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Abstract: The analytically time integrable time-space domain (ATI-TSD) is discovered based on which
the minimum time-space domain is identified for treatment on singularities in the three-dimensional
time-domain boundary element method (3D TD-BEM) formulation. A direct method to solve singular
integrals in the 3D TD-BEM formulation for elastodynamic problems is proposed. The wavefront
singularity can be analytically eliminated in ATI-TSD, while the dual singularity can be treated by
the direct method using Kutt’s quadrature in the identified minimum time-space domain. Three
benchmark examples are presented to verify the correctness and the applicability of the direct method
for solving the singular integrals in 3D TD-BEM.

Keywords: time-space coordinate system; time domain boundary element method (TD-BEM); Kutt’s
quadrature; time-space integration domain; singular integrals

1. Introduction

In general, practical dynamic problems can be approximated by numerical solu-
tions [1–3]. Among numerical techniques, such as the finite element method (FEM) [4–6],
the meshless method [7–9] and the boundary element method (BEM) [10–15], BEM has the
advantages of high modelling accuracy, dimension reduction, and automatic satisfaction of
boundary conditions at infinity. Therefore, BEM has been successfully applied to many en-
gineering problems [16–20]. In the boundary element methods, the time domain boundary
element method (TD-BEM, with TD for time domain) is considered to be the most natural
choice for transient dynamic problems [12,13].

In the early historic stages of the development of TD-BEM, Niwa et al. [21], Mansur
and Brebbia [22] made important contributions to the complete TD-BEM formulation
based on time domain fundamental solutions for 2D scalar wave propagation problems.
After that, Karabalis and Beskos [23,24] proposed the first simplification to the transient
time domain boundary integral formulations for 3D elastodynamics in the interaction of
soil and structure. Subsequently, Banerjee et al. [25] presented a systematic numerical
implementation of the 3D TD-BEM formulation which is currently the most widely used
and classic formulation. A review of research on accuracy and efficiency was undertaken
by Beskos [26,27]. In the process of numerical implementation of the boundary integral
equation in TD-BEM, it has been pointed out in the literature (e.g., [10] and [13]) that there
are two types of inherent singularity in TD-BEM formulation, the wavefront singularity
and the spatial singularity, respectively, arising in cases where the wave triggered from
the source point approaches the field point, and the source point coincides with the field
point. Mathematically, in 3D time domain fundamental solutions, the coefficient terms
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consisting of the terms 1/r or 1/r2 cause the spatial singularity in space domain, while the
terms consisting of the function terms (e.g., the Heaviside function term, the Dirac function
term or the derivative term of the Dirac function) cause the wavefront singularity in the
time domain. The spatial singularity exists in the form of a dual singularity, where the
wavefront singularity and spatial singularity occur at the same time in both time and space
domains. It is impossible for the sole spatial singularity to exist independently in the 3D
TD-BEM formulation. However, the wavefront singularity exists in two forms, the dual
singularity in the case of r→ 0, and the independent wavefront singularity in the case of
r
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in two forms, the dual singularity in the case of r → 0, and the independent wavefront 
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In order to solve the singular integrals, Aliabadi [28] further subdivided the 
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eliminate wavefront singularity. Coda and Venturini [29] adopted an improved time 
domain fundamental solution for constant approximation for both displacement and 
traction variables, where the piecewise expression of the singular integrals were given. In 
subsequent articles [30,31], the singular integrals were also solved analytically in the time 
domain. In contrast, for the dual singularity in both the time and space domains, after the 
wavefront singularity is analytically solved in time domain, only the weak spatial 
singularity 1/r and the hyper-spatial singularity 1/r2 are left. The degenerating element 
method was adopted to generate a Jacobian matrix, approaching zero at the field point, to 
help deal with the weak spatial singularity [32–35]. Three methods were proposed to solve 
the hyper-spatial singularity. The first one is the rigid-body displacement method 
[25,30,31,36], where the singular integrals are indirectly solved by subtracting the non-
singular integral from the whole non-singular integral. Therefore, the rigid body 
displacement method is an indirect singularity treatment, with the numerical accuracy 
dependent on all elements involved, causing the accumulation of numerical errors. 
Additionally, there are the following two direct treatments on the hyper-singularity: In 
the second method of the treatment on the hyper-spatial singular integral, the hyper-
spatial singular integral was processed to reduce the higher order to weak singular 
integral by special techniques, such as the polar coordinate transformation method [37–
39] and the kernel function separation method [34,35]. The third method is called the 
method of Kutt’s quadrature [29,40,41]. Hildenbrand and Kuhn [40] applied Kutt’s 
quadrature to deal with hyper-singular integrals in the stress boundary integral equations 
for 2D linear elastostatics. The algorithm was further applied to 3D elastostatic cracks in 
anisotropic solids by BEM in [41]. For 3D elastodynamic problems, Coda and Venturini 
[29] adopted Kutt’s quadrature to treat the spatial singularity in the TD-BEM formulation 
for a small region [0,1]r∈  near the singular point. In the second method, the reduction 
of the order of the hyper-spatial singularity did not finalize the singularity treatment on 
the hyper-spatial singularity. The processed singularity was suspended to be further 
treated by the degenerating element treatment on weak singularity. The third method is 
limited to a small integration range, and is obviously not applicable to the more general 
integration range in 3D TD-BEM. From the statement of the historic process of the 
treatments on the singularity in 3D TD-BEM, the treatment on singular integrals in the 
time domain, in the sense of the single-layered integration, is complete, direct and 
analytical; nevertheless, the dual singularity should be fully and analytically solved, in 
the sense of double-layered integral, in both time and space domains. Therefore, the direct 
and analytical treatment on singularities in 3D TD-BEM is worth investigating. 

