
Citation: Sánchez-Zas, C.;

Larriva-Novo, X.; Villagrá, V.A.;

Rodrigo, M.S.; Moreno, J.I. Design

and Evaluation of Unsupervised

Machine Learning Models for

Anomaly Detection in Streaming

Cybersecurity Logs. Mathematics

2022, 10, 4043. https://doi.org/

10.3390/math10214043

Academic Editor: Denis N. Sidorov

Received: 29 September 2022

Accepted: 24 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Design and Evaluation of Unsupervised Machine Learning
Models for Anomaly Detection in Streaming
Cybersecurity Logs
Carmen Sánchez-Zas * , Xavier Larriva-Novo , Víctor A. Villagrá , Mario Sanz Rodrigo
and José Ignacio Moreno

ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), Avda. Complutense 30, 28040 Madrid, Spain
* Correspondence: carmen.szas@upm.es

Abstract: Companies, institutions or governments process large amounts of data for the development
of their activities. This knowledge usually comes from devices that collect data from various sources.
Processing them in real time is essential to ensure the flow of information about the current state
of infrastructure, as this knowledge is the basis for management and decision making in the event
of an attack or anomalous situations. Therefore, this article exposes three unsupervised machine
learning models based on clustering techniques and threshold definitions to detect anomalies from
heterogeneous streaming cybersecurity data sources. After evaluation, this paper presents a case
of heterogeneous cybersecurity devices, comparing WSSSE, Silhouette and training time metrics
for all models, where K-Means was defined as the optimal algorithm for anomaly detection in
streaming data processing. The anomaly detection’s accuracy achieved is also significantly high.
A comparison with other research studies is also performed, against which the proposed method
proved its strong points.

Keywords: machine learning; clustering; real-time; data pre-processing; threshold; Spark; cybersecurity;
K-means; anomaly detection; logs

MSC: 68T99

1. Introduction

The analysis and subsequent extraction of information from heterogeneous volumes
of data processed in business environments are computationally intensive, especially when
anomaly detection must be performed immediately and in real time. Therefore, security
experts began to use methods and mechanisms from one area of computer science that
has experienced exponential growth in recent years: the fields of machine learning and
Big Data.

Unsupervised learning models [1] attract the most attention because they are able to
generate knowledge about unidentifiable events or behaviours. They are supplied with
unlabelled data, so knowledge must be extracted from the metastructure of the supplied
information itself. This feature is essential for the analysis of most data generated by
devices, as these data are not labelled.

Furthermore, in the field of Big Data, various mechanisms and models have been
developed to handle and process these volumes of data in real time. This property is critical
in security environments where devices are continuously transmitting data.

Regarding anomaly detection, currently, there is a challenge in dealing with large
volumes of information feeds in real time, which come from a wide variety of cybersecurity
sources. These heterogeneous data must be processed upon receipt using models trained
to detect anomalous traffic via unsupervised algorithms that can identify normal traffic
and the incoming input is compared to classify it as normal or abnormal. These models

Mathematics 2022, 10, 4043. https://doi.org/10.3390/math10214043 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10214043
https://doi.org/10.3390/math10214043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0791-6946
https://orcid.org/0000-0001-5335-5698
https://orcid.org/0000-0002-7067-6968
https://orcid.org/0000-0001-7201-1444
https://orcid.org/0000-0002-1770-1853
https://doi.org/10.3390/math10214043
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10214043?type=check_update&version=1

Mathematics 2022, 10, 4043 2 of 30

would follow similar training, and each one is focused on attacks from the logs of a
cybersecurity device.

The motivation of this research is to develop an unsupervised machine learning model
to detect real-time anomalies in a custom environment with heterogeneous log sources
that monitor communications or behaviours. The presence of different devices as input
data is the triggering point for gathering our own dataset, which was labeled by experts
by the analysis of the parameters of the different logs, and led us to using unsupervised
detecting techniques.

The aim of this work is therefore to present a real environment based on a scalable
open-source system that allows the management of large amounts of data in real time
by parallelising the work, to develop an unsupervised learning system that can detect
anomalies in a set of data from different devices in real time. The machine learning models
are trained with pre-processed logs representing normal traffic from each source. This
step is vital to assure a correct input to the system. The anomaly detection architecture
is based on the development of a thresholding system in conjunction with the clustering
algorithm selected after its comparison, which makes it possible to classify which data from
the different data sources are anomalous based on the clusters previously formed by the
algorithm. Metrics such as WSSSE and Silhouette are used to optimise the model via its
hyperparameters and, after the system is developed, its behaviour is evaluated. With the
tests performed, whether the model correctly clasifies data as anomalous/non-anomalous
is determined in order to obtain a comparison among the different algorithms applied.

Finally, the devices mentioned above that provide the data sources are integrated into
the system, as well as a module where the results can be stored, managed and analysed.

With this proposal, the objective is to process logs from heterogeneous cybersecurity
devices that are streaming in real time using similarly trained models to detect whether
any communication is anomalous.

To test its functioning, we also developed a use case representing a system working in a
real environment. Therefore, the article proposes the use of Apache Spark [2], as mentioned
in [3], particularly one of the Python APIs offered by Spark, PySpark [4], which includes
a library of machine learning models (MLlib) for processing streaming logs from these
heterogeneous sources. Unsupervised learning algorithms can be run and integrated
into the overall Spark ecosystem to accomplish the task of detecting anomalies in real
time. Similarly, the environment provides all necessary tools for data pre-processing and a
subsequent connection to an ELK [5] system (ElasticSearch, Logstash and Kibana) where the
result can be visualised and analysed. Three unsupervised learning models are proposed:
K-Means, Bisecting K-Means and GMM, as they are among the best known unsupervised
learning models that allow grouping data into clusters [6].

Training of the model is performed with anomaly-free datasets generated for each
source, which are different physical and logical devices (Wi-Fi, Bluetooth, Mobile Networks,
Radio Frequency, UEBA and SIEM and Firewall log sources) that represent various logs
existing in business environments. The correct modelling of the system requires pre-
processing the data with the PySpark tool mentioned earlier so that the algorithms can be
trained correctly.

The results of the research highlight the KMeans model as the optimal model for the
case under study, obtaining better metrics and prediction results close to 99%.

