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Abstract

:

Industrial control systems (ICS) are facing an increasing number of sophisticated and damaging multi-step attacks. The complexity of multi-step attacks makes it difficult for security protection personnel to effectively determine the target attack path. In addition, most of the current protection models responding to multi-step attacks have not deeply studied the protection strategy selection method in the case of limited budget. Aiming at the above problems, we propose a protection strategy selection model based on the Genetic Ant Colony Optimization Algorithm. The model firstly evaluates the risk of ICS through the Bayesian attack graph; next, the target attack path is predicted from multiple angles through the maximum probability attack path and the maximum risk attack path; and finally, the Genetic Ant Colony Optimization Algorithm is used to select the most beneficial protection strategy set for the target attack path under limited budget. Compared with the Genetic Algorithm and Ant Colony Optimization Algorithm, the Genetic Ant Colony Optimization Algorithm proposed in this paper can handle the local optimal problem well. Simulation experiments verify the feasibility and effectiveness of our proposed model.
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1. Introduction


Industrial control system is a general term for a type of control system used in industrial production, and it is also the core of infrastructure [1,2]. It is widely used in electric power, transportation, water conservancy, chemical industry and other fields. Modern industrial control systems no longer operate in isolation but use computer technologies such as the Internet to enhance business processes. The result of this development is an increased risk of attack on industrial control systems [3]. Industrial control systems have vulnerabilities with different threat levels [4,5]. Attackers use these vulnerabilities to launch targeted attacks, which cause serious consequences such as property damage and environmental pollution. For example, in 2000, the newly built Maroochy sewage treatment plant in Queensland, Australia was attacked by a network, which caused untreated sewage to be discharged into waterways and parks [6]. In 2015, a power grid in Ukraine was attacked by a cyber-attack, which caused large-scale power outages in the relevant area [7]. The above cases remind us that we need to do a good job with security protection for industrial control systems.



In such security incidents, the attack behavior is multi-step, which makes it difficult for security engineers to determine the target attack path. In addition, many small- and medium-sized enterprises are often limited in the funding they can provide in choosing a set of protection strategies. Therefore, how to choose the most beneficial protection strategy set for industrial control system under the condition of limited budget has extensive practical significance.



It is an NP-hard problem to select a set of protection strategies that are most beneficial and cannot exceed the budget from the set of protection strategies to be selected. Heuristic algorithms can find near-optimal solutions to such problems in a reasonable amount of time. Therefore, many researchers use heuristic algorithms to select the most beneficial protection strategies for industrial control systems. Among them, Dewri et al. [8] first quantified the potential damage in the system and the cost of implementing a set of protection strategies, and then used the Genetic Algorithm (GA) [9] to select the most beneficial protection strategies. Wang et al. [10] first used the attack graph to evaluate the risk of the system, and then used the Ant Colony Optimization Algorithm (ACO) [11] to select the most beneficial protection strategies. The Genetic Algorithm used by Dewri et al. simulates the evolutionary mechanism of life. Selection operation, crossover operation and mutation operation make Genetic Algorithms have the ability of global optimization. However, the algorithm is greatly affected by the initial population. If the initial population is not selected properly, the algorithm is likely to fall into local optimum. The Ant Colony Optimization Algorithm used by Wang et al. has a pheromone positive feedback mechanism. This mechanism makes the Ant Colony Optimization Algorithm have a better convergence speed. However, Ant Colony Optimization Algorithm is highly dependent on pheromones, which makes it easy to fall into local optimum.



In recent years, for the improvement of heuristic algorithm, many researchers dynamically select a set of appropriate parameters for the heuristic algorithm through reinforcement learning to improve the performance of the algorithm. Liu et al. [12] used the Q-learning algorithm to adjust the parameters of Particle Swarm Optimization Algorithm. Huynh et al. [13] used the Q-learning algorithm to adjust the parameters of Differential Evolution Algorithm. Reinforcement learning improves the convergence speed of the algorithm greatly, but the improvement of the convergence accuracy is limited. Therefore, we need an improved algorithm that can greatly improve the convergence speed and convergence accuracy.



Considering the global optimization ability of Genetic Algorithms and the fast convergence ability of the Ant Colony Optimization Algorithm, this paper combines a Genetic Algorithm and Ant Colony Optimization Algorithm to construct Genetic Ant Colony Optimization Algorithm and uses reinforcement learning to dynamically select the relevant parameters of the algorithm. In the Genetic Ant Colony Optimization Algorithm, reinforcement learning dynamically selects the relevant parameters of the ant colony module and the genetic module, the ant colony module provides the initial population for the genetic module, and the genetic module updates the pheromone of the ant colony module. This mechanism enables the Genetic Ant Colony Optimization Algorithm to quickly and accurately select the most beneficial set of protection strategies for industrial control systems under limited budget conditions.



Before choosing protection strategies, we need to evaluate the risk status of the system and predict the target attack path based on the evaluation results. Then, we select the most beneficial set of protection strategies that do not exceed the budget for the target attack path. In terms of risk assessment, vulnerability assessment criteria directly affect the accuracy and objectivity of assessment. At present, the most compatible and widely used vulnerability assessment system is the Common Vulnerability Scoring System (CVSS) [14]. Each scoring element of the system is jointly formulated by experts in the field of international information security, so it has strong professionalism and persuasion. Therefore, this paper uses CVSS to calculate the probability of atomic attack and combines the Bayesian attack graph to calculate the probability of each attribute node being attacked, so as to grasp the overall risk status. In terms of predicting the target attack path, we propose to predict the target attack path from two aspects: the maximum probability attack path and the maximum risk attack path. Among them, the maximum probability attack path is regarded as the target attack path with the lowest attack difficulty. On the basis of the maximum probability attack path, we comprehensively consider the attack probability and attack benefit to calculate the maximum risk attack path. Additionally, the maximum risk attack path is regarded as the target attack path with the greatest attack damage. Then, we use the Genetic Ant Colony Optimization Algorithm to select the most beneficial protection strategy set that does not exceed the budget for the target attack path. Finally, we tested the performance of the Genetic Ant Colony Optimization Algorithm many times under the conditions of different population sizes. The test results are compared with the Genetic Algorithm, Ant Colony Optimization Algorithm, Reinforcement learning-based Particle Swarm Optimization Algorithm [12] and Reinforcement learning-based Differential Evolution Algorithm [13]. The test results show that the convergence accuracy of the Genetic Ant Colony Optimization Algorithm is better than other comparison algorithms in both small-scale populations and large-scale populations. The main contributions of this paper are as follows:




	
Assess the risk of ICS using the Common Vulnerability Scoring System and the Bayesian attack graph.



