARSOA01 1.6346 × 103 2.6021 × 101 2.4613 × 105 2.0420 × 105 2.2977 × 103 1.4230 × 101

IDARSOA02 1.6415 × 103 3.7938 × 101 2.2126 × 106 1.0799 × 10+7 2.3003 × 103 1.3598 × 10−1

IDARSOA03 1.6415 × 103 4.2627 × 101 1.6688 × 105 1.9092 × 105 2.2925 × 103 2.3775 × 101

IDARSOA04 1.6335 × 103 4.4810 × 101 2.3329 × 105 4.5377 × 105 2.2949 × 103 2.0431 × 101

IDARSOA05 1.6336 × 103 4.0635 × 101 2.6040 × 105 2.0104 × 105 2.2937 × 103 2.0205 × 101

IDARSOA06 1.6291 × 103 2.2961 × 101 2.8097 × 105 4.5706 × 105 2.2820 × 103 3.1238 × 101

IDARSOA07 1.6339 × 103 3.2790 × 101 4.3703 × 105 7.0714 × 105 2.2840 × 103 3.0200 × 101

IDARSOA08 1.6304 × 103 2.3174 × 101 2.8207 × 105 4.5525 × 105 2.2801 × 103 3.2190 × 101

IDARSOA09 1.6467 × 103 4.0193 × 101 4.2740 × 105 5.7028 × 105 2.2827 × 103 3.0705 × 101

IDARSOA10 1.6450 × 103 3.1481 × 101 3.2174 × 105 1.8418 × 105 2.2830 × 103 2.6971 × 101

IDARSOA11 1.6380 × 103 2.8113 × 101 2.7357 × 105 2.1122 × 105 2.2817 × 103 3.0474 × 101

IDARSOA12 1.6298 × 103 2.2318 × 101 3.8072 × 105 5.8818 × 105 2.2811 × 103 3.1022 × 101

IDARSOA13 1.6515 × 103 1.2246 × 102 2.0171 × 105 2.0005 × 105 2.2817 × 103 3.2621 × 101

IDARSOA14 1.6362 × 103 3.8043 × 101 1.3530 × 105 1.8946 × 105 2.2983 × 103 1.0829 × 101

IDARSOA15 1.6569 × 103 4.6309 × 101 2.5786 × 105 4.5928 × 105 2.2980 × 103 1.2827 × 101

IDARSOA16 1.6468 × 103 4.3076 × 101 2.9995 × 105 4.4376 × 105 2.3003 × 103 1.4027 × 10−1

IDARSOA17 1.6395 × 103 4.2421 × 101 3.4032 × 105 4.3474 × 105 2.2979 × 103 1.3421 × 101

F19 F20
Mean Level Rank

AVG STD AVG STD

IDARSOA01 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 5 2
IDARSOA02 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 6.6 6
IDARSOA03 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 5.3 3
IDARSOA04 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 4.65 1
IDARSOA05 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 5.8 4
IDARSOA06 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 6.5 5
IDARSOA07 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 8.85 13
IDARSOA08 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 8.65 11
IDARSOA09 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 10.95 16
IDARSOA10 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 11.9 17
IDARSOA11 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 10.65 15
IDARSOA12 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 9.25 14
IDARSOA13 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 7.5 9
IDARSOA14 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 7.45 8
IDARSOA15 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 6.6 6
IDARSOA16 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 8.75 12
IDARSOA17 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 8.15 10
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4.2. Study of the Proposed Method

This section describes the effects of two optimization mechanisms added to SOA:
individual disturbance and attraction-repulsion strategy. Four different SOA effects were
compared to examine the impact of all combinations of each mechanism on SOA. As
shown in Table 4 below, “ID” and “AR” represent “individual disturbance” and “attraction-
repulsion strategy”, respectively. In Table 4, “1” indicates that SOA uses this mechanism,
and “0” indicates the opposite; that is, it does not use this optimization mechanism. For
example, the IDSOA representation combines the “individual disturbance” rather than the
“attraction-repulsion strategy”. The combination of the two strategies is shown in Table 4.

Table 4. The performance of the two strategies on SOA.

ID AR

SOA 0 0
ARSOA 0 1
IDSOA 1 0
IDARSOA 1 1

Based on the 20 functions in the test functions table, four SOAs were applied to these
functions for testing. Four kinds of SOA results are shown in Table 5 below. This paper
uses a non-parametric Wilcoxon signed-rank test at 5% significance level to prove the
difference between IDARSOA and the other three algorithms. The “+”, “−”, and “=” in
the table indicate superior to IDARSOA, inferior to IDARSOA, and equal to IDARSOA,
respectively. According to the average ranking ARV in Table 5, IDARSOA outperforms the
other three algorithms with a score of 1.4. This shows that IDARSOA performs better than
other algorithms in the 20 test functions, reflecting that IDARSOA has better advantages
than the other three algorithms. In addition, IDSOA and ARSOA are better than SOA in
average ranking. This is because the individual disturbance strategy in this paper will use
different random agent positions to perturb each time SOA looks for the optimal direction,
to enhance the ability of the algorithm to jump out of the local optimization. The attraction-
repulsion strategy makes SOA more comprehensive in the process of searching solution
space through the interaction of attraction and repulsion between the optimal solution and
the worst solution.

Table 5. Comparison of Wilcoxon signed-rank test results of different SOAs.

F1 F2 F3 F4 F5 F6

IDARSOA N/A N/A N/A N/A N/A N/A
IDSOA 9.7656 × 10−4 1.0201 × 10−1 3.5152 × 10−6 1.9729 × 10−5 3.7243 × 10−5 1.2506 × 10−4

ARSOA 9.7656 × 10−4 2.7016 × 10−5 1.3820 × 10−3 1.3601 × 10−5 1.0246 × 10−5 4.9916 × 10−3

SOA 9.7656 × 10−4 2.7016 × 10−5 1.9209 × 10−6 1.9209 × 10−6 1.7344 × 10−6 3.5152 × 10−6

F7 F8 F9 F10 F11 F12

IDARSOA N/A N/A N/A N/A N/A N/A
IDSOA 1.9209 × 10−6 1.7344 × 10−6 4.0715 × 10−5 2.6033 × 10−6 1.6046 × 10−4 2.6033 × 10−6

ARSOA 7.1889 × 10−1 2.7116 × 10−1 2.5967 × 10−5 3.6826 × 10−2 7.5137 × 10−5 5.4463 × 10−2

SOA 5.7517 × 10−6 1.7344 × 10−6 2.1266 × 10−6 2.6033 × 10−6 1.9729 × 10−5 1.7344 × 10−6

F13 F14 F15 F16 F17 F18

IDARSOA N/A N/A N/A N/A N/A N/A
IDSOA 7.8126 × 10−1 1.0000 × 100 9.2710 × 10−3 1.7344 × 10−6 2.2102 × 10−1 2.5967 × 10−5

ARSOA 6.3391 × 10−6 1.0000 × 100 1.9569 × 10−2 1.5658 × 10−2 8.5896 × 10−2 2.1827 × 10−2

SOA 5.2165 × 10−6 1.0000 × 100 1.6046 × 10−4 1.7344 × 10−6 1.5286 × 10−1 1.7344 × 10−6
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Table 5. Cont.