For these reasons, the main findings of this research are as follows: the process of
obtaining datasets formed from the logs of different devices and synthetic data generation,
real-time processing of data using an ensemble of several models trained specifically for
each data type to detect anomalies.

During the course of this document, in Section 2, we will introduce a general overview
of the state-of-the-art methods by analysing previous projects related to the state of the
art. In Section 3, an overview of technologies involved in this development is provided.
Finally, in Sections 4–6, the defined proposal, its implementation and the results obtained
in the validation are provided, and the system is checked in terms of whether it meets

Mathematics 2022, 10, 4043 3 of 30

the requirements set out in a real scenario. To sum up, Section 7 will include conclusions,
exposing the advantages and disadvantages offered by the architecture as well as possible
improvements and future lines that may result from the project.

2. Related Works

To solve the problem of detecting anomalies in real time, many studies have been
presented to create a mechanism capable of accomplishing it in an effective, simple and
powerful manner.

The approach to this problem means that most of current studies need to use Big
Data technologies, such as Apache Spark, because these systems enable them in handling
the large amount of data that has to be processed in real time. From this point of view,
an attempt on addressing the problem via unsupervised clustering, as there is a lack of
tagged data to train a supervised algorithm.

The authors in [7] use a K-Means clustering algorithm to tag an unlabelled dataset in
order to use it as a basis for training supervised algorithms. They use service and customer
data collected from IoT networks to detect abnormal SIM cards.

The proposal from [8] makes use of principal component analysis (PCA) to reduce
dimensionality and to apply its results to a Mini Batch K-Means. This proposal allows
improvements in execution time as well as the CH metric that evaluates the formed clusters.

A similar proposal to the one described in this document, in which the use of thresholds
in each of the clusters formed to eliminate or detect the outliers, noise or anomalies, is
described in [9], which is a framework for analysing large IoT datasets by using the
parallelisation of the implementation of K-mean methods and using Spark to, afterwards,
apply outlier detection to remove fraudulent data.

The authors in [10] propose a method that combines clustering techniques and Sup-
port Vector Machines (SSC-OCSVM) to detect anomalies in the NSL-KDD dataset. The re-
searchers in [11] describe a system to detect anomalies from streaming IoT sensors using
statistical and deep-learning-based models.

In [12], the authors present their unsupervised anomaly detection method based on
autoencoders with Generative Adversarial Networks using five public datasets (SWaT,
WADI, SMD, SMAP and MSL) and an internal dataset. Meanwhile, in [13], they propose a
real-time implementation of the isolated forest to detect anomalies in the Aero-Propulsion
System Simulation dataset.

In [14], researchers use an Adversarial Auto Encoder (AAE) model in wireless spec-
trum data anomaly detection, compression and signal classification over three spectrum
datasets along with one synthetic anomaly set to test the model in a controlled environment.
Moreover, the authors in [15] describe an unsupervised anomaly detection approach based
on Bluetooth tracking data and the isolation forest algorithm.

In the Results Section, we will present a summary of the procedures of these related
research studies in comparison with our work.

An important aspect that is taken into account in various related studies is the metric
upon which the results are evaluated. As there are no labels for comparing and measuring
the performance of the model, we apply various metrics that provide an indirect evaluation
of it. In this way, studies such as [16] compile different metrics in a clustering algorithm.

Another approach is the application of non-iterative methods, such as geometric
data transformations (GTM) [17] and the successive geometric transformations model
(SGTM) [18].

It can be seen that the efforts and attempts for achieving an unsupervised anomaly
detector are quite numerous. However, despite the number of proposals, a concrete
architecture to solve the problem is not yet in sight. Therefore, this paper proposes an
unsupervised method for anomaly detection using a paradigm based on training models
with normal data and detection based on the misclassification of events relative to the
clusters formed. We will also apply different metrics and methods of visualising the clusters

Mathematics 2022, 10, 4043 4 of 30

to obtain a more robust idea of what occurs during clustering and so that we aim to evaluate
the performance of the clusters more comprehensively.

3. Unsupervised Learning
3.1. Clustering

As one of the large families of unsupervised learning, the main task of clustering
models [19] is the automatic grouping of unlabelled data to build subsets of data known as
clusters. Each cluster is a collection of data that, according to certain metrics, are similar to
each other. By extension, data belonging to different clusters have differentiating elements,
thus providing a simultaneous dual function: the aggregation of data that have similar
elements between them and the segmentation of data that have non-common characteristics.
This aggregation/segmentation that occurs when grouping data into clusters, as indicated
above, is conditional on the method of analysis or metric used to group the data. Variations
in this metric will result in different clusters, both in terms of the number and size. Therefore,
knowing and selecting the method in which the clusters are formed is vital, as using one
or the other will lead to variations in the results: Choosing a cluster formation method is
equivalent to choosing a different clustering model.

3.1.1. K-Means

The K-Means [20] clustering model is one of the simplest and most popular models of
the unsupervised learning paradigm. Its use in all types of applications and branches of
knowledge has made this model one of the most widely used and best known.

The fundamental idea of K-Means lies in correctly locating what are called centroids,
a reference where the data of a set can be compared. Various data that we want to group
together will be compared with these centroids and, depending on how similar the data
are, they will be grouped with one or the other within a cluster.

It should be noted that each cluster has only one centroid; therefore, a centroid can be
seen as a centre of masses.

To measure the distance between each point and the centroids, two methods can be
used [21]:

• The cosine distance between two points is calculated using the angle between the
vectors obtained from them. Because X is a m x n data matrix that can be decomposed
in m 1 x n row vectors (x1, ..., xm), the cosine distances between vectors xs and xt are
as follows.

d = 1− xsx′t√
(xsx′s)(xtx′t)

(1)

• The Euclidean distance between points a and b is computed as follows.

d =

√√√√ k

∑
j=1

(aj − bj)2 (2)

The K-Means algorithm (Algorithm 1) is based on an iterative process, where actions
will adjust the clusters until a state of convergence is reached, where the final results of the
clusters formed are given. The steps are followed in an iterative manner to produce the
clusters, and they are provided as follows [22].