	
The target attack path is predicted by the combination of the maximum probability attack path and the maximum risk attack path.



	
Combining the advantages of the Genetic Algorithm and Ant Colony Optimization Algorithm, the optimal protection strategy selection problem under limited budget is calculated.



	
Reinforcement learning is used to dynamically select relevant parameters of the Genetic Ant Colony Optimization Algorithm.








In other words, we select the most beneficial protection strategy set to prevent multi-step attacks on the target attack path through an improved algorithm.The remainder of this paper is organized as follows: Section 2 discusses related work. Section 3 describes the various components of the proposed model. Section 4 presents a risk assessment for ICS. Section 5 predicts the target attack path. Section 6 introduces the method for selecting the optimal protection strategy set. Section 7 presents the experimental results. Finally, we conclude this paper in Section 8. The Appendix A provides all the parameters in this paper and their descriptions through the nomenclature table.




2. Related Work


In this section, we review research related to risk assessment and optimization algorithms. Meng et al. [15] proposed a two-stage differential evolution algorithm with novel parameter control. In the first stage, a mutation strategy based on historical solutions is adopted. In the second stage, a mutation strategy based on inferior solutions is adopted. This method improves the convergence accuracy and convergence speed of the algorithm. However, the influence of the initial population size on the algorithm is not fully considered. Zamani et al. [16] propose a quantum-based avian navigation optimizer algorithm (QANA) for solving large-scale global optimization problems. The QANA algorithm improves the accuracy and speed of convergence by introducing long-term and short-term memories, a V-echelon communication topology and quantum-based navigation strategies. Nadimi-Shahraki et al. [17] propose an improved gray wolf optimization algorithm for global optimization and engineering design problems. The improved gray wolf optimization algorithm adopts a dimensional learning-based hunting strategy. This strategy maintains the diversity between local search and global search by building a neighborhood for each wolf, which improves the convergence accuracy of the algorithm. Zamani et al. [18] propose a starling murmuration optimizer (SMO) algorithm to solve continuous and engineering optimization tasks. The SMO algorithm introduces a dynamic multi-flock construction and three new search strategies, including separating, diving and whirling. This mechanism improves the convergence accuracy and convergence speed of the algorithm. Chakraborty et al. [19] propose an improved whale optimization algorithm for solving large-scale optimization problems. The improved whale optimization algorithm introduces a new selection parameter  β  and modifies the coefficient vectors A and C to improve the convergence accuracy of the algorithm. However, the search process of the algorithm relies on random values, which affects the convergence speed of the algorithm. Wu et al. [20] proposed a deception defense performance evaluation method based on a dynamic Bayesian attack graph, and used cumulative probability to calculate the target attack path, but did not consider the impact of attack benefit on the attack path. Zhang et al. [21] proposed a flexible attack graph generation algorithm based on a graph data model, and predicted the target attack path from the perspective of asset value, but did not consider the impact of attack difficulty on the attack path. Xu et al. [22] proposed a method to assess the risk level of node vulnerability based on the attack graph, and designed different vulnerability scanning cycles for nodes with different risk levels according to the assessment results, but did not further analyze the target attack paths that attackers might take. Yang et al. [23] proposed a method combining absorption Markov chain and attack graph to predict the attack path, and used the Particle Swarm Optimization Algorithm to select the optimal protection strategy, but did not consider the impact of attack benefit on the attack path and did not discuss the local optimum problem of the Particle Swarm Optimization Algorithm. Boudermine et al. [24] proposed a method to generate an attack graph that considers the dynamic behavior of the system to identify new attack paths, and to evaluate the security of the system by measuring the probability of different components changing over time, but did not analyze the target attack paths that an attacker might take. Wang et al. [25] proposed a method to calculate the risk probability of each node in the attack graph using the Common Vulnerability Scoring System (CVSS), and on this basis, used the cumulative probability method to evaluate the risk status of the nodes on the attack path, but did not consider the impact of attack gains on attack paths. Poolsappasit et al. [26] proposed a Bayesian network-based risk management framework, and used the Genetic Algorithm to calculate the optimal protection strategy, but this method is prone to fall into local optimum. Liu et al. [27] proposed a state attack–defense graph model, and based on this, the possible attack paths were obtained, and then the protection strategy was given according to the vulnerability of the attack path, but the cost and benefit of the protection strategy were not considered. Zukhri et al. [28] proposed to combine the evolution steps of the Genetic Algorithm into the Ant Colony Optimization Algorithm, so as to solve the traveling salesman problem more efficiently. Based on this, this paper improves the algorithm to solve the problem of optimal protection strategy selection under limited budget.




3. Model Structure


The protection strategy selection model based on the Genetic Ant Colony Optimization Algorithm is shown in Figure 1, which is divided into three parts.



	
ICS risk assessment: Firstly, a Bayesian attack graph is generated based on the detected vulnerability information and asset information. Then, the atomic attack probability of each edge in the attack graph is calculated according to the Common Vulnerability Scoring System, and the local conditional probability of the attribute node is calculated according to the atomic attack probability. Finally, the unconditional probability of the attribute node is calculated according to the above probability, so as to evaluate the risk of ICS.



	
Predict target attack paths: This paper predicts the target attack path from two perspectives. One is the probability angle, which calculates the maximum probability attack path according to the unconditional probability of the attribute node, so as to predict the target path with the lowest attack difficulty. The other is the angle of probability and profit, which calculates the maximum risk attack path according to the unconditional probability of the attribute node and the attack benefit, so as to predict the target path with the most damage.



	
Select the optimal protection strategy set: Firstly, the Genetic Ant Colony Optimization Algorithm (GACO) is constructed by combining the Genetic Algorithm (GA), Ant Colony Optimization Algorithm (ACO) and Q-learning Algorithm. Then, the Genetic Ant Colony Optimization Algorithm is used to select the optimal protection strategy set that does not exceed the budget from the protection strategy set to be selected.







4. ICS Risk Assessment


The attack graph is a directed graph that shows the sequence and effect of attacks that an attacker may launch [29,30]. Common attack graph types include state attack graph and attribute attack graph  [31]. Among them, the state attack graph has the problem of state explosion [32], so this paper selects the attribute attack graph. In a Bayesian network, the occurrence probability of a node is only related to its parent node. Similarly, in the attack graph, whether the vulnerability of a node is exploited is only related to its parent node [33]. Therefore, this paper combines the attack graph with the Bayesian network to construct the Bayesian attack graph to evaluate the risk of ICS.