0. Therefore, in the 3D TD-BEM formulation, there are only two types of singularity,
the independent wavefront singularity and the dual singularity. All the coefficients in the
coefficient matrixes are double-layered integrals. The independent wavefront singularity is
incorporated in the singular integral in the layer in time domain, while the other layer of
integral in the space domain is non-singular. In contrast, the dual singularity is incorporated
in the singular integral in the double-layered integral in both time and space domains.

In order to solve the singular integrals, Aliabadi [28] further subdivided the integration
domain, and then implemented analytical integration in the time domain to eliminate wave-
front singularity. Coda and Venturini [29] adopted an improved time domain fundamental
solution for constant approximation for both displacement and traction variables, where
the piecewise expression of the singular integrals were given. In subsequent articles [30,31],
the singular integrals were also solved analytically in the time domain. In contrast, for the
dual singularity in both the time and space domains, after the wavefront singularity is ana-
lytically solved in time domain, only the weak spatial singularity 1/r and the hyper-spatial
singularity 1/r2 are left. The degenerating element method was adopted to generate a
Jacobian matrix, approaching zero at the field point, to help deal with the weak spatial sin-
gularity [32–35]. Three methods were proposed to solve the hyper-spatial singularity. The
first one is the rigid-body displacement method [25,30,31,36], where the singular integrals
are indirectly solved by subtracting the non-singular integral from the whole non-singular
integral. Therefore, the rigid body displacement method is an indirect singularity treatment,
with the numerical accuracy dependent on all elements involved, causing the accumulation
of numerical errors. Additionally, there are the following two direct treatments on the
hyper-singularity: In the second method of the treatment on the hyper-spatial singular
integral, the hyper-spatial singular integral was processed to reduce the higher order to
weak singular integral by special techniques, such as the polar coordinate transformation
method [37–39] and the kernel function separation method [34,35]. The third method is
called the method of Kutt’s quadrature [29,40,41]. Hildenbrand and Kuhn [40] applied
Kutt’s quadrature to deal with hyper-singular integrals in the stress boundary integral
equations for 2D linear elastostatics. The algorithm was further applied to 3D elastostatic
cracks in anisotropic solids by BEM in [41]. For 3D elastodynamic problems, Coda and
Venturini [29] adopted Kutt’s quadrature to treat the spatial singularity in the TD-BEM
formulation for a small region r ∈ [0, 1] near the singular point. In the second method,
the reduction of the order of the hyper-spatial singularity did not finalize the singularity
treatment on the hyper-spatial singularity. The processed singularity was suspended to
be further treated by the degenerating element treatment on weak singularity. The third
method is limited to a small integration range, and is obviously not applicable to the more
general integration range in 3D TD-BEM. From the statement of the historic process of
the treatments on the singularity in 3D TD-BEM, the treatment on singular integrals in
the time domain, in the sense of the single-layered integration, is complete, direct and
analytical; nevertheless, the dual singularity should be fully and analytically solved, in the
sense of double-layered integral, in both time and space domains. Therefore, the direct and
analytical treatment on singularities in 3D TD-BEM is worth investigating.

The current study is focused on a direct treatment on the weak and hyper singularities
in 3D TD-BEM. Based on the characteristics of P- and S-wave propagation and the properties
of the Heaviside function, the Dirac function and the derivative of the Dirac function, the
time-space domain, where the dual singular integrals are analytically integrable in the time
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domain, is clearly discovered. Subsequently, the minimum time-space domain where the
spatial singular integrals need to be analytically treated is identified. Both the weak and
hyper-spatial singularities in the overall integration range are independently and explicitly
expressed by Kutt’s quadrature. Finally, the correctness of the proposed treatment on the
singularity in 3D TD-BEM is verified by three dynamic examples: a 1D rod and a restrained
2D beam in finite media and a spherical cavity in an infinite medium.

In this paper, as the important part of the 3D TD-BEM formulation, the boundary
integral equation and the numerical discretization are briefly described in Section 2, while
the main contribution of the current study, the treatment on singularity in boundary integral,
is presented in Section 3. Three examples are given to validate the effectiveness of the
proposed method for solving the singularity in the 3D TD-BEM formulation in Section 4,
and conclusions are drawn in Section 5.

2. Boundary Integral Equation and Numerical Discretization

Neglecting the initial conditions and the body force, the displacement boundary
integral equation for 3D elastodynamic problems can be obtained by Graffi’s reciprocity
theorem, as expressed in [25,28]:

cki(P)ui(P, t) =
∫

S

∫ t

0
us

ki(P, τ; Q, t)pi(Q, τ)dτdS(Q)−
∫

S

∫ t

0
ps

ki(P, τ; Q, t)ui(Q, τ)dτdS(Q) (1)

In Equation (1), cki is the free term computed by Hartmann [42]. Q and P are, respec-
tively, the field point and the source point. pi and ui (i = 1, 2, 3) represent the traction and
displacement at instant τ. us

ki and ps
ki are fundamental solutions in the 3D time domain,

which can be found in the well known papers [28] and [43], as follows:

us
ki(P, τ; Q, t) =

1
4πµ

(ψδki − χr,kr,i), (2)

ps
ki(P, τ; Q, t) =

1
4π


(

∂ψ
∂r −

χ
r

)(
∂r
∂n δki + r,ink

)
− 2 χ

r

(
r,kni − 2r,kr,i

∂r
∂n

)
−2 ∂χ

∂r r,kr,i
∂r
∂n +

(
c2

1
c2

2
− 2
)(

∂ψ
∂r −

∂χ
∂r − 2 χ

r

)
r,kni

. (3)