F19 F20 +/−/= ARV RANK

IDARSOA N/A N/A 1.4 1
IDSOA 9.7656 × 10−4 4.3778 × 10−4 13/3/4 2.5 3
ARSOA 1.0000 × 100 1.0000 × 100 11/2/7 2.05 2
SOA 4.8828 × 10−4 4.3778 × 10−4 17/1/2 3.45 4

Figure 2 shows IDARSOA and its two strategies used in SOA and compares the
original SOA. It can be seen from Figure 2 that in F3, F6, F8, and F12, the convergence speed
of IDARSOA is not as fast as SOA. Still, the best solution found by this algorithm in these
functions is closer to the theoretical value of each function. It performs better in terms of
optimality finding accuracy, indicating the strong exploration performance of IDARSOA.
Overall, IDARSOA has a better optimization effect than IDSOA, ARSOA, and SOA, which
shows that adding “individual disturbance” and “attraction-repulsion strategy” is very
helpful to the search of algorithms and improves SOA performance. IDARSOA is the best
way to deal with these different types of functions.
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To explore the changes in the performance of IDARSOA with the increase in data size
and to ensure the reliability of the experiments, this section uses the univariate principle for
the experiments. Under the same operating environment, we set the dim in the experiment
to 50 and 100, the number of evaluations in the experiment to 300,000, and the number of
trials to 30. Because the test function of CEC2019 has a fixed dimension, this part uses the
CEC2020 test functions for validation. The Wilcoxon signed-rank test data for SOA with
different mechanisms in different dimensions are shown in the following Table 6. When
dim is 50, IDARSOA shows better performance than SOA in seven test functions compared
to SOA, while the other three test functions, IDARSOA and SOA, obtain the same optimal
solution. SOA with both ID and DD strategies outperformed SOA in terms of average
ranking. When dim is set to 100, IDARSOA still ranks first among these algorithms with an
ARV of 1.3. Still, the optimal value obtained among the seven functions is better than SOA.
Combined with Table 5 above, the increase in data size does not affect the performance
improvement of the ID and AR strategies for SOA, as IDARSOA is sufficient proof.

Table 6. Comparison of Wilcoxon signed rank test results of different SOAs in high dimension.

dim = 50

F11 F12 F13 F14 F15 F16

IDARSOA N/A N/A N/A N/A N/A N/A
IDSOA 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 4.0715 × 10−5 4.7292 × 10−6

ARSOA 1.7344 × 10−6 2.4308 × 10−2 1.7344 × 10−6 1.0000 × 100 3.1817 × 10−6 1.7344 × 10−6

SOA 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

F17 F18 F19 F20 +/−/= ARV RANK

IDARSOA N/A N/A N/A N/A 1.1 1
IDSOA 1.4936 × 10−5 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 6/1/3 1.9 2
ARSOA 4.4493 × 10−5 2.8786 × 10−6 1.0000 × 100 1.0000 × 100 7/0/3 2.2 3
SOA 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 7/0/3 3 4

dim = 100

F11 F12 F13 F14 F15 F16

IDARSOA N/A N/A N/A N/A N/A N/A
IDSOA 1.7344 × 10−6 1.7344 × 10−6 2.7653 × 10−3 1.0000 × 100 3.3173 × 10−4 4.1955 × 10−4

ARSOA 1.7344 × 10−6 4.2843 × 10−1 1.9209 × 10−6 1.0000 × 100 8.1878 × 10−5 4.8603 × 10−5

SOA 1.7344 × 10−6 1.7344 × 10−6 1.7344 × 10−6 1.0000 × 100 1.7344 × 10−6 1.7344 × 10−6

F17 F18 F19 F20 +/−/= ARV RANK

IDARSOA N/A N/A N/A N/A 1.3 1
IDSOA 2.7653 × 10−3 4.1955 × 10−4 1.0000 × 100 1.0000 × 100 5/2/3 2.1 2
ARSOA 9.2710 × 10−3 2.1266 × 10−6 1.0000 × 100 1.0000 × 100 6/0/4 2.1 2
SOA 3.3173 × 10−4 1.7344 × 10−6 1.0000 × 100 1.0000 × 100 7/0/3 3 4

To explore the impact of the two mechanisms used in this paper on SOA performance
in high dimensions, this section uses box plots to reflect the data distribution characteristics
of the different algorithms. As shown in Figure 3 below, when dim = 50, the median
of IDARSOA in F11 is smaller than the other three algorithms; the ranges of upper and
lower edges are also very small, indicating the stable performance of the optimal value
found by IDARSOA. In F14, from the data distribution of the four algorithms for function
finding, all four algorithms find the theoretical optimal value. When dim = 100, the range
between the upper and lower edges and the range between the upper and lower quartiles
of IDARSOA in F15 and F17 are smaller than those of any of the algorithms, proving the
stable performance of the search for the optimum. As a whole, the original SOA is not very
stable in finding the optimal solution, and the optimal solution found is rather scattered. In
contrast, the performance of IDARSOA, IDSOA, and ARSOA is more stable.
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To explore the impact of the two strategies adopted in this paper on SOA, this section
analyzes the balance and diversity of IDARSOA and SOA. As shown in Figure 4 below, this
paper selects F1, F2, F14, and F18 from 20 test functions for discussion. The first column
in Figure 4 is the balance diagram of IDARSOA, the second column shows the balance
diagram of SOA, and the third column is the diversity analysis diagram. The balance
diagrams contain three curves: exploration, development, and incremental decline. It
can be seen from the figure that the exploration ability of the original algorithm SOA is
weak, and the mining ability accounts for a large proportion of the whole search process.
Due to its early entry into the development stage and long local development process,
SOA has a weak global search ability and cannot get a good optimal solution. As can be
seen from the balance analysis diagram of IDARSOA, its global search ability has been
significantly improved.
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By comparing the population diversity of IDARSOA and SOA, it can be seen that
the two mechanisms used in this paper significantly increase the population diversity.
Furthermore, the oscillation of IDARSOA diversity is much larger than that of SOA, which
indicates that IDARSOA has more solutions to search in the solution space, effectively
reducing the problem of stagnation occurring in the algorithm. This is because the diversity
of the population is increased by the perturbation of random individuals when seagulls
are searching for the optimal direction. In the process of local search time, the influence
of the attraction-repulsion strategy used makes the search space more comprehensive.
Still, at the same time, the IDARSOA population diversity decreases seriously slow, and
the state of particles is scattered, which affects the convergence speed of IDARSOA. This
phenomenon arises because we try to introduce other individuals for perturbation in the
process of finding the optimal migration direction of the seagull population. Although
the perturbation by individuals can reduce the risk of falling into the local optimum, the
disadvantage exists that it leads to a slow decline in diversity and does not perfectly achieve
a rapid decrease in population diversity with the increase in the number of iterations.