As inferred from the way K-Means works, it is necessary to preset in advance how
many clusters we want to form. This decision is crucial when running the model, as a
misconfiguration of the number of clusters can lead to bad clustering either by default or
by excess. In the limit, you cab see that a single cluster is generated with all data grouped
in the same cluster or that each datum is the centroid of its own cluster. In both cases,
the results would be useless. This can be extended to other hyperparameters, such as
choosing a metric for distances between data or defining a good tolerance. One point to

Mathematics 2022, 10, 4043 5 of 30

stress is the need to normalise the data before running it through the model, as K-Means
uses distances to generate clusters.

Algorithm 1 K-Means

1: Prefix the number of clusters (k).
2: Randomly choose k centroids among the poins from the dataset (D).
3: ∀x ∈ D →Measure the Euclidean or Cosine distance to the centroids.
4: ∀x ∈ D → x ∈ nearest cluster.
5: Mean of each cluster = new centroids.
6: Run 3, 4 and 5 again until the variation of the new value of the centroid related to the

previous iteration does not vary (or varies less than a preset tolerance).

The failure to normalise it results in data with high numerical values being weighted
more heavily than others and vice versa, resulting in poor measurements and therefore
poor clustering.

3.1.2. Hierarchical Clustering

Hierarchical clustering is another method for generating clusters [20]. It is based on
the formation of clusters in an ordered, sequential and hierarchical way. This procedure
can be approached from two points of view: by agglomeration or by division. In the former,
it is assumed that all data form a single cluster and, at each iteration of the algorithm,
similar clusters are merged until the number (k) indicated is reached. The behaviour of the
algorithm is as follows (Algorithm 2):

Algorithm 2 Hierarchical Clustering by Agglomeration

1: ∀x ∈ D → x is an individual cluster.
2: Construct the distance matrix (M) with the Euclidean distances of each pair of clusters.
3: The most similar pair of clusters is merged.
4: Update M with the new cluster and the distances to the others.
5: Iterate points 3 to 4 until the pre-set number of clusters (k) is reached.

In hierarchical clustering by division, similarly to the previous procedure, it is assumed
that all data form a single cluster. For each iteration, the cluster will be split into two clusters
until the desired number of clusters is reached (k). The steps involved in hierarchical
clustering by partitioning are as follows [23] (Algorithm 3):

Algorithm 3 Hierarchical Clustering by Division: Bisecting K-Means

1: ∀x ∈ D → x is an individual cluster.
2: The sum of Squared Errors (SSE) is calculated for each cluster.
3: The highest value is chosen and divided into clusters by K-Means.
4: Items 2 and 3 are iterated until the desired number of clusters (k) is reached.

3.1.3. Gaussian Mixture Modelling (GMM)

A Gaussian mixture modelling algorithm (GMM) [24] is an expectation-maximization
(EM) type of model, and it is an iterative method where the aim is to find the maximum
likelihood of a model by optimising the parameters that govern it. It is assumed that all
points in the dataset are part of a mixture of normal distributions for their parameters are
unknown. This algorithm, unlike previous ones, performs the classification in a soft way;
that is, it does not assign a probability for belonging to each of the clusters of the set, and it
is able to belong to several at the same time.

The clusters formed with GMM are assumed to follow a Gaussian shape, which is
determined by two parameters (the mean (µ) and the standard deviation (σ or Σ)), in order
to be maximised. To do so, the EM algorithm will be used, and it comprises two parts:

Mathematics 2022, 10, 4043 6 of 30

- Step E for calculating the probability that a point (xi) belongs to each cluster, ck:

ric =
Prob. of xi belonging to c

Sum of prob. of xi belonging to c1, c2, ..., ck
(3)

- Step M for updating the values µ, Σ, and Π (representing the point density of a
distribution):

Π =
Number of points assigned to a cluster

Total number of points
(4)

µ =
Σricxi

Number of points allocated to a cluster
(5)

Both steps will be performed iteratively, optimising the parameters and maximising
the associated likelihood function.

In a nutshell, the GMM algorithm (Algorithm 4) works as follows:

Algorithm 4 GMM

1: Number of clusters (k) selected.
2: Set randomly parameters of the different distributions.
3: Calculate the likelihood of the Gaussians with the data in the dataset.
4: Maximise the log-likelihood function by optimising parameters.
5: Iterate steps 3 and 4 until the indicated number of iterations is completed or a given

tolerance is reached.

Although it is not as fundamental as previous algorithms, standardising and/or
normalising the data before it is passed to the model can provide substantial improvements
in its performance.

3.2. Size Reduction

Size reduction is the process required to analyse the importance of every feature of the
data and to select those with effects on the calculations or those that are remarkable in the
visualisation of the clusters without losing any significant information. In our context and
to facilitate the visualisation and analysis of the data, it is necessary to reduce the number
of features and, to this end, we have studied the following models. They will be evaluated
in Section 6.

3.2.1. Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical method [25] that can also be used as
a first approach for how much information each of the characteristics of the data can offer
to a machine learning model; thus, it choose the number of dimensions that for reducing
the data without losing too much information. This interpretation can be performed by
studying the accumulation of variances that are resent in data features. The higher the
variance, the more information the data feature offers and the higher the value of the
accumulated variance.

This method seeks to find out the variables that are the most important. To achieve
this, PCA calculates the eigenvalues and eigenvectors of the covariance matrix of the data
and selects those eigenvectors with the highest eigenvalue. These vectors will be used as
the basis for the projection of data to these dimensions. After the projection, we obtain
dimensionally reduced data as a result.

To sum up, the algorithm follows the next steps (Algorithm 5).

Mathematics 2022, 10, 4043 7 of 30

Algorithm 5 PCA

1: Calculate covariance matrix (C).
2: Calculate eigenvalues and eigenvectors of C.
3: Select the m eigenvectors with the highest eigenvalue (m, the number of dimensions to

reduce C to).
4: Project the data onto the selected eigenvectors.
5: Result: Data reduced to m dimensions.

3.2.2. ISOMAP

ISOMAP is another dimensional reduction algorithm [26], which is part of what is
called manifold learning, a mathematical space where Euclidean space is recreated locally
but not globally. This implies that the points of the dataset that are distributed in the space
will be conditioned by a hyperplane of a certain shape, which may prevent determining
the distance between two points from necessarily following a straight line. For a more
accurate description of the distance/similarity between two points, it is necessary to
traverse the dimensional space of the manifold and measure their distances using a geodesic
of that space.