In Equations (2) and (3), the related parameters are expressed, as:

ψ =
c2

2
r3 t′

[
H
(

t′ − r
c2

)
− H

(
t′ − r

c1

)]
+ 1

r δ
(

t′ − r
c2

)
,

χ = 3ψ− 2
r δ
(

t′ − r
c2

)
− c2

2
c2

1

1
r δ
(

t′ − r
c1

)
,

∂ψ
∂r = − χ

r −
1
r2

[
δ
(

t′ − r
c2

)
+ r

c2

·
δ
(

t′ − r
c2

)]
,

∂χ
∂r = − 3χ

r −
1
r2

[
δ
(

t′ − r
c2

)
+ r

c2

·
δ
(

t′ − r
c2

)]
+

c2
2

c2
1

1
r2

[
δ
(

t′ − r
c1

)
+ r

c1

·
δ
(

t′ − r
c1

)]
,

(4)


ri = rQ

i − rP
i ,

r,i =
∂r

∂xQ
i
= − ∂r

∂xP
i
= − ri

r ,

ni = − xi
n ,

∂r
∂n = rini.

(5)

In Equations (2)–(5), t′ = t − τ. The variable r represents the distance from the

source point to the field point. The notations H(t′ − r/cw), δ(t′ − r/cw) and
·
δ(t′ − r/cw),

respectively, stand for the Heaviside function, the Delta function and the derivative of the
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Delta function, where w = 1, 2. The constants c1 and c2 represent the P-wave and S-wave
velocities, respectively, expressed by: c1 =

√
λ+2µ

ρ ,

c2 =
√

µ
ρ .

(6)

In Equation (6), ρ is the material density. The constants µ and λ are Lame constants,
expressed as: {

µ = E
2(1+ν)

,
λ = νE

(1+ν)(1−2ν)
.

(7)

In Equation (7), E and ν are Young’s modulus and Poisson’s ratio, respectively.
The established boundary integral equation Equation (1) needs to be discretized and

after that assembled into the solvable form. The calculated time interval [0, t] is divided
into M equal segments with time step ∆t = t/M, such that tm = m∆t. The boundary S is
discretized into Ne linear triangular elements. After that, the terms of displacement and
traction in Equation (1) can be expressed, as:

∫
S

∫ t
0 us

ki pi(Q, τ)dτdS(Q) =
M
∑

m=1

Ne
∑

e=1

Nq

∑
a=1

G(m;e,a)
ki p(m;e,a)

i ,∫
S

∫ t
0 ps

kiui(Q, τ)dτdS(Q) =
M
∑

m=1

Ne
∑

e=1

Nq

∑
a=1

H(m;e,a)
ki u(m;e,a)

i .
(8)

In Equation (8), p(m;e,a)
i and u(m;e,a)

i , respectively, represent the traction and displace-
ment at point a on element e at instant tm. The notation Nq is the amount of nodes of element

e. The terms G(m;e,a)
ki and H(m;e,a)

ki are the influence coefficient elements of the traction and
displacement, expressed by Equations (9) and (10), respectively, as:

G(m;e,a)
ki =

{ ∫
S

∫ tm
tm−1

us
ki

τ−tm−1
∆t MadτdS +

∫
S

∫ tm+1
tm

us
ki

tm+1−τ
∆t MadτdS, when m 6= M,∫

S

∫ tm
tm−1

us
ki

τ−tm−1
∆t MadτdS, when m = M,

(9)

H(m;e,a)
ki =

{ ∫
S

∫ tm
tm−1

ps
ki

τ−tm−1
∆t MadτdS +

∫
S

∫ tm+1
tm

ps
ki

tm+1−τ
∆t MadτdS, when m 6= M,∫

S

∫ tm
tm−1

ps
ki

τ−tm−1
∆t MadτdS, when m = M.

(10)

In Equations (9) and (10), Ma(Q) is the shape function of the spatial discrete linear
triangular element.

After discretization and assemblage in time and space domains, the boundary integral
equation Equation (1) is transformed into the equation set in matrix form, expressed
as follows:

(C + HMM)uM = GMMpM +
M−1

∑
m=1

(
−HMmum + GMmpm

)
. (11)

In Equation (11), uM and pM are the 3N × 1 overall displacement and traction vector,
with N for the number of boundary nodes. C, GMM and HMM are the overall matrices
with the 3N × 3N elements at instant t, formed in the process of assembling the coeffi-
cient cki, the influence coefficient elements G(m;e,a)

ki and H(m;e,a)
ki . The matrices um and pm

(m = 1, 2, · · · , M− 1) represent the displacement and traction at instant tm, while HMm

and GMm are the overall matrices at instant tm, respectively.
Both matrices HMm and GMm are solely dependent on (M−m). Therefore, once the

differential value (M−m) is determined, the matrices HMm and GMm are accordingly
determined.
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3. Analytical Treatment on Singularity