4.3. Comparative Study with Swarm Intelligence Algorithm

This part selects five popular metaheuristic algorithms: sine cosine algorithm (SCA) [72],
firefly algorithm (FA) [73], whale optimization algorithm (WOA), bat algorithm (BA) [74]
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moth-flame optimization, and (MFO) [75] to compare with IDARSOA on 20 functions. The
main parameter settings of these algorithms are shown in Table 7 below. In the previous
part, it has been proved that the variant IDARSOA has better performance than the original
SOA, so the next comparative experiment will not add SOA for comparison.
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Table 7. Parameter settings of original algorithms.

Algorithm Population
Size

Maximum
Evaluation Times Other Parameters

IDARSOA 30 300,000
f c = 2; k ∈ [1, 30]; rd = [0, 1]; u = 1;
v = 1; R ∈ [0, 1]; θ ∈ [0, 2π]; ω1 = 0.5;
ω2 = 0.4

SCA 30 300,000 a = 2; r1 ∈ [0, 2]; r2 ∈ [0, 2π]; r3 ∈ [0, 2];
r4 ∈ [0, 1]

FA 30 300,000 alpha = 0.5; beta = 0.2; gamma = 1

WOA 30 300,000 a1 ∈ [0, 2]; a2 ∈ [−2,−1]; b = 1;
p ∈ [0, 1]; r1 ∈ [0, 1]; r2 ∈ [0, 1]

BA 30 300,000 A = 0.5; r = 0.5

MFO 30 300,000 b = 1; a ∈ [−2,−1]; t ∈ [−1, 1]

To prove the optimized performance of IDARSOA, the following Table 8 shows the
average value and standard deviation of the six algorithms, including IDARSOA in F1
to F20. In most functions, the standard deviation of IDARSOA is reasonable and small
overall, reflecting the stability and superiority of IDARSOA. In comparison with the five
algorithms, IDARSOA ranks first among the six algorithms with ARV = 2.55, which shows
the superiority of IDARSOA.

Table 8. Comparison of IDARSOA and original algorithms.

F1 F2 F3

AVG STD AVG STD AVG STD

IDARSOA 1.0000 × 100 9.9190 × 10−14 4.4624 × 100 2.6850 × 10−1 2.4698 × 100 1.3612 × 100

SCA 1.6438 × 105 4.7520 × 105 1.5949 × 103 9.1850 × 102 7.3779 × 100 1.5579 × 100

FA 1.9599 × 107 7.4561 × 106 4.8321 × 103 5.5803 × 102 8.7553 × 100 3.7347 × 10−1

WOA 5.8467 × 105 1.0555 × 106 7.1961 × 103 2.7167 × 103 2.2456 × 100 1.0804 × 100

BA 1.7570 × 108 1.8006 × 108 1.2794 × 104 7.2381 × 103 9.0701 × 100 9.9474 × 10−1

MFO 7.5475 × 106 7.7712 × 106 1.8202 × 103 2.7692 × 103 6.9546 × 100 2.1818 × 100

F4 F5 F6

AVG STD AVG STD AVG STD

IDARSOA 2.8324 × 101 1.1700 × 101 2.0808 × 100 7.2777 × 10−1 5.5185 × 100 1.3272 × 100

SCA 3.5327 × 101 6.6120 × 100 5.5044 × 100 2.1222 × 100 6.2583 × 100 1.0812 × 100

FA 3.6286 × 101 4.4263 × 100 9.4106 × 100 1.6023 × 100 7.4503 × 100 4.8768 × 10−1

WOA 4.8000 × 101 1.8752 × 101 1.7457 × 100 3.2824 × 10−1 7.0760 × 100 1.9836 × 100

BA 7.1763 × 101 2.2951 × 101 1.4952 × 100 8.8400 × 10−2 9.4079 × 100 2.0098 × 100

MFO 2.8907 × 101 9.5872 × 100 2.3353 × 100 3.9566 × 100 4.4310 × 100 1.7569 × 100

F7 F8 F9

AVG STD AVG STD AVG STD

IDARSOA 1.3741 × 103 3.6634 × 102 3.9526 × 100 3.2795 × 10−1 1.2210 × 100 9.9084 × 10−2

SCA 1.1619 × 103 2.1455 × 102 3.9556 × 100 2.8269 × 10−1 1.3891 × 100 8.2047 × 10−2

FA 1.1666 × 103 1.5428 × 102 4.2398 × 100 1.4230 × 10−1 1.6918 × 100 9.4065 × 10−2

WOA 1.1236 × 103 3.8056 × 102 4.2289 × 100 3.5462 × 10−1 1.3197 × 100 1.7161 × 10−1

BA 1.4699 × 103 3.0922 × 102 4.5483 × 100 2.8625 × 10−1 1.3975 × 100 1.9923 × 10−1

MFO 1.0700 × 103 3.8785 × 102 4.4744 × 100 2.9561 × 10−1 1.3434 × 100 1.5116 × 10−1
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Table 8. Cont.