4.1. Definition of Bayesian Attack Graph


Definition 1.

The Bayesian attack graph is a directed acyclic graph, defined as BAG = (S,A,R,E,P), where:



(1) S =   S  i n i t   ∪  S  m i d   ∪  S  a i m    represents a set of attribute nodes. Among them,   S  i n i t    is the initial attribute node set,   S  m i d    is the intermediate attribute node set and   S  a i m    is the target attribute node set. In addition,   S i   =   0 , 1  , 0 means the node is not occupied by the attacker, and 1 means the node is occupied by the attacker.



(2) A =    a i   | i = 1 , 2 , … , n    represents the set of atomic attacks. Among them,   a i   = 1 indicates that the attack has occurred, and   a i   = 0 indicates that the attack has not occurred.



(3) R represents the relationship between parent and child nodes, which can be represented by a two-tuple   <  S j  ,  d j  >  . Among them,   d j   = AND means that the attack can be successful only if all parent nodes that reach   S j   are true;   d j   = OR means that there is a parent node whose state is true, and the attack can be successful.



(4) E =    E i   | i = 1 , 2 , … , n    represents the set of directed edges that describe the causal relationship of aggressive behavior. Among them,   (  S  p r e   ,  S  n e x t   )  ∈  E i   represents a directed edge from   S  p r e    to   S  n e x t   .



(5) P represents the unconditional probability of the node, which describes the probability of the node being attacked in the Bayesian attack graph.






4.2. Probability Calculation Based on Bayesian Attack Graph


4.2.1. Atomic Attack Probability


The Common Vulnerability Scoring System is a widely recognized vulnerability assessment standard [34,35]. This paper calculates the atomic attack probability based on the vulnerability exploitable metrics provided by the Common Vulnerability Scoring System. Among them, the exploitable metrics include Access Vector (AV), Access Complexity (AC) and Authentication (AU). The specific exploitable metrics are shown in Table 1.



Definition 2.

The atomic attack probability   P (  v i  )   is the probability that an attacker successfully completes an atomic attack by exploiting the vulnerability   v i  . The calculation formula is as follows:


   P (  v i  ) = 2 × A V × A C × A U   



(1)










4.2.2. Local Conditional Probability


Definition 3.

The local conditional probability reflects the probability of an attribute node being attacked under the influence of its parent node. For the attribute node   S j   in the Bayesian attack graph, if the node   S j   ∈   S  m i d    ∪   S  a i m   , then   S i   ∈ Pa[  S j  ], and the local conditional probability of   S j   is expressed as P(  S j   ∣ Pa[  S j  ]). According to the difference of the parent–child node relationship, the calculation formula is as follows:



(1) if   d j   = AND


   P  (  S j  | P a  [  S j  ]  )  =         0 ,     ∃  S i  ∈ P a  [  S j  ]  ,      S i  = 0 ,               ∏   S i  = 1        P (  v i  ) ,     o t h e r w i s e .            



(2)







(2) if   d j   = OR


   P  (  S j  | P a  [  S j  ]  )  =         0 ,     ∀  S i  ∈ P a  [  S j  ]  ,      S i  = 0 ,             1 −   ∏   S i  = 1        [ 1 − P  (  v i  )  ] ,     o t h e r w i s e .            



(3)










4.2.3. Unconditional Probability


Definition 4.

The unconditional probability is the joint probability of the current attribute node and all its ancestor nodes. If the node   S j  ∈  S  m i d   ∪  S  a i m   , the unconditional probability of this node is expressed as P(  S j  ), and the calculation formula is as follows:


   P  (  S j  )  =  ∏  j = 1  n   P (  S j  | P a  [  S j  ]  )    



(4)












5. Predict Target Attack Paths


This paper expands on the maximum probability attack path [36,37], combines the attack probability and attack benefits, proposes the maximum risk attack path and analyzes the target attack path under different conditions from multiple angles.



5.1. Maximum Probability Attack Path


Definition 5.

Multiply the unconditional probabilities   P (  S j  )   of all attribute nodes   S j   on an attack path W, and the product is the attack reachability probability   P ( W )   of the path. The calculation formula is as follows.


   P  ( W )  =  ∏  j = 1  n   P  (  S j  )     ,     S j  ∈ W        



(5)







The maximum probability attack path is the path with the highest attack probability and is used as the target attack path with the lowest attack difficulty.






5.2. Maximum Risk Attack Path


Definition 6.

V(  S j  ) represents the attack benefit of the atomic attack successfully capturing the attribute node   S j  , then the risk value   R (  S j  )   of   S j   is the product of the attack benefit of the node and the unconditional probability   P (  S j  )  , and the calculation formula is as follows:


   R  (  S j  )  = V  (  S j  )  × P  (  S j  )    



(6)







Therefore, the risk values   R (  S j  )   of attribute nodes   S j   on an attack path W are accumulated, and the sum is the overall risk   R ( W )   of the path. The calculation formula is as follows:


   R  ( W )  =  ∑  j = 1  n      R (  S j  ) ,      S j  ∈ W       



(7)







The maximum risk attack path is the path with the highest overall risk and is used as the target attack path with the greatest attack damage.







6. Select the Optimal Protection Strategy Set


In this section, this paper first quantifies the protection metrics based on the National Vulnerability Database (NVD) and expert experience [38]. Then, aiming at the local optimal problem of the Genetic Algorithm and Ant Colony Optimization Algorithm, we propose to construct the Genetic Ant Colony Optimization Algorithm.



6.1. Quantitative Protection Metrics


Definition 7.

M =    m i   | i = 1 , 2 , … , n    represents a set of protection strategies. Among them,   m i   = 1 means to select this protection strategy, and   m i   = 0 means not to select this protection strategy. C =    c i   | i = 1 , 2 , … , n    represents a set of protection cost. Among them, the protection cost corresponding to the protection strategy   m i   is   c i  . MC represents the total protection cost. If the product of   m i   and   c i   is not 0, it means that the protection strategy   m i   is selected, and the value of the product is the protection cost of the protection strategy   m i  . The total cost of protection is the sum of the costs of all selected strategies. The calculation formula is as follows:


   M C =  ∑  i = 1  n    m i  ×  c i     



(8)









Definition 8.