In the expressions of coefficients of the traction and displacement in Equation (4), if the
wave triggered from the source point is approaching the field point, in the case of cwt′ → r,
the first type of singularity of wavefront singularity appears. In other words, in the case of
t′ − r/cw → 0, the Heaviside function term Hw = [H(t′ − r/c2)− H(t′ − r/c1)], the Dirac

function term δ(t′ − r/cw) and the derivative of the Dirac function
·
δ(t′ − r/cw) containing

the term (t′ − r/cw) are of the wavefront singularity. Therefore, the wavefront singularity
is the singularity related only to time. On the other hand, in the case of τ → t− r/cw
and r → 0 , the second category singularity of the dual singularity appears. For example,

the integral terms, containing one of terms of c2
2

r3 t′Hw, 1
r2

[
δ(t′ − r/c2) +

r
c2

·
δ(t′ − r/c2)

]
and

1
r δ(t′ − r/c2), are singular integrals with the dual singularity. So, the dual singularity is the
singularity related to both time and space.

In this section, different approaches are employed to handle the two categories of
singularities. The treatments on singularities for the two scenarios are independently
presented.

3.1. Analytical Treatment on Wavefront Singular Integrals

In Equation (4), the coefficients (ψ, χ, ∂ψ
∂r and ∂χ

∂r ) contain the wavefront singularity
relevant functions (the Heaviside function term Hw = [H(t′ − r/c2)− H(t′ − r/c1)], the

Dirac function term δ(t′ − r/cw) and the derivative term of Dirac function
·
δ(t′ − r/cw), so,

the coefficients (ψ, χ, ∂ψ
∂r and ∂χ

∂r ) are wavefront singular coefficients. For the case where the
wave has not yet arrived at the field point, the influence value should be mathematically
assigned 0. In the process of the integration, the expressions are different in different
integration domains, therefore, the entire integration domain needs to be divided. Looking
into the composition of the function, the three wavefront singularity relevant functions

(Hw, δ(t′ − r/cw) and
·
δ(t′ − r/cw)) are described by P-wave velocity c1, S-wave velocity

c2, the distance r between the source point and the field point, and the time duration t′ of
wave propogation. Therefore, division of the integration domain should be dependent with
the variables, r, c1, c2 and t′. By introducing the time-space coordinate system, the division
of the integration domain, relevant with the P-wave velocity c1 and S-wave velocity c2, is
shown in Figure 1.

Figure 1. Sketch of time-space integration domain.

In Figure 1, the horizontal axis τ is the travelling time of the impulse originated
from the source point P, and the vertical axis r is the distance from the field point to
the source point. The origin o is the source point and instant zero, as well. t is the total
analysis time, and the coordinates r1 = c1∆t and r2 = c2∆t are, respectively, the limits
of the distance, that the P-wave and S-wave can propagate from the source point P from
instant 0 to instant t. The oblique segments r = c1(t− τ) and r = c2(t− τ) are the
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farthest distances that the P-wave and S-wave pulses triggered at the source point P at
instant τ can travel during period (t− τ). Therefore, on the one hand, the upper part
r > c1(t− τ) of the oblique segment r = c1(t− τ) is the domain, where the P-wave has

not yet reached, so that, H(c1(t− τ)− r)) = 0, δ(t′ − r/c1)= 0 and
·
δ(t′ − r/c1)= 0. On the

other hand, the lower part r < c1(t− τ) of the oblique line segment r = c1(t− τ) indicates
the domain, where the P-wave has passed over, so that, H(c1(t− τ)− r)) = 1. Similarly,
in the upper domain of r = c2(t− τ), one has, H(c2(t− τ)− r)) = 0, δ(t′ − r/c2)= 0 and
·
δ(t′ − r/c2)= 0, while in the lower domain of r = c2(t− τ), one has, H(c2(t− τ)− r)) = 1.
The prerequisite of the existence and being non zero for Equations (9) and (10) is that the

equalities Hw = [H(t′ − r/c2)− H(t′ − r/c1)] = 0, δ(t′ − r/cw) = 0 and
·
δ(t′ − r/cw) = 0

are not tenable at the same time. This prerequisite is satisfied, when, and only when,
the time-space integration domain of the wavefront singular coefficients is located in the
shaded part shown in Figure 1. Therefore, in the shaded triangle in Figure 1, the coefficients
in the time-space domain are of wavefront singularity, but the singular coefficients in the
time domain can be analytically expressed. In this paper the shaded triangle in Figure 1
is defined as the analytically time integrable time-space domain, abbreviated to ATI-TSD,
with ATI meaning analytically time integrable, and TSD meaning time-space domain.

In the process of the discretization of the boundary integral equation, the ATI-TSD
must be correspondingly discretized into every time element. The ATI-TSD, limited by
time element [tm−1, tm], is shown in Figure 2, which is mathematically expressed, as:

Dτr = {(τ, r)|τ ∈ [tm−1, tm], r ∈ [c2(t− τ), c1(t− τ)]} (12)

Figure 2. Division of ATI-TSD.

In Figure 2, the following relationships are tenable, r3 = c1(t− tm−1), r4 = c1(t− tm),
r5 = c2(t− tm−1), r6 = c2(t− tm). Due to the different performance of the wavefront singu-
larity relevant functions (the Heaviside function Hw, the Dirac function δ(t′ − r/cw), and

the derivative of Dirac function
·
δ(t′ − r/cw)) in different integration domains, according

to the amount relationship between r4 and r5, the ATI-TSD in time element [tm−1, tm] in
Figure 2 is divided into two cases, the case of r4 > r5 in Figure 3a and the case of r4 < r5 in
Figure 3b. Considering the position of r in the shaded area, the ATI-TSD in time element
[tm−1, tm] in Figure 3a,b are divided into three domains, respectively denoted by 1©, 2©
and 3© in Figure 3a,b.
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Figure 3. Subdivision of ATI-TSD in [tm−1, tm]: (a) the case of r4 > r5; (b) the case of r4 < r5.