F10 F11 F12

AVG STD AVG STD AVG STD

IDARSOA 2.1250 × 101 1.3100 × 10−1 5.5253 × 107 7.9504 × 107 2.2202 × 103 4.4254 × 102

SCA 2.1102 × 101 1.0959 × 100 4.9127 × 108 2.4689 × 108 2.1567 × 103 1.5194 × 102

FA 2.1023 × 101 6.0846 × 10−1 5.6923 × 108 1.5375 × 108 2.1972 × 103 1.5409 × 102

WOA 2.1065 × 101 8.9335 × 10−2 2.2785 × 103 1.1634 × 103 2.0847 × 103 3.3080 × 102

BA 2.1306 × 101 7.8357 × 10−2 1.0418 × 105 5.1233 × 104 2.4523 × 103 3.1571 × 102

MFO 2.1168 × 101 1.7784 × 10−1 7.9222 × 107 3.0168 × 108 2.0807 × 103 3.3741 × 102

F13 F14 F15

AVG STD AVG STD AVG STD

IDARSOA 7.3703 × 102 1.2169 × 101 1.9000 × 103 0.0000 × 100 1.8669 × 106 9.8014 × 106

SCA 7.5499 × 102 7.4892 × 100 1.9001 × 103 5.8440 × 10−1 8.8925 × 104 1.2521 × 105

FA 7.9477 × 102 8.1099 × 100 1.9104 × 103 2.1422 × 100 1.8894 × 104 8.4283 × 103

WOA 7.7068 × 102 2.3497 × 101 1.9000 × 103 6.1056 × 10−2 5.3733 × 103 3.3812 × 103

BA 8.5547 × 102 5.4071 × 101 1.9025 × 103 1.1437 × 100 3.5577 × 103 1.1950 × 103

MFO 7.3963 × 102 1.7116 × 101 1.9016 × 103 1.6222 × 100 8.3721 × 104 1.4693 × 105

F16 F17 F18

AVG STD AVG STD AVG STD

IDARSOA 1.6286 × 103 2.4444 × 101 2.6228 × 105 2.0391 × 105 2.2955 × 103 1.8224 × 101

SCA 1.6233 × 103 1.4381 × 101 4.4090 × 103 1.1815 × 103 2.2840 × 103 2.4760 × 101

FA 1.6511 × 103 1.5534 × 101 4.5973 × 103 1.0688 × 103 2.2893 × 103 1.0275 × 101

WOA 1.7174 × 103 6.8250 × 101 4.7778 × 103 2.2965 × 103 2.2982 × 103 1.0879 × 101

BA 1.8946 × 103 1.3756 × 102 2.8174 × 103 3.1854 × 102 2.3172 × 103 1.3160 × 101

MFO 1.7649 × 103 1.1782 × 102 3.4778 × 104 8.8401 × 104 2.2960 × 103 1.5197 × 101

F19 F20
+/−/= ARV Rank

AVG STD AVG STD

IDARSOA 2.6000 × 103 0.0000 × 100 2.7000 × 103 0.0000 × 100 2.55 1
SCA 2.8366 × 103 6.1747 × 100 2.9578 × 103 2.2701 × 101 11/4/5 3.25 3
FA 2.8317 × 103 6.3671 × 100 2.9833 × 103 1.1435 × 101 14/4/2 4.35 5
WOA 2.7221 × 103 1.3152 × 102 2.9248 × 103 7.9355 × 101 11/5/4 2.85 2
BA 2.7663 × 103 1.1570 × 102 2.9257 × 103 7.9028 × 101 15/3/2 4.65 6
MFO 2.8201 × 103 7.2237 × 100 2.9526 × 103 3.9734 × 101 12/5/3 3.35 4

To more clearly show the change of convergence curve of IDARSOA and the other five
algorithms under the same experimental conditions, 9 of the 20 functions are selected as
follows. These functions are F1, F2, F4, F8, F9, F13, F16, F19, and F20, respectively. It can
be seen from Figure 5 that in F1 and F2, IDARSOA converges rapidly and is closer to the
optimal value in optimization accuracy than the other five algorithms, which also reflects
the advantages of IDARSOA in exploration performance. In F4, F9, and F13, although
IDARSOA is not as good as MFO in finding the optimal solution initially, IDARSOA
can also find a good optimal value through its continuous exploration. In F19 and F20,
IDARSOA is as good as other algorithms in convergence speed, but it is better in finding
the optimal value. Overall, IDARSOA shows its advantages in finding the optimal value of
the function.
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4.4. Comparative Study with Variants of Novel Intelligent Algorithms

In order to verify the effectiveness of IDARSOA, this paper selects CBA [76], FSTPSO [77],
CDLOBA [78], PPPSO [79], CESCA [80], CMFO [81], SCAPSO [82], CCMWOA [83], and
BSSFOA [84] to compare with IDARSOA. The specific parameter settings in these algo-
rithms are shown in Table 9 below.

Table 10 shows the average value and standard deviation of the optimal solution
obtained by IDARSOA and the advanced algorithm in 20 test functions. Among these 10
algorithms, IDARSOA ranks first with an ARV of 3.05. Compared with the PSO variant
algorithm with good performance, it is stronger than FSTPSO in 15 functions, PPPSO in
12 functions, and SCAPSO in 7 functions. As a typical algorithm of the WOA variant,
CCMWOA ranks third among the 10 algorithms, but it is only stronger than IDARSOA in
the four test functions. Among the three functions F14, F19, and F20, IDARSOA, BSSFOA,
SCAPSO, and CCMWOA achieved the same optimal value. This shows that IDARSOA,
like these three advanced algorithms, can effectively find the best value.
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Table 9. Parameter settings of advanced algorithms.

Algorithm Population
Size

Maximum
Evaluation Times Other Parameters

IDARSOA 30 300,000
f c = 2; k ∈ [1, 30]; rd = [0, 1]; u = 1;
v = 1; R ∈ [0, 1]; θ ∈ [0, 2π]; ω1 = 0.5;
ω2 = 0.4

CBA 30 300,000 Qmin = 0; Qmax = 2

FSTPSO 30 300,000 Vmax = 6; Vmin = −6; c1 = 2; c2 = 2;
ω = 0.9

CDLOBA 30 300,000 Qmin = 0; Qmax = 2

BSSFOA 30 300,000 delta = 0.9; Fmin = 0; Fmax = 2

PPPSO 30 300,000
Vmax = 6; Vmin = 0; c1 = 2; c2 = 2;
k1 = 0.5; k2 = 0.3; kp = 0.45;
ki = 0.3; X = 0.7298

CESCA 30 300,000 a = 2; beta = 1.5; ChaosVec(1) = 0.7

CMFO 30 300,000 CC(1) = 0.7; b = 1

SCAPSO 30 300,000 Vmax = 4; ωmax = 0.9; ωmin = 0.4;
c1 = 2; c2 = 2; a = 2

CCMWOA 30 300,000 m = 1500; b = 1

Table 10. Comparison of IDARSOA and other advanced algorithms.