According to the NVD and CVSS, the attack benefits are divided into confidentiality benefits, integrity benefits and availability benefits. The above three kinds of benefit constitute the attack benefit   v i   of the node, and the attack benefit and the protection benefit are numerically consistent. MV represents the total protection benefit. If the product of   m i   and   v i   is not 0, it means that the protection strategy   m i   is selected, and the value of the product is the protection benefit of the protection strategy   m i  . The total protection benefit is the sum of the benefits of all selected strategies. The calculation formula is as follows:


   M V =  ∑  i = 1  n    m i  ×  v i     



(9)










6.2. Reinforcement Learning


Reinforcement learning studies how agents interact with the environment in different states. As shown in Figure 2, a reinforcement learning model consists of five main parts: agent, environment, action, state and reward. Its flow can be described as a cycle of states, actions and rewards.



Q-learning is a model-free reinforcement learning algorithm. It has many advantages, such as it requires no prior knowledge and it learns as the task progresses. The process of Q-learning is: The agent selects the action with the largest Q value from the Q table according to the state. After the action is completed, the state changes, and the environment gives rewards according to the degree of state change. Then, the Q table is updated according to the current state, next state, action and reward value. The updated formula is as follows:


   Q  t + 1    (  s t  ,  a t  )  = Q  (  s t  ,  a t  )  + α    r t  + γ  max a  Q  (  s  t + 1   , a )  − Q  (  s t  ,  a t  )     



(10)







Among them,   s t   is the state of the agent at time t,   a t   is the action that the agent can perform at time t,   r t   is the reward obtained by performing the action at time t,  α  is the learning rate,  γ  is the discount factor,    Q t   (  s t  ,  a t  )    is the reward value of the action   a t   corresponding to the state   s t   at time t, and    Q  t + 1    (  s t  ,  a t  )    is the cumulative reward the agent obtains at time t.




6.3. Genetic Ant Colony Optimization Algorithm


It is known that there are N alternative protection strategies, and the budget of the protection strategy set is B. The protection cost of the ith strategy is denoted   c i  , and the protection benefit is denoted   v i  . Each strategy can only be selected at most once. It is required to select at least one strategy to be added to the protection strategy set, so that the total protection benefit of the protection strategy set is maximized, and the total protection cost cannot exceed budget B. This problem is similar to the 0-1 knapsack problem and belongs to a class of NP-hard problems. The Genetic Algorithm and Ant Colony Optimization Algorithm are often used to calculate NP-hard problems as traditional heuristic algorithms. However, both the Genetic Algorithm and Ant Colony Optimization Algorithm have local optimal problems, so this paper proposes to use the Genetic Ant Colony Optimization Algorithm to calculate the NP-hard problem.



The Genetic Algorithm is greatly affected by the initial population. When the initial population is within a reasonable range, the Genetic Algorithm can better play the global optimization ability, otherwise it is easy to fall into the local optimum. The positive feedback mechanism makes the Ant Colony Optimization Algorithm have a better convergence speed. However, the Ant Colony Optimization Algorithm is highly dependent on pheromones, which makes it easy to fall into local optimum. Therefore, according to the characteristics of the Genetic Algorithm and Ant Colony Optimization Algorithm, this paper constructs the Genetic Ant Colony Optimization Algorithm.



6.3.1. The Basic Idea of Genetic Ant Colony Optimization Algorithm


The Genetic Ant Colony Optimization Algorithm adds the Genetic Algorithm to the Ant Colony Optimization Algorithm and uses Q-learning to dynamically select the relevant parameters of the ant colony module and the genetic module. First, the Ant Colony Optimization Algorithm uses the strategy selection probability and the roulette method to select the initial strategy set that does not exceed the limit cost, and the selection result is used as the initial population of Genetic Algorithm. Then, the Genetic Algorithm selects the strategy set that does not exceed the limited cost through the selection operation, crossover operation and mutation operation and uses the selection result to update the pheromone of the Ant Colony Optimization Algorithm. In this way, the parameter intermodulation of the two algorithms is realized, and the Genetic Ant Colony Optimization Algorithm has excellent global optimization ability and fast convergence speed.




6.3.2. Using Q-Learning to Update the Parameters of the Algorithm


At present, many researchers have given the recommended parameter settings of the Genetic Algorithm and Ant Colony Optimization Algorithm. However, the interplay between parameter settings and algorithm performance remains complex. Q-learning can adjust the action according to the learning to obtain the best value. Therefore, we use Q-learning to dynamically select relevant parameters with greater influence.



The parameters that the ant colony module needs to dynamically select are: relative importance of pheromone concentration  μ  and relative importance of visibility  β . The parameters that the genetic module needs to dynamically select are: crossover probability   P c   and mutation probability   P m  . In both modules, each individual in the population acts as an agent. Each individual has a Q table, and the initial value of the Q table is 0. In the Q table, we set two states for each individual, and each state corresponds to six actions. Table 2 shows the form of the Q table. Each action corresponds to a set of parameter settings. Table 3 shows a set of parameter settings corresponding to each action in the ant colony module. Table 4 shows a set of parameter settings corresponding to each action in the genetic module. In addition, if the individual takes an action and the effect is better than before, we set the reward value   r t   to 1 and change the state of the individual to state 2. Otherwise, we set the reward value   r t   to 0 and change the state of the individual to state 1. Finally, we update the Q table of the individual.




6.3.3. Steps of Genetic Ant Colony Optimization Algorithm


The steps of the Genetic Ant Colony Optimization Algorithm proposed in this paper are as follows:



(1) Initialize the population, Q table, state and action of the ant colony module.



(2) Each ant selects an action from the Q table to obtain a set of recommended parameter settings according to the current state.



(3) Calculate the strategy selection probability. Each ant calculates the probability of choosing a certain strategy according to Formula (11). In Formula (11),   P  i  k   represents the probability that the kth ant chooses strategy   m i  ;    τ i   ( t )    represents the pheromone concentration of strategy   m i   at time t;   η i   represents the visibility of strategy   m i  , and the value of   η i   is the unit cost value of strategy   m i  ;  μ  represents the relative importance of pheromone concentration;  β  represents the relative importance of visibility; and   t a b u ( k )   represents the strategy set selected by the kth ant.


     P i   k  =              τ i   μ   ( t )   η β   ( i )    ∑     τ i   μ   ( t )   η β   ( i )     ,      m i  ∉ t a b u  ( k )  ,                0 ,     o t h e r w i s e .          