When dealing with high-dimensional data, the assumption that the data lies within
Euclidean space is not always true. Isomap therefore adopts the premise that the data
to be reduced belongs to a manifold, so it will perform the dimensional reduction in a
non-linear manner. This method will try to preserve the geodesics found in the manifold
when projecting it in a lower dimension. To achieve this, Isomap will first create a graph
with the shape of the manifold from clustering algorithms such as K-Nearest Neighbours
(KNN). Once the network is formed, it calculates the geodesics from the distance of the
nodes in the graph. Then, it uses eigenvectors and eigenvalues to make a projection on the
eigenvectors with the highest eigenvalue and, thus, reduces it dimensionally.

Analysing the details of this method, the procedure to undertake the dimensional
reduction is described as follows (Algorithm 6).

Algorithm 6 ISOMAP

1: Determine the neighbourhood of each point.
2: Construct a manifold graph, connecting each point to the nearest neighbour.
3: Calculate the minimum distance between two nodes of the graph using the Dijkstra

algorithm, obtaining a matrix with geodesic distances of the points in the manifold.
4: Projection of the data: the distance matrix is squared, double centred, and the eigen-

value decomposition of a matrix is computed.

As the complexity order of the process is O(N2), it will require large computational
resources if the number of points is substantial. Therefore, MDS is normally used, and it is
an algorithm that translates distances between points into a configuration of points mapped
onto a Cartesian space. As a result, a representation of the points is presented, taking into
account the possibility that they are contained in the manifold.

3.2.3. T-Distributed Stochastic Neighbor Embedding (t-SNE)

T-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensional
reduction algorithm [27] intended for the visualisation of high-dimensional datasets. The
effect of applying t-SNE to the data is to generate an algorithm that attracts similar data to
each other and repels data that is not similar, such as electrical charges. The result is a form
of clustering, where high-dimensional data are transformed and grouped with data that
have been estimated as similar to each other at a lower dimensionality.

The procedure followed by t-SNE is described as follows (Algorithm 7).

Mathematics 2022, 10, 4043 8 of 30

Algorithm 7 t-SNE

1: Measure similarity of data in high-dimensional space: assign each point a Gaussian
distribution with a given standard deviation. Points that are close to each other will
have a high density value in that distributions, while distant points will have a low
density value in that distribution.

2: Construct a similarity matrix in high-dimensional space.
3: Data are randomly projected from high-dimensional space to low-dimensional space.
4: The calculation of the similarity of the data in low-dimensional space.
5: Construct a similarity matrix in low-dimensional space.
6: Try to make low-dimensional matrix values as similar as possible to the high-

dimensional matrix by applying the Kullback–Leibler divergence metric and gradient
descent. This causes the grouping of similar points and they are separated from the
rest of the points that are not similar.

As a result, a representation of the data is presented by taking into account the possible
distribution that could occur in the high-dimensional space.

t-SNE has an associated hyperparameter (perplexity) [28] that determines the value of
the standard deviation of the distributions used to perform the similarity calculation.

3.2.4. Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is another dimensional
reducer [29], and its main idea is to generate a graph from the data belonging to a high-
dimensional space and to assign it to another graph that is, however, of low dimensionality.

The improvement made by this type of dimensional reducer [30] is the way in which
it performs the construction of the high-dimensional graph: A radius of the variable size is
spread over each point in the set. When the radii of two different points intersect, those
points are connected.

The size of the variable radii is preset according to the density of the neighbourhood
in which the datum is located.

The neighbourhood density is determined using the KNN algorithm or similar algo-
rithms, and a determination is made in terms of which neighbourhoods are highly dense
and which are sparsely populated.

Once the connections are made and the neighbourhood densities are known, data
connections are weighted according to the neighbourhood’s density.

Once these steps have been carried out, another graph is produced with respect to
the number of the dimensions that we want the results in. Data with heavily weighted
connections will stay together, while lightly weighted connections will tend to stretch and
separate. These rotations can occur in projections made in the graph while keeping the
structure of the data intact.

In UMAP, there are two fundamental hyperparameters that condition the outcome:
the number of neighbours taken into account to create the high-dimensional graph and
the minimum distance between point in the low-dimensional graph. The former controls
how UMAP balances between preserving the local structures of the dataset and the global
structures: low values of the number of neighbours will enhance the representation of local
structures, while high values will enhance the representation of global structure. On the
other hand, the minimum distance controls how tightly UMAP clusters the points, where
low values will make the clustering narrower and high values will make the clustering
wider, preserving the broad structure of the dataset.

3.3. Metrics

One of the key aspects when designing and evaluating a learning model is to check its
performance, operation or accuracy. In order to know these characteristics of the model,
it is necessary to carry out different tests to check the real performance of the algorithm,

Mathematics 2022, 10, 4043 9 of 30

applying a metric that allows measuring a value or property to compare different models
and represents a feature of the algorithm’s operation or result.

However, estimating how well a machine learning model is working becomes com-
plicated when working within the unsupervised learning paradigm. Despite not having
a ground truth for comparisons, there are several metrics that can be used to infer how a
model is working. The metrics shown below are mainly intended for clustering algorithms,
which is the type of model used in this proposal.

3.3.1. Within Set Sum of Squared Error (WSSSE)

In a clustering algorithm, a first valid approach to determine how well clustering was
executed would imply a visualisation in a scatter plot, although the type of dimensionality
the data possess will have to be taken into account. If working data have more than three
features, it would have to be dimensionally reduced before it can be plotted, and this
process entails a loss of information.

However, there is a metric that allows us to know the total error of the distances of the
data relative to the centroid to which it belongs; that is, we can know, for each point of the
dataset, how far it is from the centroid of the cluster.

Mathematically, WSSSE [31] is represented as follows, where k denotes the cluster, Sk
denotes the data from cluster k and j denotes the position of the vector.