F1 F2 F3
AVG STD AVG STD AVG STD

IDARSOA 1.000000 × 100 9.503525 × 10−13 4.484137 × 100 3.007712 × 10−1 2.467507 × 100 1.378922 × 100

CBA 2.045314 × 105 3.169591 × 105 7.063138 × 103 4.005939 × 103 9.473201 × 100 1.441603 × 100

FSTPSO 5.416835 × 106 7.040553 × 106 2.823097 × 103 1.665675 × 103 8.854926 × 100 1.712659 × 100

CDLOBA 5.366078 × 108 3.447411 × 108 2.126215 × 104 5.968429 × 103 8.539816 × 100 1.479686 × 100

BSSFOA 1.000000 × 100 3.955114 × 10−11 5.000000 × 100 2.366243 × 10−6 5.313317 × 1016 2.834720 × 1017

PPPSO 4.063737 × 107 3.657041 × 107 6.747908 × 103 3.576540 × 103 4.287855 × 100 2.220982 × 100

CESCA 1.000000 × 100 0.000000 × 100 1.209563 × 103 7.315292 × 102 9.812875 × 100 6.840541 × 10−1

CMFO 2.495589 × 107 1.852789 × 107 8.484967 × 103 3.251125 × 103 2.102516 × 100 8.270586 × 10−1

SCAPSO 1.000003 × 100 1.283621 × 10−5 5.000000 × 100 0.000000 × 100 8.806864 × 100 5.061346 × 10−1

CCMWOA 1.000000 × 100 0.000000 × 100 5.000000 × 100 0.000000 × 100 3.963592 × 100 1.168292 × 100

F4 F5 F6
AVG STD AVG STD AVG STD

IDARSOA 2.717251 × 101 1.254797 × 101 2.139273 × 100 7.451321 × 10−1 5.271715 × 100 1.476269 × 100

CBA 6.694629 × 101 2.317729 × 101 1.490043 × 100 5.325698 × 10−1 1.073698 × 101 1.808086 × 100

FSTPSO 5.043442 × 101 1.343329 × 101 6.034827 × 100 3.838452 × 100 6.986759 × 100 1.597126 × 100

CDLOBA 5.746809 × 101 2.240174 × 101 1.242134 × 100 1.954810 × 10−1 1.043361 × 101 1.157089 × 100

BSSFOA 1.442075 × 102 4.588835 × 100 1.668396 × 102 2.200394 × 101 1.697462 × 101 5.541694 × 10−1

PPPSO 3.839310 × 101 1.074413 × 101 1.283875 × 100 1.518439 × 10−1 6.462171 × 100 1.531601 × 100

CESCA 9.448928 × 101 9.699659 × 100 8.953531 × 101 1.596622 × 101 1.108156 × 101 8.666638 × 10−1

CMFO 3.749406 × 101 1.589558 × 101 2.574459 × 100 3.660344 × 100 7.706524 × 100 1.621081 × 100

SCAPSO 5.057120 × 101 1.642438 × 101 1.565520 × 100 8.810254 × 10−2 6.913048 × 100 1.777494 × 100

CCMWOA 4.986932 × 101 1.008877 × 101 3.479725 × 100 1.161293 × 100 7.444709 × 100 1.245598 × 100
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Table 10. Cont.