Taking the integration process of the wavefront singular coefficient ψ as an example,
the division mechanism in the sense of mathematics of the ATI-TSD is illustrated. The
integration of ψ in time element [tm−1, tm] in Figure 3a,b can be mathematically expressed,
respectively, as:∫

S

∫ tm
tm−1

ψ
τ−tm−1

∆t dτdS

=
∫ r3

r4

∫ t− r
c1

tm−1
ψ

τ−tm−1
∆t dτdS +

∫ r4
r5

∫ tm
tm−1

ψ
τ−tm−1

∆t dτdS +
∫ r5

r6

∫ tm
t− r

c2
ψ

τ−tm−1
∆t dτdS,

(13)

∫
S

∫ tm
tm−1

ψ
τ−tm−1

∆t dτdS

=
∫ r3

r5

∫ t− r
c1

tm−1
ψ

τ−tm−1
∆t dτdS +

∫ r5
r4

∫ t− r
c1

t− r
c2

ψ
τ−tm−1

∆t dτdS +
∫ r4

r6

∫ tm
t− r

c2
ψ

τ−tm−1
∆t dτdS.

(14)

The integration domains of the first term on the right-hand side of Equations (13) and (14)
are mathematically expressed, respectively as, Dτr1a = {(τ, r)|τ ∈ [tm−1, t− r/c1] ,
r ∈ [r4, r3]} and Dτr1b = {(τ, r)|τ ∈ [tm−1, t− r/c1], r ∈ [r5, r3]}, corresponding to ATI-
TSD 1© in Figure 3a and ATI-TSD 1© in Figure 3b. Similarly, the integration domains
of the second and the third terms on the right-hand side of Equations (13) and (14) are
expressed, respectively, as, Dτr2a = {(τ, r)|τ ∈ [tm−1, tm], r ∈ [r5, r4]}, Dτr2b = {(τ, r)|
τ ∈ [t− r/c2, t− r/c1] , r ∈ [r4, r5]}, and Dτr3a = {(τ, r)|τ ∈ [t− r/c2, tm], r ∈ [r6, r5]},
Dτr3b = {(τ, r)|τ ∈ [t− r/c2, tm], r ∈ [r6, r4]}, respectively corresponding to ATI-TSDs 2©
and 3© in Figure 3a,b.

From the above analysis of the analytical integration of the integral term in time
domain for time interval [tm−1, tm], the integral terms containing the wavefront singularity

relevant terms, Hw, δ(t′ − r/cw) and
·
δ(t′ − r/cw), can be analytically expressed in differ-

ent time integrable domains, tabulated in Tables 1 and 2. In the tables, the upper and
lower limits for every integration domain are given in the first rows, f (τ) is a linear time
interpolation function. To reduce the size, the following notations are adopted:

δw1 = δ(t′ − r/c1),
δw2 = δ(t′ − r/c2),
·
δw1 =

·
δ(t′ − r/c1),

·
δw2 =

·
δ(t′ − r/c2).

(15)

The integration results of all the wavefront singularity relevant functions (Hw, δw1,
δw2,

.
δw1 and

.
δw2) are determined in Tables 1 and 2. The analytical integration values

in the time domain of coefficient ψ in different ATI-TSDs can be obtained by recalling
the expression of ψ in Equation (4), and the corresponding analytical integration results
shown in Tables 1 and 2. Similarly, the analytical integration results in the time domain
of the other coefficients (χ, ∂ψ

∂r and ∂χ
∂r ) can also be obtained. The independent wavefront

singularity is only the single-layered singularity in time domain. Therefore, by analytical
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integration in the time domain, the wavefront singularity in the coefficients (ψ, χ, ∂ψ
∂r and

∂χ
∂r ) is analytically eliminated.

Table 1. Integration results of Hw, δw1, δw2,
·
δw1 and

·
δw2 in time element [tm−1, tm ] in the case of

r4 > r5.

(1){
τ ∈ [tm−1, t− r/c1]
r ∈ [r4, r3]

(2){
τ ∈ [tm−1, tm]
r ∈ [r5, r4]

(3){
τ ∈ [t− r/c2, tm]
r ∈ [r6, r5]∫ tm

tm−1
Hwdτ −1 −1 −1∫ tm

tm−1
δw1 f (τ)dτ f (t− r/c1) 0 0∫ tm

tm−1
δw2 f (τ)dτ 0 0 f (t− r/c2)∫ tm

tm−1

·
δw1 f (τ)dτ f ′(t− r/c1) 0 0∫ tm

tm−1

·
δw2 f (τ)dτ 0 0 f ′(t− r/c2)

Table 2. Integration results of Hw, δw1, δw2,
·
δw1 and

·
δw2 in time element [tm−1, tm] in the case of

r4 < r5.