(11)







(4) On the basis of step (3), a roulette method is used to randomly select a strategy. If the selected strategy is added to the protection strategy set so that the total protection cost is higher than the limit cost, the strategy will be removed, otherwise the strategy will be retained.



(5) After each ant completes the strategy selection, compare the benefit of the selected protection strategy set with the previous ones and update the ant’s state and Q table according to the comparison result.



(6) When all the ants complete the strategy selection, the protection strategy set selected by each ant is used as the initial population of the Genetic Algorithm. Additionally, initialize the Q table, state and action of the genetic module.



(7) The individual selects an action from the Q table to obtain a set of recommended parameter settings according to the current state.



(8) Calculate the fitness value. Calculate the sum of the benefits of the strategy set corresponding to each individual in the population and use the calculation result as the fitness value of each individual.



(9) Selection operation. The roulette method is used to select the better individual from the population according to the size of the fitness value.



(10) Crossover operation. When the crossover probability   P c   is satisfied, the crossover point is randomly selected, and the selected individual and the current individual are crossed in pairs to generate offspring individual with the crossover point as the boundary, thereby improving the diversity of the population.



(11) Mutation operation. When the mutation probability   P m   is satisfied, the mutation point is randomly selected on the basis of the crossover operation, and the mutation operation is performed on the offspring individuals by means of single-point mutation, which further improves the global optimization ability of the algorithm.



(12) The fitness value of the offspring individual is compared with the fitness value of the parent individual, and the individual’s state and Q table are updated according to the comparison result.



(13) Screen populations. Calculate the protection cost of the strategy set corresponding to each individual in the offspring population, and only retain offspring individuals whose protection cost is not higher than the limit cost.



(14) Merge populations. Merge the parent population and the child population, sort according to the size of the individual fitness values, and select the number of individuals consistent with the size of the parent population as the parent population for the next traversal according to the sorting result.



(15) If the iteration number of the Genetic Algorithm is satisfied, go to step (16), otherwise go to step (7).



(16) The pheromone of the Ant Colony Optimization Algorithm is updated according to the protection strategy set obtained by the Genetic Algorithm, and the update formulas are (12) and (13). In Formulas (12) and (13),    τ i   ( t + n )    represents the pheromone concentration of strategy   m i   at time   ( t + n )  ,  ρ  represents the volatility coefficient of pheromone,    Δ  τ i    ( t )    represents the total amount of pheromone left by n ants on strategy   m i  , Q is a constant,   V k   represents the total benefit of the protection strategy set corresponding to the kth ant and   C k   represents the total cost of the protection strategy set corresponding to the kth ant.


   τ i   ( t + n )  =  ( 1 − ρ )   τ i   ( t )  + Δ  τ i   ( t )   



(12)






  Δ  τ i   ( t )  =  ∑  k = 1  n   Q ·  V k  /  C k    



(13)







(17) If the number of iterations of the Ant Colony Optimization Algorithm is satisfied, output the optimal protection strategy set, otherwise go to step (2).



The pseudocode of the Algorithm 1 is as follows:






	Algorithm 1 GACO



	
	Input: 

	
protection strategy set, protection budget, population size, maximum number of iterations (  m a x I t e r a t i o n s  )




	Output: 

	
optimal protection strategy set







	  1:

	
initialize the population, Q table, state and action of the ant colony module




	  2:

	
while iteraco ≤ maxIterations do




	  3:

	
      select the action from Q table




	  4:

	
      calculate the strategy selection probability




	  5:

	
      each ant chooses a set of protection strategies




	  6:

	
      update the ant’s state and Q table




	  7:

	
      initialize the population, Q table, state and action of the genetic module




	  8:

	
      while iterga ≤ maxIterations do




	  9:

	
            select the action from Q table




	10:

	
            calculate individual fitness value




	11:

	
            select operation




	12:

	
            crossover operation




	13:

	
            mutation operation




	14:

	
            update the individual’s status and Q table




	15:

	
            screen populations




	16:

	
            merge populations




	17:

	
              i t e r g a  ++




	18:

	
      end while




	19:

	
      update pheromone concentration




	20:

	
        i t e r a c o  ++




	21:

	
end while

















7. Experiment and Discussion


7.1. Experimental Scene


The simulation environment of this paper is an industrial water distribution system, as shown in Figure 3. The industrial water distribution system consists of three parts: water pump, water pipeline and water tanker. Additionally, the components in the system are controlled by a programmable logic controller (PLC) [39].




7.2. Generate a Bayesian Attack Graph


This paper uses the Nessus [40] tool to scan for vulnerabilities in the system. The vulnerability information of each host is shown in Table 5. Then, the MulVal [41] tool generates an attack graph based on the obtained vulnerability information, network configuration and host configuration information. The attack graph is shown in Figure 4.




7.3. Unconditional Probability of a Node


Table 6 gives the unconditional probability of each attribute node.




7.4. Quantify Protection Costs and Attack Benefits


Table 7 shows the protection cost and protection benefit of the protection strategy   m i   corresponding to the atomic attack   a i  .




7.5. Predict Attack Paths


According to Definitions 5 and 6, the path reachability probability and path risk value in the attack graph can be calculated, as shown in Table 8. It can be seen from Table 8 that path 8 is the target attack path with the lowest attack difficulty, and path 6 is the target attack path with the greatest attack damage. Under the limited cost, it is unrealistic to deploy the protection strategy for all nodes. Therefore, we prioritize the deployment of protection strategies for the maximum probability attack path and the maximum risk attack path.




7.6. Experimental Results


Set the protection cost of each attack path to no more than 100. The optional protection strategy for path 8 is the strategy in the set M1 =    m 5  ,  m 14  ,  m 15   . The total protection cost of strategy set M1 is 67, so the optimal protection strategy set of path 8 is M1 =    m 5  ,  m 14  ,  m 15   . The optional protection strategy for path 6 is the strategy in the set M2 =    m 3  ,  m 6  ,  m 7  ,  m 9  ,  m 11  ,  m 12  ,  m 13  ,  m 14  ,  m 15   . The total protection cost of strategy set M2 is 215. Therefore, we need to choose the most beneficial set of protection strategies that do not exceed the budget for path 6. In order to solve this problem, and test the performance of the algorithm proposed in this paper, this paper compares the Genetic Algorithm (GA), Ant Colony Optimization Algorithm (ACO), Reinforcement learning-based Particle Swarm Optimization Algorithm (RLPSO) [12] and Reinforcement learning-based Differential Evolution Algorithm (RLDE) [13].