F7 F8 F9
AVG STD AVG STD AVG STD

IDARSOA 1.528968 × 103 4.727661 × 102 3.940307 × 100 4.320032 × 10−1 1.235618 × 100 1.113516 × 10−1

CBA 1.374383 × 103 3.420663 × 102 4.853054 × 100 2.295465 × 10−1 1.405100 × 100 1.721617 × 10−1

FSTPSO 1.203606 × 103 3.716102 × 102 4.538657 × 100 4.262319 × 10−1 1.340619 × 100 1.231064 × 10−1

CDLOBA 1.380348 × 103 3.537207 × 102 4.896797 × 100 1.828565 × 10−1 1.479007 × 100 2.249296 × 10−1

BSSFOA 3.192738 × 103 2.412846 × 102 5.611770 × 100 9.256059 × 10−2 4.769840 × 100 7.678918 × 10−1

PPPSO 1.318088 × 103 2.810489 × 102 4.498047 × 100 3.964417 × 10−1 1.249141 × 100 3.765369 × 100

CESCA 1.993929 × 103 1.805498 × 102 5.028661 × 100 1.188186 × 10−1 9.121988 × 10−2 4.013362 × 10−1

CMFO 1.336276 × 103 3.394988 × 102 4.722025 × 100 2.486458 × 10−1 1.249141 × 100 3.765369 × 100

SCAPSO 1.166070 × 103 2.627874 × 102 4.100872 × 100 3.769670 × 10−1 9.121988 × 10−2 4.013362 × 10−1

CCMWOA 1.141992 × 103 3.629329 × 102 4.476690 × 100 3.195163 × 10−1 1.249141 × 100 3.765369 × 100

F10 F11 F12
AVG STD AVG STD AVG STD

IDARSOA 2.128730 × 101 1.542929 × 10−1 2.055593 × 108 8.387840 × 108 2.167846 × 103 5.225523 × 102

CBA 2.104854 × 101 9.277244 × 10−2 1.393178 × 103 7.324373 × 102 2.402761 × 103 3.703850 × 102

FSTPSO 2.103147 × 101 3.766262 × 10−2 6.699923 × 108 5.783327 × 108 2.213364 × 103 2.199824 × 102

CDLOBA 2.128063 × 101 7.271713 × 10−2 2.264579 × 103 9.065271 × 102 2.415362 × 103 2.767366 × 102

BSSFOA 2.152992 × 101 1.151529 × 10−2 3.246366 × 1010 4.869552 × 109 4.034769 × 103 1.913518 × 102

PPPSO 2.109848 × 101 6.506809 × 10−2 4.246755 × 105 1.279981 × 1010 2.158117 × 103 3.566239 × 102

CESCA 2.151104 × 101 1.304537 × 10−1 2.316693 × 106 2.045188 × 109 2.885617 × 103 1.487243 × 102

CMFO 2.129575 × 101 2.345907 × 10−1 4.246755 × 105 1.279981 × 1010 2.325639 × 103 3.842820 × 102

SCAPSO 2.129200 × 101 8.592595 × 10−2 2.316693 × 106 2.045188 × 109 2.188654 × 103 2.606792 × 102

CCMWOA 2.074818 × 101 1.984757 × 100 4.246755 × 105 1.279981 × 1010 2.066235 × 103 2.230539 × 102

F13 F14 F15

AVG STD AVG STD AVG STD

IDARSOA 7.365436 × 102 1.047151 × 101 1.900000 × 103 0.000000 × 100 1.905660 × 106 9.794928 × 106

CBA 9.157041 × 102 8.172201 × 101 1.909141 × 103 3.830691 × 100 4.250929 × 103 2.427470 × 103

FSTPSO 7.607505 × 102 1.897089 × 101 1.903777 × 103 2.134699 × 100 1.443403 × 104 5.269551 × 104

CDLOBA 9.592444 × 102 8.807963 × 101 1.908928 × 103 5.950454 × 100 4.725657 × 103 2.539698 × 103

BSSFOA 8.771444 × 102 1.008231 × 101 1.900000 × 103 0.000000 × 100 1.373129 × 107 2.834251 × 107

PPPSO 7.532335 × 102 1.710264 × 101 1.901063 × 103 5.062910 × 10−1 1.011323 × 104 1.127936 × 104

CESCA 8.456961 × 102 1.331773 × 101 1.900604 × 103 7.846227 × 10−1 1.154661 × 106 6.668748 × 105

CMFO 7.614705 × 102 2.633592 × 101 1.903336 × 103 3.169298 × 100 8.447643 × 104 4.428584 × 105

SCAPSO 7.526187 × 102 9.735354 × 100 1.900000 × 103 0.000000 × 100 4.110251 × 103 2.153134 × 103

CCMWOA 7.666253 × 102 2.147281 × 101 1.900000 × 103 0.000000 × 100 3.088870 × 104 6.547435 × 104

F16 F17 F18
AVG STD AVG STD AVG STD

IDARSOA 1.625281 × 103 1.773744 × 101 2.026475 × 105 2.060346 × 105 2.297973 × 103 1.264591 × 101

CBA 1.870947 × 103 1.636097 × 102 3.128701 × 103 5.301465 × 102 2.300030 × 103 4.910720 × 10−2

FSTPSO 1.807712 × 103 1.274306 × 102 4.046043 × 103 2.391059 × 103 2.347481 × 103 1.181476 × 100

CDLOBA 1.883110 × 103 1.966674 × 102 3.480247 × 103 1.252334 × 103 2.301347 × 103 1.185150 × 100

BSSFOA 2.498101 × 103 1.056882 × 101 3.893858 × 107 1.048266 × 108 2.335064 × 103 4.808892 × 10−2

PPPSO 1.782462 × 103 1.091577 × 102 3.608611 × 103 1.151662 × 103 2.302283 × 103 1.167129 × 100

CESCA 1.811594 × 103 1.063348 × 102 3.837579 × 105 2.882279 × 105 2.341942 × 103 4.403841 × 100

CMFO 1.759178 × 103 1.097689 × 102 3.918881 × 103 2.766490 × 103 2.305250 × 103 2.638451 × 101

SCAPSO 1.743337 × 103 8.170653 × 101 2.972308 × 103 3.940947 × 102 2.338823 × 103 2.257253 × 100

CCMWOA 1.736167 × 103 1.335177 × 102 5.400884 × 103 2.830385 × 103 2.301539 × 103 4.067334 × 10−1
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Table 10. Cont.

F19 F20
+/−/= ARV RANK

AVG STD AVG STD

IDARSOA 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 3.05 1
CBA 2.737212 × 103 1.384116 × 102 2.986157 × 103 5.742234 × 101 13/4/3 6.15 7
FSTPSO 2.734298 × 103 9.769952 × 101 2.971398 × 103 2.729669 × 101 15/3/2 5.95 6
CDLOBA 2.805355 × 103 9.421156 × 101 2.980184 × 103 6.246217 × 101 14/3/3 6.7 8
BSSFOA 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 17/0/3 7.8 10
PPPSO 2.645155 × 103 1.051386 × 102 2.926862 × 103 5.154461 × 101 12/4/4 4.3 4
CESCA 2.613790 × 103 7.941062 × 100 2.750519 × 103 3.357604 × 101 18/2/0 7.55 9
CMFO 2.804255 × 103 1.237585 × 102 2.962768 × 103 3.912437 × 101 13/1/6 5.9 5
SCAPSO 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 7/4/9 3.2 2
CCMWOA 2.600000 × 103 0.000000 × 100 2.700000 × 103 0.000000 × 100 11/4/5 3.4 3

In order to clearly and intuitively understand the convergence of IDARSOA with the
advanced algorithm, the following Figure 6 shows the convergence effect plots compared
with the advanced algorithm. The convergence plots of nine test functions are selected in
the figure, namely F2, F4, F6, F8, F13, F16, F18, F19, and F20. In F4, F6, and F8, the advan-
tages of IDARSOA’s optimization ability in these three functions are obviously displayed.
IDARSOA gradually enters the state of convergence only in the late iteration, which is due
to the addition of the individual perturbation strategy, the search solution is influenced by
random individuals, which reduces the risk of falling into local optimum and enhances the
exploration ability, but this also leads to the problem that IDARSOA converges slower than
other algorithms. In F9 and F20, as the data in the above table show, IDARSOA, BSSFOA,
SCAPSO, and CCMWOA obtain the same optimal values, so the curves of these algorithms
overlap together in the figure. Owing to the great potential of the proposed method, in
the future, it can also be extended to tackle other practical problems, such as medical diag-
nosis [85–88], microgrid planning [89], engineering optimization problems [31,33], energy
storage planning and scheduling [90], active surveillance [91], kayak cycle phase seg-
mentation [92], location-based services [93,94], image dehazing [95], information retrieval
services [96–98], human motion capture [99], and video deblurring [100].
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5. Engineering Design Issues

In this section, the performance of IDARSOA is verified on six well-known engineering
design optimization problems, including tension/compression spring, pressure vessels,
I-beam, speed reducer, welded beam, and three-bar truss design problems. It is worth
noting that the optimal solution to be obtained has many constraints that should not be
violated [62].

5.1. Tension-Compression String Problem

This problem aims to design a tension/compression spring with the smallest weight
while satisfying the constraints. In this model, the design parameters are wire diameter (d),
average coil diameter (D), and effective coil number (N). The specific model is as follows:

Consider
→
x = [x1 x2 x3 ] = [d D N]

Minimize
f
(→

x
)
= x2

1x2(x3 + 2)
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Subject to

g1

(→
x
)
= 1−

4x3
2x3

71785x4
1
≤ 0

g2

(→
x
)
=

4x2
2 − x1x2

12566
(
x2x3

1 − x4
1
) + 1

5108x2
1
≤ 0

g3

(→
x
)
= 1− 140.45x1

x2
2x3

≤ 0

g4

(→
x
)
=

x1 + x2

1.5
− 1 ≤ 0

Variable range:

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

The IDARSOA and other algorithms were applied to optimize the tension/compression
spring design problem, and the results are shown in Table 11. IDARSOA and the other 10
algorithms are applied to the same problem; IDARSOA and DE get the lowest optimiza-
tion cost at 0.012670, which shows the enhancement effect of the proposed IDARSOA in
practical engineering applications.

Table 11. Comparison results of the tension-compression string problem.