K

∑
k=1

∑
iεSk

p

∑
j=1

(xij − xkj)
2 (6)

The equation includes the following:

1. The sum of the squared error of the centroid components with the components of a
data of its cluster.

2. The sum of the error of all the data of a cluster with its centroid, applying (1).
3. The sum of the total error for all clusters, applying (2).

The result is that we obtain the total error of all clustering procedures performed
on the points. With this metric, the parameters affecting clustering processes, such as
hyperparameter k, the distance metric, tolerance, etc., can be optimised. The aim is to
reduce this metric as much as possible without overfitting.

3.3.2. Silhouette

It is another measure of how good a clustering model is. In essence, it is a metric that
allows knowing the cohesion within a cluster as well as the separation with other clusters,
thus measuring how well a datum is classified in a cluster. To obtain this information [32],
the following distances need to be calculated:

• Mean distance between a datum with respect to all other points belonging to the same
cluster: This distance is called the mean intra-cluster distance.

• Mean distance between a datum with respect to the rest of the points belonging to the
next nearest cluster: This distance is called the mean nearest-cluster distance.

The range of values that this metric can take is between [−1, 1], where high values
indicate that the data are wel- assigned (high cohesion to its cluster and high separation
with other clusters) and vice versa.

The mathematical expression representing this metric is as follows, where o denotes
an observation, a denotes the mean intra-cluster distance and b denotes the mean nearest-
cluster distance [33].

s(o) =
b(o)− a(o)

max{a(o), b(o)} (7)

Mathematics 2022, 10, 4043 10 of 30

3.3.3. Selection Criterion

One way to use WSSSE to obtain the optimal value of a hyperparameter is to study the
‘elbow point’ of the graph [34]. The idea is to plot graphically the variation of the WSSSE
metric as we vary the hyperparameter of choice. From the resulting graph, the point at
which a variation in the slope occurs is shown. That point defines the hyperparameter.

With respect to Silhouette, we want to select the hyperparameter that maximises its
value without overfitting, so the selection criterion is similar to the one proposed in WSSSE.
This metric provides more information on the goodness of clustering of a model than
WSSSE. Thus, if the two metrics point to hyperparameters with different values, the one
indicated by Silhouette is prioritised.

4. Proposal

For this development, we start from the need to control heterogeneous environments
with data sources that stream in real time. This information flow can represent normal
traffic or attacks and, therefore, needs to be analysed and classified upon receipt.

When there are different devices simultaneously emitting amounts of data in a secure
environment, it is essential to have a system that reacts immediately to incoming data in
the event that these logs contain potentially anomalous characteristics.

Due to the possible lack of logs in some of the devices that conform to a heterogeneous
environment and the ability to extract features common to normal traffic, training the
system to detect anomalous entries is difficult, so these features must be identified by
a model that is previously trained to recognise normal traffic in the environment and,
therefore, via unsupervised algorithms, these features automatically identify logs that do
not resemble training logs. The definition of anomalies in this context is conditioned by
these training data, because it is determined by a threshold of the Euclidean distance and
takes into consideration the centre of each cluster and the position from which any data
can be considered as anomalies.

This proposal follows the architecture described in Figure 1 and the structure below
(Algorithm 8).

Algorithm 8 Proposal

1: Let n be the number of devices analysed in an environment.
2: Let i be a device from the set of n devices analysed.
3: Let Fi be the flow of information coming in real time from device i.
4: Let m be the number of machine learning models trained.
5: Let j be a model from the set of algorithms, applying function Mj.
6: Mj(Fi) = {0, 1} | 0: normal traffic; 1: anomalous log.

In Figure 1, the pre-processing of the flow of information for selecting the best features
that will be introduced to the model is shown, and the generation of synthetic data for
devices that do not have enough data to be trained is also demonstrated. These processes
will be explained in the context of the use case presented in the next section, where we
introduce the solution proposed for the problem described.

Figure 1. Systems involved in the architecture of the proposed model for anomaly classification
(pre-processing, real-time processing, training and validation and synthetic data generation).

Mathematics 2022, 10, 4043 11 of 30

5. Designed Solution

As mentioned earlier, the aim of this study focuses on the use of unsupervised clus-
tering algorithms to detect anomalies in real time. The main reason for using clustering
algorithms is that, as seen in Section 2 in Related Work, they perform well in dealing
with these types of situations. To achieve this, it is first necessary to provide a general
introduction to the architecture (Figure 2), where one can observe how the entire work-
flow is constructed from the reception of the raw data to the classification of events by
different models.

Figure 2. Modular architecture of the machine learning system.

Essentially, the machine learning system is responsible for detecting possible anoma-
lies in the system’s input data, which comes from heterogeneous sources. This information
consists of sets of values in various formats that are fed into the Kafka Streaming mod-
ule [35]. These data must be pre-processed by mathematical functions to transform the
input values so that the machine learning algorithms embedded in the real-time processing
subsystem and the training and validation subsystem can process them.

The machine learning algorithms must be previously trained with a set of data with the
same characteristics as the data provided by the devices, and this is explained in Section 5.1.

In the training and validation subsystem, machine learning algorithms are trained.
These algorithms are trained using various unsupervised methods. If existing datasets are
not sufficient for training and validation, the synthetic data generation subsystem is used
to generate a pair of normal/abnormal datasets so that the models can be properly trained
and validated. Once machine learning algorithms have been trained, they are moved to
the production phase. This is characterised by the real-time processing subsystem, which
enables the processing of data flow from devices and identifies possible anomalies within
the flow. The result is then stored in the anomaly database.

5.1. Training Dataset

The input interface corresponds to the amount of data collected by various devices
from which data are received. The data sources are Mobile Networks, Radio Frequency,
Bluetooth, WiFi, Firewall logs, SIEM logs and UEBA devices. The fields used from each of
them are detailed below (Table 1).

Mathematics 2022, 10, 4043 12 of 30

Each of these modules sends the data it generates via the Kafka Flow Management
Subsystem, and it uses differentiated topics (one per device), with each learning model
subscribing to its corresponding topic to be handled.

Therefore, one unsupervised learning model is developed, trained and validated per
topic (after selecting one of the possible models) and, thus, per the type of data source.
Some of these devices have been previously tested in other projects [36,37].

Table 1. Data fields from each data source.