Specifically, we run each algorithm 100 times with population sizes of 15 and 100, respectively. Additionally, the number of iterations per run is 20. The relevant parameter settings of each algorithm are shown in Table 9. Among them, when the population size is 15, the effect diagrams of each algorithm are shown in Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9. The effect diagrams of each algorithm when the population size is 100 are shown in Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14. In both cases, the number of occurrences of local optimal solutions of each algorithm is shown in Table 10.




7.7. Discussion


First of all, the experimental results show that the maximum protection benefit of path 6 under the limited budget is 178, the corresponding protection strategy set is M =    m 3  ,  m 12  ,  m 13  ,  m 15    and the protection cost of the protection strategy set is 96. Secondly, through these two sets of comparative experiments, we found that the convergence accuracy of the Genetic Ant Colony Optimization Algorithm is better than other comparative algorithms in both small-scale populations and large-scale populations. Specifically, although the Genetic Ant Colony Optimization Algorithm also has a local optimal problem under the condition of a population size of 15, the Genetic Ant Colony Optimization Algorithm has much fewer local optimal solutions than other comparative algorithms. Additionally, under the condition that the population size is 100, the Genetic Ant Colony Optimization Algorithm has no local optimum problem. This good result is because the genetic module and the ant colony module in the Genetic Ant Colony Optimization Algorithm achieve mutual adjustment, and Q-learning dynamically selects the appropriate parameter settings for the algorithm. Finally, due to the addition of Q-learning to the Genetic Ant Colony Optimization Algorithm, the algorithm needs to use more memory space to store the Q table. This is the aspect that the algorithm proposed in this paper needs to be further optimized.





8. Conclusions


Aiming at the problem of protection strategy selection under limited budget, this paper proposes a protection strategy selection model based on the Genetic Ant Colony Optimization Algorithm. First, the risk profile of the system is assessed according to the Common Vulnerability Scoring System and the Bayesian attack graph. Secondly, the target attack path is predicted from the two aspects of the maximum probability attack path and the maximum risk attack path. Then, based on the Genetic Algorithm, Ant Colony Optimization Algorithm and Q-learning Algorithm, this paper proposes the Genetic Ant Colony Optimization Algorithm. Finally, by testing the performance of the algorithm many times, we found that the convergence accuracy of the Genetic Ant Colony Optimization Algorithm is better than other comparison algorithms in both small-scale population and large-scale population conditions. At present, the Genetic Ant Colony Optimization Algorithm needs to occupy more memory space to store the Q table. In the future, we plan to use the Deep Q Network to replace Q-learning in the Genetic Ant Colony Optimization Algorithm to further improve the performance of the algorithm.
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Appendix A


Table A1 shows all the parameters in this paper and their descriptions.
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Table A1. Parameters and their descriptions.






Table A1. Parameters and their descriptions.





	Parameters
	Descriptions





	S
	the set of attribute nodes



	A
	the set of atomic attacks



	R
	the relationship between parent and child nodes



	E
	the set of directed edges



	   P (  v i  )   
	the atomic attack probability against vulnerability   v i  



	   P (  S j  | P a  [  S j  ]  )   
	the local conditional probability of attribute node   S j  



	   P (  S j  )   
	the unconditional probability of attribute node   S j  



	   P ( W )   
	the attack reachability probability of the path W



	   R (  S j  )   
	the risk value of attribute node   S j  



	   R ( W )   
	the overall risk of the path W



	M
	a set of protection strategies



	C
	a set of protection cost



	MC
	the total protection cost



	MV
	the total protection benefit



	   s t   
	the state of the agent at time t



	   a t   
	the action that the agent can perform at time t



	   r t   
	the reward obtained by performing the action at time t



	  α  
	the learning rate



	  γ  
	the discount factor



	    Q t   (  s t  ,  a t  )    
	the reward value of the action   a t   corresponding to the state   s t   at time t



	    Q  t + 1    (  s t  ,  a t  )    
	the cumulative reward the agent obtains at time t



	   P  i  k   
	the probability that the kth ant chooses strategy   m i  



	  τ i  (t)
	the pheromone concentration of strategy   m i   at time t



	   η i   
	the visibility of strategy   m i  



	  μ  
	the relative importance of pheromone concentration



	  β  
	the relative importance of visibility



	   t a b u ( k )   
	the strategy set selected by the kth ant



	  ρ  
	the volatility coefficient of pheromone



	Q
	a constant



	   V k   
	the total benefit of the protection strategy set corresponding to the kth ant



	   C k   
	the total cost of the protection strategy set corresponding to the kth ant
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Figure 1. Protection strategy selection model. 






Figure 1. Protection strategy selection model.
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Figure 2. Illustration of the reinforcement learning process. 
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Figure 3. Experimental scene. 
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Figure 4. Bayesian attack graph. 






Figure 4. Bayesian attack graph.
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Figure 5. Population size is 15, and the ACO algorithm is run 100 times. 
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Figure 6. Population size is 15, and the GA algorithm is run 100 times. 
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Figure 7. Population size is 15, and the RLPSO algorithm is run 100 times. 
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Figure 8. Population size is 15, and the RLDE algorithm is run 100 times. 
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Figure 9. Population size is 15, and the GACO algorithm is run 100 times. 
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Figure 10. Population size is 100, and the ACO algorithm is run 100 times. 






Figure 10. Population size is 100, and the ACO algorithm is run 100 times.



[image: Mathematics 10 03938 g010]







[image: Mathematics 10 03938 g011 550] 





Figure 11. Population size is 100, and the GA algorithm is run 100 times. 
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Figure 12. Population size is 100, and the RLPSO algorithm is run 100 times. 
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Figure 13. Population size is 100, and the RLDE algorithm is run 100 times. 
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Figure 14. Population size is 100, and the GACO algorithm is run 100 times. 
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Table 1. Exploitable metrics.






Table 1. Exploitable metrics.





	
Index

	
Rank

	
Score






	
Access Vector (AV)

	
local access

	
0.395




	
local network accessible

	
0.646




	
network accessible

	
1.0




	
Access Complexity (AC)

	
high

	
0.35




	
medium

	
0.61




	
low

	
0.71




	
Authentication (AU)

	
multiple instances of authentication

	
0.45




	
single instance of authentication

	
0.56




	
no authentication

	
0.704











[image: Table] 





Table 2. The form of the Q table.






Table 2. The form of the Q table.