Algorithm
Optimal Values for Variables

Optimum Cost
d D N

IDARSOA 0.051960 0.363240 10.91947 0.012670
DE 0.051609 0.354714 11.41083 0.012670
Improved HS [101] 0.051154 0.349871 12.07643 0.012671
PSO [102] 0.051728 0.357644 11.24454 0.012675
WOA [2] 0.051207 0.345215 12.00430 0.012676
RO [103] 0.051370 0.349096 11.76279 0.012679
ES [104] 0.051989 0.363965 10.89052 0.012681
GSA [105] 0.050276 0.323680 13.52541 0.012702
GA [106] 0.051480 0.351661 11.63220 0.012705
Mathematical optimization 0.053396 0.399180 9.185400 0.012730
Constraint correction 0.050000 0.315900 14.25000 0.012833

5.2. Pressure Vessel Design Problem

For the design of cylindrical pressure vessels, the main difficulty is to reduce the
manufacturing cost while meeting the four parameters of the pressure vessel, namely, the
thickness of the head (Th), the inner radius (R), the thickness of the shell (Ts), and the
cross-sectional range minus the head (L). The model can be described as:

Consider
→
x = [x1 x2 x3 x4 ]= [Ts Th R L]

Objective:

f
(→

x
)

min
= 0.6224x1x3x4 + 1.7781x3x2

1 + 3.1661x4x2
1 + 19.84x3x2

1

Subject to
g1

(→
x
)
= −x1 + 0.0193x3 ≤ 0

g2

(→
x
)
= −x3 + 0.00954x3 ≤ 0

g3

(→
x
)
= −πx4x2

3 −
4
3

πx3
3 + 1, 296, 000 ≤ 0
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g4

(→
x
)
= x4 − 240 ≤ 0

Variable ranges:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

Applying IDARSOA and several other algorithms to this engineering problem, the
results obtained are shown in Table 12. It can be seen from the data that IDARSOA ranks
second among these algorithms at the cost of 6072.4301, which indicates that IDARSOA
has a good effect in optimizing the design of pressure vessels.

Table 12. Comparison results of pressure vessel design issues.

Algorithm
Optimal Values for Variables

Optimum Cost
Ts Th R L

PSO (He et al.) 0.812500 0.437500 42.091266 176.746500 6061.0777
IDARSOA 0.812500 0.4375 42.09711 177.1901 6072.4301
GA [106] 0.93750 0.500000 48.32900 112.6790 6410.381
Lagrangian multiplier [107] 1.12500 0.625000 58.29100 43.69000 7198.043
BA [74] 98.80150 98.10897 10.98606 200.0000 7258.564
Branch-and-bound [108] 1.12500 0.625000 47.70000 117.7100 8129.104
GSA [105] 1.125000 0.625000 55.988659 84.4542025 8538.8359

5.3. I-Beam Design Problem

The goal of the structural design problem of the I-steel is to minimize vertical deflection.
The problem involves four structural parameters: two thicknesses, one length, and one
height. The specific problem model is as follows:

Consider:
→
x = [x1 x2 x3 x4] =

[
b h tw t f

]
The value range of the four parameters:

10 ≤ x1 ≤ 50

10 ≤ x2 ≤ 80

0.9 ≤ x3 ≤ 5

0.9 ≤ x4 ≤ 5

Minimize:
f
(→

x
)
=

5000
tw(h−2t f )

3

12 +
bt3

f
6 + 2bt f

( h−t f
2

)2

Subject to:
g
(→

x
)
= 2bt f + tw

(
h− 2t f

)
≤ 0

g1

(→
x
)
=

18h× 104

tw

(
h− 2t f

)3
+ 2bt f

(
4t f + 3h

(
h− 2t f

)) +
15b× 103(

h− 2t f

)
tw3 + 2t f b3

− 6 ≤ 0

The results of the IDARSOA and other six algorithms to the I-beam design problem
are shown in the following Table 13. It can be seen from the data in the table that IDARSOA
and SOS can effectively solve this problem at the same time.
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Table 13. Comparison results of I-beam problem.

Algorithm
Optimum Variables

Optimum Cost
b h tw tf

IDARSOA 50.0000 80.0000 0.9000 2.321769 0.013074
SOS [109] 50.0000 80.0000 0.9000 2.3218 0.013074
CS [110] 50.0000 80.0000 0.9000 2.3217 0.013075
AGOA [111] 43.12663 79.91247 0.932602 2.671865 0.013295
ARSM [112] 37.0500 80.0000 1.7100 2.3100 0.015700
IARSM [112] 48.4200 79.9900 0.9000 2.4000 0.131000

5.4. Speed Reducer Design Problem

The premise of the problem is to minimize the weight of the speed reducer while
satisfying each parameter in the engineering design model within the valid range. The
parameters involved: x1 is the face width (b), x2 is the tooth mode (m), x3 is the number of
gear teeth (z), x4 is the length of the first shaft between bearings (l1), x5 is the length of the
second shaft between bearings (l2), x6 is the diameter first (d1), and x7 is the second shaft
(d2). The specific mathematical model is shown below.

Consider
→
z = [x1 x2 x3 x4 x5 x6 x7 ] = [b m z l1 l2 d1 d2],

Minimize f
(→

x
)

= 0.7854x1x2
2
(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7
)

+ 7.4777
(

x2
6 + x2

7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)
.

Subject to:

g1

(→
x
)
=

27
x1x3x2

2
− 1 ≤ 0

g2

(→
x
)
=

397.5
x1x2

2x2
3
− 1 ≤ 0

g3

(→
x
)
=

1.93x3
4

x2x4
6x3
− 1 ≤ 0

g4

(→
x
)
=

1.93x3
5

x2x4
7x3
− 1 ≤ 0

g5

(→
x
)
=

[
(745(x4/x2x3))

2 + 16.9× 106
]1/2

110x3
6

− 1 ≤ 0

g6

(→
x
)
=

[
(745(x5/x2x3))

2 + 157.5× 106
]1/2

85x3
7

− 1 ≤ 0

g7

(→
x
)
=

x2x3

40
− 1 ≤ 0

g8

(→
x
)
=

5x2

x1
− 1 ≤ 0

g9

(→
x
)
=

x1

12x2
− 1 ≤ 0

g10

(→
x
)
=

1.5x6 + 1.9
x4

− 1 ≤ 0

g11

(→
x
)
=

1.1x7 + 1.9
x5

− 1 ≤ 0
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where

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 28, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

As shown from the data in Table 14 below, IDARSOA performs well in this problem,
proving its advantage in solving constrained problems. The advantage is outstanding
compared to other hHHO-SCA, SCA, and GSA.

Table 14. Comparison results of speed reducer design problem.

Algorithm
Optimal Values for Variables

Optimum Cost
b m z l1 l2 d1 d2

IDARSOA 3.50608 0.7 17 7.3 7.719262 3.353154 5.288364 2998.7797
PSO [102] 3.50001 0.7 17 8.3 7.8 3.352412 5.286715 3005.7630
hHHO-SCA [113] 3.56061 0.7 17 7.3 7.991410 3.452569 5.286749 3029.8731
SCA [72] 3.50875 0.7 17 7.3 7.8 3.461020 5.289213 3030.5630
GSA [105] 3.6 0.7 17 8.3 7.8 3.369658 5.289224 3051.1200

5.5. Welded Beam Design Problem

The objective of this engineering problem is to reduce the manufacturing cost of a
welded beam, where the variables involved are: welding seam thickness (h), welding joint
length (l), beam width (t), beam thickness (b). A detailed model is shown below.