(1){
τ ∈ [tm−1, t− r/c1]
r ∈ [r5, r3]

(2){
τ ∈ [t− r/c2, t− r/c1]
r ∈ [r4, r5]

(3){
τ ∈ [t− r/c2, tm]
r ∈ [r6, r4]∫ tm

tm−1
Hwdτ −1 −1 −1∫ tm

tm−1
δw1 f (τ)dτ f (t− r/c1) f (t− r/c1) 0∫ tm

tm−1
δw2 f (τ)dτ 0 f (t− r/c2) f (t− r/c2)∫ tm

tm−1

·
δw1 f (τ)dτ f ′(t− r/c1) f ′(t− r/c1) 0∫ tm

tm−1

·
δw2 f (τ)dτ 0 f ′(t− r/c2) f ′(t− r/c2)

3.2. Treatment on Dual Singular Integrals in Both Time and Space Domains

For the dual singularity, in the sense of double-layered integration both in time and
space domains in the coefficient matrices H and G, the analytical integration in the time
domain is carried out to eliminate the wavefront singularity in advance, and the spatial
singularity is treated by the direct method of Kutt’s quadrature.

When τ ∈ [tm−1,tm] and m 6= M are satisfied, meaning that r ∈ [c2(t− tm−1), c1(t− tm)]
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Figure 4. Subdivision of ATI-TSD in time element [tM−1, t].
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The ATI-TSD in Figure 4 is mathematically expressed, as:

Dτr = {(τ, r)|τ ∈ [tM−1, t], r ∈ [c2(t− τ), c1(t− τ)]} (16)

In Figure 4, the following relationships exist, r3 = c1(t− tM−1) = c1∆t, r4 = c2(t−
tM−1) = c2∆t. The ATI-TSD in time element [tM−1, t] in Figure 4 needs to be further
subdivided in the space domain to analytically express the integral terms in different
integration domains. According to the position of variable r in the shaded triangle in
Figure 4, the ATI-TSD is subdivided into two parts, denoted by 1© and 2©.

Through the above subdivision of the ATI-TSD, the integrals of the dual singular
coefficients in Equation (4) (ψ, χ, ∂ψ

∂r and ∂χ
∂r ) in different ATI-TSDs in time interval [tM−1, t]

are analytically expressed and tabulated in Table 3.

Table 3. Integration results of the dual singular coefficients (ψ, χ, ∂ψ
∂r and ∂χ

∂r ) in time interval [tM−1, t].

Dτr1 =

{
(τ, r)

∣∣∣∣ τ ∈ [tM−1, t− r/c1]
r ∈ [r4, r3]

}
Dτr2 =

{
(τ, r)

∣∣∣∣ τ ∈ [t− r/c2, t− r/c1]
r ∈ [0, r4]

}
∫ t

tM−1
ψ f (τ)dτ − (c2∆t)2

6
1
r3 +

c2
2

2c2
1

1
r −

c2
2

3c3
1∆t

(
c2

2
2c2

1
+ 1

2

)
1
r −

1
3

(
c2

2
c3

1∆t
+ 2

c2∆t

)
∫ t

tM−1
χ f (τ)dτ − (c2∆t)2

2
1
r3 +

c2
2

2c2
1

1
r

(
c2

2
2c2

1
− 1

2

)
1
r∫ t

tM−1

∂ψ
∂r f (τ)dτ (c2∆t)2

2
1
r4 −

c2
2

2c2
1

1
r2 −

(
c2

2
2c2

1
+ 1

2

)
1
r2∫ t

tM−1

∂χ
∂r f (τ)dτ 3(c2∆t)2

2
1
r4 −

c2
2

2c2
1

1
r2 −

(
c2

2
2c2

1
− 1

2

)
1
r2

It can be seen from Table 3 that, after the analytical integration in the time domain, the
spatial singular integrals in the space domain can be analytically expressed. In the sense of
the single-layered integration over space, for the second column in Table 3, the coefficients
are not spatially singular, due to r
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0. Nevertheless, for the third column in Table 3, the
coefficients are spatially singular due to r → 0 . Therefore, only the single-layered singular
integral term over space in the third column in the range of Dτr2 needs to be dealt with.

The treatment on the spatial singularity of the single-layered integrals in the third
column in Table 3 is taken as an example to present the treatment method.

When r indefinitely approaches 0, the source point P coincides with the node of the
analyzed element. In this senario, the element is called the singular element, and the
node, which is coincident with the source point P, is called the singular point. Setting the
singular point as the origin, the local oblique coordinate system for the singular element
is established on the plane, defined by the singular element, shown in Figure 5a. In the
coordinate system, the direction of the z axis is the outer normal direction of the plane
defined by the singular element, while the direction of the x axis is the direction from Q1 to
Q2, and the direction of the y axis is derived from the cross-product of the direction of z and
the direction of x. To facilitate the processing of the spatial singularity, the local oblique
coordinate system is transformed into the polar coordinate system, shown in Figure 5b.

In the regularized solution of the coefficient integrals on the boundary elements in
the local coordinate system, the dimensionless coordinates of the nodes on the boundary
elements are adopted [29]. The dimensionless coordinate of any point Q in the local polar
coordinate system in Figure 5b can be expressed as:

ηQ
i =

1
2A

(2A0
i + bixP

1 + aixP
2 ) +

1
2A

(bir cos θ + air sin θ), (17)

where,
ai = xk

1 − xj
1, (18a)

bi = xj
2 − xk

2, (18b)

2A0
i = xj

1xk
2 − xk

1xj
2, (18c)
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A =
1
2
(b1a2 − b2a1), (18d)

for i = 1, 2, 3, j = 2, 3, 1, and k = 3, 1, 2.
After relations between the coordinate systems are determined, the single-layered

singular integral over space can be performed over two dimensions of r and θ.
By letting the generic function g(r) = f (r)/rn represent the expressions in terms of r

in the third column in Table 3 for time interval [tM−1, t], the integration of g(r) in the inte-
gration range of Dτr2 in the polar coordinate system is expressed by the following equation:∫

S
g(r)dS =

∫ θ2

θ1

∫ R

0
g(r)|J|drdθ. (19)

In Equation (19), |J| is the Jacoby matrix regarding the transformation from the local
oblique coordinate system to the element’s polar system, and the upper limit of the integra-
tion R is expressed by R = min(L, c2∆t), with L = r(θ) meaning the radial boundary of
the singular element in the polar coordinate system along the wave propagation direction
in Figure 5b.