	Q Table
	action1
	action2
	action3
	action4
	action5
	action6





	state1
	   Q (  s 1  ,  a 1  )   
	   Q (  s 1  ,  a 2  )   
	   Q (  s 1  ,  a 3  )   
	   Q (  s 1  ,  a 4  )   
	   Q (  s 1  ,  a 5  )   
	   Q (  s 1  ,  a 6  )   



	state2
	   Q (  s 2  ,  a 1  )   
	   Q (  s 2  ,  a 2  )   
	   Q (  s 2  ,  a 3  )   
	   Q (  s 2  ,  a 4  )   
	   Q (  s 2  ,  a 5  )   
	   Q (  s 2  ,  a 6  )   










[image: Table] 





Table 3. The corresponding form of actions and parameters in the ant colony module.
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	action1
	action2
	action3
	action4
	action5
	action6





	( μ 1,  β 1)
	( μ 2,  β 2)
	( μ 3,  β 3)
	( μ 4,  β 4)
	( μ 5,  β 5)
	( μ 6,  β 6)
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Table 4. The corresponding form of actions and parameters in the genetic module.






Table 4. The corresponding form of actions and parameters in the genetic module.





	action1
	action2
	action3
	action4
	action5
	action6





	(  P c  1,   P m  1)
	(  P c  2,   P m  2)
	(  P c  3,   P m  3)
	(  P c  4,   P m  4)
	(  P c  5,   P m  5)
	(  P c  6,   P m  6)
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Table 5. Vulnerability information.






Table 5. Vulnerability information.





	Host
	Vulnerability ID





	198.168.0.1
	CVE-1999-0517



	198.168.0.2
	CVE-1999-0517



	198.168.0.10
	CVE-1999-0517
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Table 6. Unconditional probabilities for each attribute node.
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	Node
	Probability
	Node
	Probability
	Node
	Probability





	   S 1   
	1.0000
	   S 2   
	1.0000
	   S 3   
	1.0000



	   S 4   
	1.0000
	   S 5   
	1.0000
	   S 6   
	1.0000



	   S 7   
	0.5000
	   S 8   
	1.0000
	   S 9   
	0.9960



	   S 10   
	1.0000
	   S 11   
	1.0000
	   S 12   
	1.0000



	   S 13   
	1.0000
	   S 14   
	0.5000
	   S 15   
	1.0000



	   S 16   
	0.9863
	   S 17   
	0.8372
	   S 18   
	1.0000



	   S 19   
	0.5000
	   S 20   
	1.0000
	   S 21   
	0.9530



	   S 22   
	0.5000
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Table 7. Protection costs and protection benefits.






Table 7. Protection costs and protection benefits.





	Attack
	Strategy
	Protective Action
	Cost
	Value





	   a 1   
	   m 1   
	Disable multi-hop access 192.168.0.1–192.168.0.10
	33
	50



	   a 2   
	   m 2   
	Disable multi-hop access 192.168.0.2–192.168.0.10
	33
	50



	   a 3   
	   m 3   
	Disable direct network access 192.168.0.10
	30
	52



	   a 4   
	   m 4   
	Disable direct network access 192.168.0.2
	30
	52



	   a 5   
	   m 5   
	Disable direct network access 192.168.0.1
	30
	52



	   a 6   
	   m 6   
	Limit remote visit 192.168.0.10
	20
	5



	   a 6   
	   m 7   
	Patch CVE-1999-0517 192.168.0.10
	15
	25



	   a 7   
	   m 8   
	Disable multi-hop access 192.168.0.10
	14
	26



	   a 8   
	   m 9   
	Disable multi-hop access 192.168.0.2–192.168.0.10
	33
	50



	   a 9   
	   m 10   
	Disable multi-hop access 192.168.0.1–192.168.0.2
	30
	56



	   a 10   
	   m 11   
	Limit remote visit 192.168.0.2
	33
	15



	   a 10   
	   m 12   
	Patch CVE-1999-0517 192.168.0.2
	17
	30



	   a 11   
	   m 13   
	Disable multi-hop access 192.168.0.1–192.168.0.2
	30
	56



	   a 12   
	   m 14   
	Limit remote visit 192.168.0.1
	18
	8



	   a 12   
	   m 15   
	Patch CVE-1999-0517 192.168.0.1
	19
	40
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Table 8. Path reachability probability and path risk value.






Table 8. Path reachability probability and path risk value.





	Index
	Attack Path
	Probability
	Risk





	1
	  S 1  -  S 7  -  S 8  -  S 9  -  S 10  -  S 11  -  S 19  -  S 20  -  S 21  -  S 22  
	0.119
	92.000



	2
	  S 1  -  S 7  -  S 8  -  S 9  -  S 11  -  S 12  -  S 14  -  S 15  -  S 16  -  S 17  -  S 18  -  S 19  -  S 20  -  S 21  -  S 22  
	0.049
	169.674



	3
	  S 2  -  S 7  -  S 8  -  S 9  -  S 10  -  S 11  -  S 19  -  S 20  -  S 21  -  S 22  
	0.119
	92.000



	4
	  S 2  -  S 7  -  S 8  -  S 9  -  S 11  -  S 12  -  S 14  -  S 15  -  S 16  -  S 17  -  S 18  -  S 19  -  S 20  -  S 21  -  S 22  
	0.049
	144.671



	5
	  S 3  -  S 5  -  S 7  -  S 8  -  S 9  -  S 10  -  S 11  -  S 19  -  S 20  -  S 21  -  S 22  
	0.119
	93.000



	6
	  S 3  -  S 5  -  S 7  -  S 8  -  S 9  -  S 11  -  S 12  -  S 14  -  S 15  -  S 16  -  S 17  -  S 18  -  S 19  -  S 20  -  S 21  -  S 22  
	0.049
	170.674



	7
	  S 4  -  S 5  -  S 14  -  S 15  -  S 16  -  S 17  -  S 18  -  S 19  -  S 20  -  S 21  -  S 22  
	0.098
	115.674



	8
	  S 5  -  S 6  -  S 19  -  S 20  -  S 21  -  S 22  
	0.238
	50.000



	9
	  S 13  -  S 14  -  S 15  -  S 16  -  S 17  -  S 18  -  S 19  -  S 20  -  S 21  -  S 22  
	0.098
	117.674
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Table 9. Parameter settings.






Table 9. Parameter settings.