Device Field Description

Mobile Networks

Time Device discovery time

IMEI Id of the detected device

IMSI International subscriber id

RAT Type of radio access (2G, 3G, and 4G)

Radio Frequency

Time Date of measurement. EPOCH format, seconds resolution

Signal Signal strength level (dBms)

Freq Signal Frequency (MHz)

mod Signal modulation type (OOK, 2FSK, NONE)

payload Associated or extracted data from the signal

Bluetooth

Time Creation time

status State the Bluetooth device is in

classic_mode If Bluetooth is in classic mode

le_mode Low Energy Bluetooth

lmp_version Bluetooth version used by the detected device

address MAC address of the detected device

WiFi

Time Date of measurement. EPOCH format, seconds resolution

userid Identifier (MAC Address)

footprint Identifier in MAC format for random addresses

tseen Time (s) when the user has been detected in the measurement interval

tacum Time (s) that the user has been detected since the data source has been
operational

visits Number of times the user has been detected after being disconnected
(entries and re-entries)

act24h -

pwr The average power at which the device has been viewed during the
measurement time

tx_packets/tx_bytes Number of packets/bytes transmitted in the measurement time

rx_packets/rx_bytes Number of packets/bytes received in the measurement time

apwr Average power of the access point seen by the device

type Type of MAC address (MAL, LMA, CID, and Unknown)

Mathematics 2022, 10, 4043 13 of 30

Table 1. Cont.

Device Field Description

Firewall Logs

Time Date and time of measurement

sequencenum Number added to order logs with the same timestamp and origin

source port Source host port

destination port Connection destination port

Xlate (NAT) source port Source port after applying Hide NAT on the source IP address

Xlate (NAT) destination port Destination port after applying NAT

VPN Peer Gateway Main IP address of the VPN peer Security Gateway

Blade Product Name

Action Action of the matched rule in the access policy

type Log type

interface direction Connection direction

source zone Internal or External

destination zone Internal or External

IP protocol -

needs browse time Browse time required for the connection

protocol Protocol detected on the connection

ICMP ICMP message will be added to the connection log

ICMP Type For ICMP connection, type info will be added to the log

ICMP Code For ICMP connection, code info will be added to the log

PPP Authentication status

Authentication method Password authentication protocol used (PAP or EAP)

scheme Scheme used for the log

methods HTTP method

VPN Feature L2TP/IKE/Link Selection

SIEM logs

Date Date of measurement. EPOCH format, seconds resolution

Risk Risk Level

Signature Description of the event created by SIEM

Source Source IP Address: <Port>

Destination Destination IP Address: <Port>

UEBA Data Source Field Description

Activity Tracker

clicks Number of clicks made on the mouse

pulsations Number of clicks the user has made on the keyboard

moves Number of times the mouse has been moved around the screen

scrolls Number of times the scroll functionality has been used

Browsers url Web Address Visited

Files
path Full address of the file on which the action was performed

type Type of action performed

Mathematics 2022, 10, 4043 14 of 30

Table 1. Cont.

UEBA Data Source Field Description

Network

bytes_sent/packets_sent Number of bytes/packets that have been sent on that interface since the
previous event

bytes_recv/packets_recv Number of bytes/packets received on that interface since the last event

errin Number of errors occurred while receiving packets since the last event

errout Number of errors occurred while sending packets on that interface

dropout Number of packets received that have been dropped since the last event

name Name of the supervised interface

Process

FinishTime Date on which the process ended

create_time Date when the process started

memory_usage Maximum memory usage of the process during its lifetime (bytes)

cores Number of cores that the process is allowed to use

cpu_usage Maximum percentage of CPU used by the process during its lifetime

nice Priority of the process

n_threats Maximum number of threats created by the process during its execution

childrens Number of processes spawned by the process during its lifetime

Sockets

closed_time Date and time of the measurement in EPOCH format (seconds resolution)
at which the socket was closed

detection_time Date and time of the measurement in EPOCH format (seconds resolution)
at which the socket was detected

laddr/raddr Local/Remote IP Address

laddrport/raddrport Local/Remote port number

fd Socket file descriptor

type Type of connection to which the socket is bound

5.2. Synthetic Data Generation

The synthetic data generation module is intended for the creation of synthetic datasets
in models where the data do not meet the conditions of the model because certain devices
cannot collect enough data inputs because they are not used in a real environment. In the
use case of this study, the synthetic data generation module was used to obtain data similar
to those produced by the Mobile Network data source.

The architecture of the module is shown in Figure 3.
The module uses the data provided from the inputs and establishes relationships

between the attributes that are necessary for avoiding invalid inputs. In turn, profiles are
defined to generate events by specifying the number of events that occur per clock step
and then adding the probability that each profile will be executed per clock step.

This clock configuration is set in advance and specifies the simulation time and the
time between steps. This configuration is conditioned by a time profile in which the
characteristics of event generation are specified as a function of time (e.g., a higher number
of steps during working time).

Finally, the attributes to be generated are defined with all configurations, relations and
profiles. It should be noted that two different configurations are defined for the generation
of a normal record and an anomalous record.

Mathematics 2022, 10, 4043 15 of 30

Figure 3. Modular architecture of the synthetic data generation system.

All these configurations are related to the library for the generation of realistic datasets
Trumania [38], which is a library that provides the necessary tools for the synthetic genera-
tion of data, the definition of the internal structures of the dataset and the prevention or
enablement of the generation of events that meet the following requirements:

• Suitable types for all values of the dataset that facilitate their subsequent modification;
• Non-uniform structure for the generation of events;
• Plausible time structure in relation to real normal and abnormal scenarios;
• The impossibility of generating events that cannot occur in real environments.

The output data of the subsystem correspond to a pair of records generated with
normal characteristics and a record with abnormal characteristics. The size of these created
records is about 100,000 entries, and they can be varied in any order.

The characteristics of the generated datasets are identical to those generated and sent
by the specific device with which we are up-sampling.

5.3. Preprocessing

This subsystem is responsible for normalising, transforming and standardising the
values of the dataset before training the machine learning algorithms and real-time process-
ing. Data preprocessing is defined in Figure 4 and divided into the different modules that
make it up.

Figure 4. Modular architecture of the preprocessing system.