After the coefficients are converted to the local polar coordinate system, Kutt’s quadra-
ture is adopted in this paper to directly solve the singular integral in Equation (19). Kutt’s
quadrature can be directly adopted to evaluate any order singular integrals. Interested
readers can refer to [44] for more details for Kutt’s quadrature.

Applying Kutt’s N-point equispace quadrature, one has:

∫ R

0

f (r)
rn dr ' R1−n

N

∑
i=1

(ωi + ci
ln R

(n− 1)!
) f (

i− 1
N

R), (20)

where, ωi and ci are the weights and the coefficients given by Kutt [44].
It can be seen that Kutt’s quadrature retains the finite integrable parts of the Cauchy

principal integral. As the optimal formula, the high accuracy of Kutt’s quadrature was
verified in several papers [29,40,41]. The single-layered singular integrals over space in
the third column of Table 3 are expressed in the form of the integrands in Equation (20).
Therefore, by adopting Kutt’s quadrature, the single-layered singular integral terms over
space in the third column of Table 3 can be solved with high accuracy.

Figure 5. Local coordinate systems: (a) local oblique coordinate system; (b) local polar coordinate
system.

4. Verification

To validate the proposed direct method to solve singular integrals in the 3D TD-BEM
formulation, three benchmark problems are conducted. The first and the second are a 1D
rod and a 2D restrained beam under the same Heaviside-type load in finite elastic media,
and the third is a spherical cavity under an explosive load in an infinite elastic medium.
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4.1. 1D Rod under Heaviside-Type Load in Finite Elastic Medium

The 1D rod under the Heaviside-type load along axis x is chosen as the first benchmark
test in the finite elastic medium, shown in Figure 6a. The 1D benchmark example is very
classical and was used in several TD-BEM verifications [29,30,35,38]. The length of the rod
(l1 = 4 m) is four times the width (l2 = 1 m) and the height (l3 = 1 m). The left end of the
rod (x = 0) is fully fixed, and the right end (x= l1) is subjected to the Heaviside-type load
p = p0H(t− 0), with p0 = 200 Mpa, shown in Figure 6b. The rod is characterized by Young’s
modulus E = 2.1× 1011 Pa, Poisson’s ratio ν = 0 and mass density ρ = 7.9× 103 kg/m3.

Figure 6. Sketch of the example of 1D rod: (a) geometry and distribution of the load; (b) Heaviside-
type load.

The surface of the rod is uniformly divided into 144 isosceles right triangular linear
boundary elements with the right-angle side of 500 mm, resulting in 74 boundary nodes,
shown in Figure 7. According to the dimensionless time step parameter β = c1∆t/le [10–15],
where le represent the length of the elements in the direction of wave propagation, in this
example and the following ones, the arrangement β = 0.4~1.0 is adopted to guarantee
numerical accuracy.

Figure 7. Boundary discretization for 1D rod.

The displacements in direction x in three periods at the center of the loaded end A
(l1, l2/2, l3/2) and at the center of the rod B (l1/2, l2/2, l3/2) are calculated from current
3D TD-BEM and traditional 3D TD-BEM (in which singular integrals are analyzed by the
indirect numerical method of rigid body displacement [25,30]), and shown in Figure 8,
together with the analytical solutions from [45]. The time history of the normal traction at
the center of the fixed end of the rod C (0, l2/2, l3/2) from current 3D TD-BEM, traditional
3D TD-BEM and the analytical solutions from [45] are shown in Figure 9. In the figures, the
vertical axis is normalized by E/p0l1 and 1/p0, respectively, while the horizontal axis is
normalized by c1/l1.

It can be found from the figures that the numerical results from the proposed method
of solving the singularities in 3D TD-BEM agree well with the analytical solutions. The
error of the results which are obtained by the current method is smaller than the traditional
3D TD-BEM in terms of both displacement and traction.
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Figure 8. Comparison between the results of displacement from current 3D TD-BEM, traditional 3D
TD-BEM, and the analytical solutions.

Figure 9. Comparison between the results of traction from current 3D TD-BEM, traditional 3D
TD-BEM, and the analytical solutions.

4.2. A 2D Restrained Beam under the Heaviside Load in Finite Elastic Medium

As shown in Figure 10, the 2D restrained beam subjected to the same Heaviside
uniform load in the 1D rod example on the upper boundary z = l3 is chosen to verify
the proposed 3D TD-BEM. The Poisson’s ratio of the beam is ν = 0.3, while the Young’s
modulus and the density of the beam and meshes of the TD-BEM model are the same as
those in the 1D rod example.