Consider
→
x = [x1, x2, x3, x4] = [ h l t b]

Minimize
f
(→

x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x4)

Subject to
g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g4

(→
x
)
= x1 − x4 ≤ 0

g5

(→
x
)
= P− PC

(→
x
)
≤ 0

g6

(→
x
)
= 0.125− x1 ≤ 0

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

Variable range 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2
where

τ
(→

x
)
=

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′ )2,τ′ =

P√
2x1x2

,τ′′ =
MR

J
,M = P

(
L +

x2

2

)

R =

√
x2

2
4

+

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}
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σ
(→

x
)
=

6PL
x4x32 , δ

(→
x
)
=

6PL3

Ex2
3x4

PC

(→
x
)
=

4.013E
√

x2
3x6

4
36

L2

(
1− x3

2L

√
E

4G

)
P = 60, 001b, L = 14, δmax = 0.25

E = 30× 16 psi, G = 12× 106 psi

τmax = 13, 600 psi, σmax = 30, 000 psi

IDARSOA for this problem has an inferior performance to EO and RO methods when
solving the same problem with other algorithms. However, it has advantages compared
with HS, FSA, SCA, and SBM (see Table 15).

Table 15. Comparison results of the welded beam design problem.

Algorithm
Optimal Values for Variables

Optimum Cost
h l t b

EO [114] 0.2057 3.4705 9.03664 0.2057 1.7249
RO [103] 0.203687 3.528467 9.004233 0.207241 1.735344
IDARSOA 0.2275 5.8045 8.261455 0.247557 2.280517
HS [115] 0.244200 6.223100 8.291500 0.243300 2.380700
FSA [116] 0.244356 6.125792 8.293905 0.244356 2.38119
SCA [117] 0.244438 6.237967 8.288576 0.244566 2.385435
SBM [118] 0.2407 6.4851 8.2399 0.2497 2.4426

5.6. Three-Bar Truss Design Problem

The three-bar truss design problem is a typical constrained engineering problem that
requires obtaining a smaller weight while satisfying two parameters x1, x2. The specific
mathematical model is as follows.

Objective function:
f (x) =

(
2
√

2x1 + x2

)
× l

Subject to:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P− σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

P− σ ≤ 0

g2(x) =
1√

2x2 + x1
P− σ ≤ 0

where
0 ≤ xi ≤ 1 i = 1, 2

L = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2

IDARSOA is compared with the four metaheuristic algorithms, and its minimum
weight obtained for solving this problem is 263.8960. As shown in Table 16, IDARSOA
has an advantage in solving the problem and can handle the three-bar truss design prob-
lem well.
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Table 16. Comparison results of the three-bar truss design problem.

Algorithm
Optimal Values for Variables

Optimum Cost
x1 x2

IDARSOA 0.788906 0.40760 263.8960
GWO [119] 0.79477 0.39192 263.987
SCADE [120] 0.73942 0.5691 266.0501
RCBA [79] 0.56544 0.64079 266.6156
ALCPSO [121] 0.999924 0.000108 282.8427

6. Conclusions and Future Works

The IDARSOA proposed in this paper is designed to overcome the lack of search
ability of the original SOA. When seagulls look for the optimal migration direction, the
individual disturbance mechanism is added to enhance the ability to jump out of the local
optimum through the disturbance of seagulls in different individual positions. At the
same time, the attraction-repulsion strategy is introduced to guide the seagulls to move
towards the position of the optimal solution. The combination of these two mechanisms
improves the optimization accuracy of the algorithm, makes up for the lack of search ability
of the original algorithm, enhances the diversity of the population, and makes the process
of exploring the solution space more comprehensive. Data results of 20 representative
benchmark functions show that the performance of this optimization algorithm is signifi-
cantly improved compared with the original SOA, and it can effectively solve the function
optimization problem. In the application of IDARSOA to six engineering examples, there
are sound effects which can be a good solution to the actual engineering problems, and
shows that IDARSOA can improve the accuracy of the calculation results and has a certain
practical value.

Although our proposed method effectively improves the optimization performance
of SOA, IDARSOA takes more time to complete in dealing with complex and large-scale
problems. Therefore, we will consider combining IDARSOA with distributed platforms,
such as Hadoop, to improve its parallel performance and speed up the time to solve real
industrial environment problems. In addition, there are still many problems worthy of
further study. On the one hand, IDARSOA suffers from the problem of slow convergence.
In the next stage of research, we consider balancing the relationship between population
diversity and the number of iterations by adding complementary strategies to speed up
the convergence trend of IDARSOA while ensuring that it has an affluent population.
At the same time, under the core idea of SOA, how to enrich the algorithm model and
improve the algorithm performance so that the improved SOA has the same superior
performance as SASS [122], COLSHADE [123], and CMA-ES [124] algorithms are also
the critical research contents in our subsequent work. On the other hand, our goal is to
better integrate optimized SOA into real-life problems and make full use of the advantages
of SOA. Due to the good performance of IDARSOA in functions, we plan to combine
IDARSOA with machine learning to solve more complex real-world problems. Then
IDARSOA will be applied to other scenarios, such as for image enhancement optimization,
image segmentation and classification, and handling dynamic landscapes. Moreover,
learning techniques can be used to further boost the proposed method [5,125,126], and
the proposed method can also be extended to the multi/many-objective optimization
algorithms [127–131].
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Appendix A

Table A1. Description of the benchmark functions.

NO. Functions Dim F (min)

CEC2019 benchmark functions
F1 Storn’s Chebyshev Polynomial Fitting Problem 9 1
F2 Inverse Hilbert Matrix Problem 16 1
F3 Lennard-Joes Minimum Energy Cluster 18 1
F4 Rastrigin’s Function 10 1
F5 Griewangk’s Function 10 1
F6 Weierstrass Function 10 1
F7 Modified Schwefel’s Function 10 1
F8 Expand Schaffer’s F6 function 10 1
F9 Happy Cat Function 10 1
F10 Ackley Function 10 1
CEC2020 benchmark functions
F11 Shifted and Rotated Bent Cigar Function (CEC2017 F1) 30 100
F12 Shifted and Rotated Schwefel’s Function (CEC2014 F11) 30 1100
F13 Shifted and Rotated Lunacek bi-Rastrigin Function (CEC2017 F7) 30 700
F14 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 F19) 30 1900
F15 Hybrid Function1 (n = 3) (CEC2014 F17) 30 1700
F16 Hybrid Function2 (n = 4) (CEC2017 F16) 30 1600
F17 Hybrid Function3 (n = 5) (CEC2014 F21) 30 2100
F18 Composition Function1 (n = 3) (CEC2017 F22) 30 2200
F19 Composition Function2 (n = 4) (CEC2017 F24) 30 2400
F20 Composition Function3 (n = 5) (CEC2017 F25) 30 2500
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