Mathematics 2022, 10, 4043 16 of 30

The input data of this system consist of a set of data values from each device. This
information is first structured according to the type of datum so that the type of datum
is defined. This structuring process is performed by defining a schema at the beginning
of the data load that contains names of the attributes of the device data to which it refers,
followed by the definition of the type of value contained in these attributes [39].

Then, preprocessing modules offered by Apache Spark and the respective functions
defined for each type of event appear (String Indexer [40], Min-Max Scaler [41], Stan-
dard Scaler [42], One Hot Encoder [43], Hash Encoder [44], Regex Tokenizer [45], Count
Vectorizer [46], TF-IDF [47], Word2Vec [48] and Vector Assembler [49]), performing rele-
vant transformations and adjusting the data as a result. Some examples are presented in
Figures 5–8.

Figure 5. Preprocessing flow of Mobile Network device data.

Figure 6. Preprocessing flow of Radio Frequency device data.

Mathematics 2022, 10, 4043 17 of 30

Figure 7. Preprocessing flow of Bluetooth device data.

Figure 8. Preprocessing flow of WiFi device data.

5.4. Training and Validation

The training and validation subsystem aims to generate machine learning models that
enable the detection of possible anomalies based on the data from the devices described
above. The training and validation subsystem consists of the following components:

• Validation data;
• Training data;
• Hyper-parameter selection module;
• Machine learning algorithm selection module;
• Metrics module;
• Final model.

The internal architecture of this subsystem is shown in Figure 9.

Mathematics 2022, 10, 4043 18 of 30

Figure 9. Modular architecture of the training and validation system.

The training and validation subsystem is responsible for preparing and monitoring
the correct functioning of the machine learning model for anomaly detections. This is
performed by using input data consisting of training data and validation data.

The training data are preprocessed by the preprocessing subsystem, which performs
the above transformations depending on the type of event. For the identification of the
best machine learning model for a given device type, hyperparameter selection modules,
metrics and validation data are used.

The hyperparameter selection module is responsible for determining which feature
set of a given machine learning model architecture is best suited for anomaly detection.
Hyperparameters are selected based on the results provided by the metrics module. Therefore,
the evaluation of the machine learning model for each set of devices is performed by the
metrics module together with the validation dataset. This module allows the evaluation of
the accuracy of an anomaly detection algorithm by applying a set of mathematical functions.

The mathematical functions chosen to determine the best hyperparameter for the
model were the WSSSE metric and the Silhouette metrics used under the criterion of the
‘elbow point’ of the graph when selecting hyperparameters. It consist of plotting variations
of the metric as we vary the hyperparameter value. From the graph, we select the point
where the variation of the slope occurs.

Once the most accurate model has been obtained, the final model is determined for
each device. The result, after going through the training and validation subsystem, is the
different final models created for each device in the system.

5.4.1. Machine Learning Algorithm Threshold

The algorithms used to run the model to identify anomalies are the following: K-
Means, bisecting K-Means and GMM. These algorithms allow the grouping of data into
clusters of similar characteristics in an unsupervised manner.

The decision for one or the other algorithm is made after comparing the WSSSE and
Silhouette metrics between the three models, as explained in the Results section.

The model with the best performance is selected, so the next step is to define the
mechanism by which the model will detect an anomaly and a normal event. For this
purpose, the models will use a threshold for each cluster formed. This allows us to define
which data are sufficiently different from the rest of the cluster in order to be considered
an anomaly.

Therefore, a model will be trained with a set of data that is considered non-anomalous
so that, when new events are detected, whether these new data are similar enough to be
detected as anomalies or not can be compared and observed .

The threshold is variable and can be more or less restrictive as needed. However,
when defining the threshold, the default is to assign the distance greater than the furthest
point from each centroid of the cluster to which it belongs.

In summary, the anomaly detection method works as follows:

Mathematics 2022, 10, 4043 19 of 30

• Assigning the optimal hyperparameters for each model depending on WSSSE, silhou-
ette and training time;

• We compare the results of the metrics with each other and select the one with the best
result;

• The selected model is trained with the data from the dataset of events considered
normal, creating different clusters and setting a threshold for each;

• By default, the threshold is equal to the furthest point with respect to the centroid
of the cluster to which it belongs. A threshold value is set for each cluster created.
The value of the threshold can be changed as needed.

5.4.2. Selection of the Hyperparameters

The selection of hyperparameters in machine learning algorithms is crucial when
designing the models to be implemented for each type of problem.

The method for choosing each hyperparameter was performed iteratively, testing a
range of possible values and selecting the one that showed the best performance with the
minimum number of clusters. This performance is represented in the WSSSE and Silhouette
curves resulting from the iterative process performed on each hyperparameter and in the
training time required for each of the models to be compared.

The metric that will be given more importance is Silhouette since it shows both the
compactness of a cluster and the separation between clusters, while WSSSE only allows
viewing the dispersion of the points of the clusters. In cases of similar Silhouettes, WSSSE
will be observed and, in case it does not vary, training times will be analysed. In this paper,
when analysing clustering algorithms, we will define the following hyperparameters in
the three studied models. The results obtained are presented in Table 2 for models with
optimisations that can be completed.

Table 2. Results of hyperparameters from each data source.

Device Model Hyperparameter Value

Mobile Networks

Nº of clusters (k) 2

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) -

K-Means
Distance Measurement -

Max Iterations -

Number of clusters (k) 3

GMM Max Iterations By default: 100

Tolerance By default: 10−4

Radio Frequency

Nº of clusters (k) 2

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 2

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Number of clusters (k) 3

GMM Max Iterations By default: 100

Tolerance By default: 10−4

Mathematics 2022, 10, 4043 20 of 30

Table 2. Cont.

Device Model Hyperparameter Value

Bluetooth

Nº of clusters (k) 2

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 2

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Number of clusters (k) 2

GMM Max Iterations By default: 100

Tolerance By default: 10−4

WiFi

Number of clusters (k) 3

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) -

K-Means
Distance Measurement -

Max Iterations -

Number of clusters (k) 2

GMM Max Iterations By default: 100

Tolerance By default: 10−4

Firewall

Number of clusters (k) 13

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 9

K-Means
Distance Measurement Cosine

Max Iterations By Default: 100

Number of clusters (k) 4

GMM Max Iterations By default: 100

Tolerance By default: 10−4

SIEM

Number of clusters (k) 17

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) -

K-Means
Distance Measurement -

Max Iterations -

Number of clusters (k) -

GMM Max Iterations By default: -

Tolerance By default: -

Mathematics 2022, 10, 4043 21 of 30

Table 2. Cont.