Because the analytical solution for the problem of the 2D example does not exist, the
results from the current TD-BEM formulation and traditional 3D TD-BEM are compared
with the FEM solutions. In the FEM model, a much finer mesh size 0.1 m × 0.1 m × 0.1 m
and the much shorter time step 1 × 10−5 s are used. The transient displacements uz in
three periods at boundary point D (l1/2, l2/2, 0) in Figure 10 from current 3D TD-BEM,
traditional 3D TD-BEM, and FEM formulations are shown in Figure 11.

It can be seen that a good agreement between the current 3D TD-BEM and FEM
has also been achieved, with a much more favorable mesh size and time step for FEM.
Comparison of results obtained by the traditional 3D TD-BEM is performed with FEM
which shows that the results from the current 3D TD-BEM are more consistent and accurate.
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Figure 10. Sketch of the example of the restrained beam.

Figure 11. Comparison between the results from current 3D TD-BEM, traditional 3D TD-BEM and
FEM in terms of the displacement uz at boundary point D.

4.3. A Spherical Cavity under an Explosive Load in an Infinite Elastic Medium

To further explore the applicability to the infinite domain problem of the proposed
method for solving singularity in the 3D TD-BEM formulation, the spherical cavity of inner
radius r0 = 1m in the 3D infinite elastic medium is considered, where the explosive load
is applied on the boundary of the cavity. The explosive load is p(t) = kp1

(
e−at − e−bt

)
,

with k =1.435, a = 1279, b = 12,792 and p1 = 100 Mpa, shown in Figure 12c. The Young’s
modulus and mass density in the example are the same as those of the 1D rod example,
nevertheless with the Poisson’s ratio of ν = 0.3.

Figure 12. Sketch of the example of spherical cavity: (a) geometry; (b) boundary discretization;
(c) explosive load.
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The geometry and boundary discretization of the spherical cavity are shown in
Figure 12a,b. The inner boundary is divided into 134 triangular linear elements with
the mesh size 250 mm× 250 mm× 250 mm, resulting in 120 boundary nodes.

The displacement responses of two monitoring points with the radial distances from
the center of the cavity, r = 2 m and r = 8 m, are calculated by the 3D TD-BEM formulation
based on the proposed treatment on singularities, the traditional 3D TD-BEM based on
the numerical method of rigid body displacement and the method of characteristics [46].
Figures 13 and 14, respectively, show the comparisons between the calculated radial dis-
placement from the current study, traditional 3D TD-BEM and the method of characteristics,
where the time is normalized by c1/r0.

From the comparisons, it can be seen that the results from the proposed method for
solving singular integrals in the 3D TD-BEM formulation coincide nicely with the analytical
solutions, for both the internal points in the near field and the far field in the surrounding
medium. However, the traditional 3D TD-BEM gives results with a lower accuracy.

The results from the above three dynamic examples show that computational accuracy
of the current 3D TD-BEM based on the proposed treatment on singularities in this paper is
higher than that of the traditional 3D TD-BEM based on the method of rigid body displace-
ment. Next, the calculation efficiency of the current 3D TD-BEM and the traditional 3D
TD-BEM is further compared. The time cost of the current 3D TD-BEM and the traditional
3D TD-BEM in the three examples is calculated as shown in Table 4.

Figure 13. Calculated radial displacements at r = 2 m from the proposed 3D TD-BEM, the traditional
3D TD-BEM and the analytical solution.

Figure 14. Calculated radial displacements at r = 8 m from the proposed 3D TD-BEM, the traditional
3D TD-BEM and the analytical solution.
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Table 4. Time cost of the current 3D TD-BEM and the traditional 3D TD-BEM in the three examples.

1-D Rod 2D Restrained Beam Spherical Cavity

Current 3D TD-BEM 123.461 s 118.224 s 71.137 s
Traditional 3D TD-BEM 122.476 s 114.137 s 70.339 s

It can be seen from Table 4 that the time cost of the current 3D TD-BEM does not
increase significantly compared to that of the traditional 3D TD-BEM. The main reason
is that the traditional 3D TD-BEM is based on the indirect numerical method of rigid
body displacement, in which the singular integrals are indirectly solved by subtracting
the non-singular integral from the whole non-singular integral. Therefore, the solution
of singular integrals in the traditional 3D TD-BEM depends on the numerical solution of
all elements involved. The current 3D TD-BEM is based on the proposed treatment on
singularities in this paper, which directly solves the singularity on the singular element,
without being dependent on the calculation results of all elements involved.

5. Conclusions

The direct method using Kutt’s quadrature to solve the singular integrals in time and
space domains in the 3D TD-BEM formulation is developed, with the following conclusions.

• The analytically time integrable time-space domain (ATI-TSD) is discovered, and
the minimum time-space domain is identified for the analytical treatment on the
spatial singularity. Based on the analysis of the integration domain, in the sense of
single-layered integration, the wavefront singularity can be analytically eliminated
in ATI-TSD, while the dual singularity can be analytically eliminated, in the sense of
double-layered integration, in the identified minimum time space domain.

• Regardless of the wavefront singularity or the dual singularity, by analytically treating
the wavefront singularity in the time domain in advance, the spatial singularity is then
treated in the space domain in the last time step, realizing the full treatment on the
singularities in double-layered integration in both time and space domains.

• On the comparison with the traditional 3D TD-BEM based on the rigid body displace-
ment method, the current TD-BEM based on the proposed treatment on singularities
in this paper has higher calculation accuracy, without increasing the time cost of
calculation.

• The correctness of the proposed direct method using Kutt’s quadrature to solve the
singularity in the 3D TD-BEM formulation is verified by three different examples with
satisfactory results.
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