	
Algorithm

	
Parameter

	
Value






	
GACO

	
  α  

	
0.1




	
  γ  

	
0.9




	
  ρ  

	
0.1




	
Q

	
1




	
    τ i   ( t = 0 )    

	
1




	
 μ ,  β 

	
[(1,2),(1,3),(1,4),(2,3),(2,4),(2,5)]




	
  P c  ,   P m  

	
[(0.8,0.2),(0.7,0.2),(0.6,0.2),




	

	
(0.8,0.1),(0.7,0.1),(0.6,0.1)]




	
GA

	
   P c   

	
0.8




	
   P m   

	
0.1




	
ACO

	
  μ  

	
1




	
  β  

	
3




	
  ρ  

	
0.1




	
Q

	
1




	
    τ i   ( t = 0 )    

	
1




	
RLPSO

	
  γ  

	
0.9




	
  α  

	
0.1




	
w, c1, c2

	
[(0.8,2,1.5),(0.8,1.5,2),(0.8,2,2),




	

	
(0.6,2,1.5),(0.6,1.5,2),(0.6,2,2)]




	
RLDE

	
  γ  

	
0.9




	
  α  

	
0.1




	
F, Cr

	
[(0.6,0.7),(0.6,0.8),(0.7,0.7),




	

	
(0.8,0.7),(0.8,0.9),(0.9,0.9)]
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Table 10. The number of occurrences of local optimal solutions of each algorithm.






Table 10. The number of occurrences of local optimal solutions of each algorithm.





	
Population Size

	
Algorithm

	
The Number of Occurrences






	
15

	
GACO

	
9




	
GA

	
37




	
ACO

	
43




	
RLPSO

	
70




	
RLDE

	
65




	
100

	
GACO

	
0




	
GA

	
15




	
ACO

	
19




	
RLPSO

	
8




	
RLDE

	
6

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file26.jpg
Protection benefit

180

175

170

165

160

155

150

RLDE

8 10 12
Number of iterations

14

16

18






media/file8.jpg





media/file27.png
RLDE

180

175

| | I
- ([ip] ]
— — —

Jlsus( Udljoa}0l 4

155

150

12 14 16 18 20

10
Number of iterations





media/file13.png
|/ T T T T _ T T T
<| \ -
Q N
!y
- [ —— .
!
y,'.r'._
I I I I 1 I I I
o o = o -] o = [y - o
oo [~ [~ w w o L = = (ap

Jjguaq Uoljos}ol 4

12 14 16 18 20

10
Number of iterations





media/file12.jpg
Protection benefit

180

175

170

165

160

155

150

145

140

135

8 10 12
Number of iterations

14

16

18

20





media/file18.jpg
Protection benefit

178

176

174

172

170

168

166

164

162

GACO

6

8 10 12
Number of iterations

1%

16

18

20





media/file9.png





media/file14.jpg
RLPSO

) o ) o ) =) o
2 = e e I 2 e

Wousq uonoBjoId

15 20 25 30 35 40 45 50
Number of iterations

10





media/file20.jpg
ACO

° © < & o Y o
R 4 2 N R 8 8

1yaUBq UONOBIOIG

2 14 16 18 20

10
Number of iterations





media/file23.png
Protection benefit

180

175

170

165

160

155

GA

A4 A/ /

2 B 6 8 10 12 14 16

Number of iterations

18

20





media/file5.png
Action

Agent

Reward

Y

F 3

State

Environment






media/file15.png
RLPSO

180

170

| 1
o -
w Ty
— —

JjguUaq Uol}jos}ol 4

I
=
.4

130

120

15 20 25 30 35 40 45 50
Number of iterations

10





media/file19.png
GACO

178

176 [

174

I i i
o = oo
e~ [ 0o
L L L

Jjguaq Uoljos}ol 4

166

164

162

12 14 16 18 20

10
Number of iterations





media/file28.jpg
Protection benefit

178

176

174

172

170

168

166

164

162

160

158

GACO

8 10 12
Number of iterations

14

16

18

20





media/file2.jpg
t  tarmet slfnck ol protection strategy set
i
S
p—
i - t — t
)
e
| -
I i
inck oo budget
=






nav.xhtml


  mathematics-10-03938


  
    		
      mathematics-10-03938
    


  




  





media/file11.png
ACO
Z

180
179

JjgUaq Uoljos}ol 4

145

12 14 16 18 20

10
Number of iterations





media/file6.jpg
‘ Industrial Ethernet I

S |

Water Pump Water Pipeline Water Tanker

© & -






media/file24.jpg
Protection benefit

178

176

174

172

170

168

166

164

162

RLPSO

10

15

20 25 30
Number of iterations.

35 40

45






media/file29.png
Protection benefit

178

176

174

172

170

168

166

164

162

160

158

GACO

8 10 12
Number of iterations

20





media/file10.jpg
Protection benefit

180

175

170

165

160

155

150

145

140

ACO

2 4 6 8 10 12 14 16 18 20
Number of iterations





media/file7.png
Attacker Firewall

= —
[ Industrial Ethernet

1#PLC @ ggpm 3#PLC !m

|

v , v

Water Pump

©

Water Pipeline Water Tanker






media/file16.jpg
Protection benefit

180

170

160

150

140

130

120

RLDE

2 4 6 8 10 12 14 16 18 20
Number of iterations





media/file3.png
ICS risk assessment

Predict target attack paths

Calculate unconditional
probablhty

C alculate local
conditional Drobabllltv

attack pmbablht‘y

Generate a Bayesmn
attack graph

|
|
|
[
[

Vulnerability and asset
information

Calculate atomic ]

Target attack paths

4 N

Maximum
probability
attack path

- /

t

e N

Maximum
risk
attack path

Select the optimal
protection strategy set

N )

Optimal protection

strategy set
[ } e ™
GACO

Protection

T strategy

set and

budget

leagl_jng ACO

[ - ] o _/






media/file0.png





media/file22.jpg
Protection benefit

180

175

170

165

160

155

GA

8 10 12
Number of iterations

14

16

18






media/file17.png
RLDE

L/

180

170

| | |
- - (-
0o L =T
b L =

Jjguaq Uol}os}ol 4

130

120

12 14 16 18 20

10
Number of iterations





media/file4.jpg
Action

Agent

Reward

State

Enviro

nment






media/file25.png
Protection benefit

178

176

174

172

170

168

166

164

162

RLPSO

10

15

20 25 30
Number of iterations

35

40

45

20





media/file21.png
O
ot ]
b
'lll'llll_l
/.f .
f
~— :
f!
f |
°© & T & g 8 g

g uUaq Uol}os}ol 4

12 14 16 18 20

10
Number of iterations