Device Model Hyperparameter Value

UEBA—Activity Track

Number of clusters (k) 2

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 8

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Number of clusters (k) 2

GMM Max Iterations By default: 100

Tolerance By default: 10−4

UEBA—Browsers

Number of clusters (k) 7

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 7

K-Means
Distance Measurement Euclidean

Max Iterations By default: 100

Number of clusters (k) 9

GMM Max Iterations By default: 100

Tolerance By default: 10−4

UEBA—Files

Number of clusters (k) 5

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 3

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Number of clusters (k) 6

GMM Max Iterations By default: 100

Tolerance By default: 700

UEBA—Network

Number of clusters (k) 4

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 4

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Number of clusters (k) 8

GMM Max Iterations By default: 100

Tolerance By default: 10−4

Mathematics 2022, 10, 4043 22 of 30

Table 2. Cont.

Device Model Hyperparameter Value

UEBA—Process

Number of clusters (k) 5

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) 4

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Number of clusters (k) 7

GMM Max Iterations By default: 100

Tolerance By default: 10−4

UEBA—Sockets

Number of clusters (k) 7

K-Means
Distance Measurement Cosine

Max Iterations By default: 100

Tolerance By default: 10−4

Bisecting
Number of clusters (k) -

K-Means
Distance Measurement -

Max Iterations -

Number of clusters (k) 8

GMM Max Iterations By default: 100

Tolerance By default: 10−4

The high computational cost of training with the bisecting K-Means clustering model
automatically implies that it is rejected as a solution for this proposal.

5.5. Real-Time Processing

The real-time processing subsystem is responsible for processing data from the various
devices and identifying possible anomalies. These anomalies are determined by machine
learning algorithms that were previously obtained by the training and validation subsystem.
The internal architecture of this subsystem is shown in Figure 10.

The input data of the real time processing subsystem correspond to the set of data
generated in real time by the set of devices. These input data are subscribed to Kafka,
which manages the input stream data. This information is then sent to the pre-processing
system, which is responsible for converting the input data into structured data in order to
understand it properly.

Machine learning algorithms have been previously trained and validated in the cor-
responding subsystem to detect possible anomalies in the input data. In the real-time
processing subsystem, there are several machine learning models for each type of device.
The output data correspond to the result of the detection of normal or anomalous events.
The trace with the values of the event itself and the result of the detection is stored in the
“Anomalies” database with a unique identifier corresponding to the event.

Mathematics 2022, 10, 4043 23 of 30

Figure 10. Modular architecture of the real time processing system.

6. Results
6.1. Model Comparison

The comparison of the three models associated with each of the devices is displayed
after selecting the hyperparameters for each of them. The purpose of this comparison is
to select the best model for each data source, taking into account the three metrics used:
WSSSE, Silhouette and training time. For each of the three models per device, the same
dataset and hardware/software environment was used to consider only the aspects related
to the performance of the models themselves.

From the results presented in Table 3, it appears that the K-Means model performs
equally or similarly to the bisecting K-Means model in most cases, but improves training
time significantly by a factor of 10.

The GMM model appears to be the worst. Most tests, given the results of the Silhouette
metric, show that its performance is significantly inferior to both K-Means and bisecting
K-Means. This can be explained by the fact that GMM tends to get caught in local minima,
resulting in those Silhouette values. Nevertheless, the result in training time is similar to
K-Means. Another advantage of K-Means over the other two models is that it does not
suffer from convergence or training time problems that prevent its use in some models,
as is the case with GMM and bisecting K-Means. So, the model that seems to work best for
each device is K-Means; therefore, this model is used for anomaly detection.

6.2. Detection Ratio

To see how the system works and how powerful it is, three types of tests were con-
ducted for each model connected to each device.

Seven different data sources were considered that provided activity data to be tested
as follows:

• Identification as normal data when the log represents non-anomalous activity;
• Identification as possible anomalous data if information has never been seen before

and it is sufficiently different from the training data.

Mathematics 2022, 10, 4043 24 of 30

Table 3. Comparison of the different models for each device.

Device Model WSSSE Silhouette T. Time

Mobile Networks

K-Means 87,393.66 0.61 5.39s

Bisecting
K-Means - - >>60s

GMM None 0.14 22.5s

Radio Frequency

K-Means 3.38 0.815 1.01s

Bisecting
K-Means 3.38 0.815 4.15s

GMM None 0.12 1.86s

Bluetooth

K-Means 3.47 0.62 0.91s

Bisecting
K-Means 3.47 0.62 7.01s

GMM None 0.57 0.82s

WiFi

K-Means 8571.55 0.50 1.13s

Bisecting
K-Means - - >>60s

GMM None 0.2 2.81s

Firewall Logs

K-Means 1.99 0.71 3.35s

Bisecting
K-Means 3.89 0.61 25.9s

GMM None 0.14 3.53s

SIEM logs

K-Means 23.19 0.64 15.2s

Bisecting
K-Means - - >>60s

GMM - - >>60s

UEBA Activity Track

K-Means 9.49 0.66 3.66s

Bisecting
K-Means 4.58 0.35 19.1s

GMM None 0.61 1.07s

UEBA Browsers

K-Means 0.87 0.76 0.89s

Bisecting
K-Means 1.01 0.66 18.7s

GMM None 0.62 1.53s

UEBA Files

K-Means 0.01 0.99 0.86s

Bisecting
K-Means 0.36 0.97 13.2s

GMM None 0.99 1.6s

UEBA Network

K-Means 5.03 0.96 0.75s

Bisecting
K-Means 5.07 0.96 11.6s

GMM None 0.94 1.63s

Mathematics 2022, 10, 4043 25 of 30

Table 3. Cont.

Device Model WSSSE Silhouette T. Time

UEBA Process

K-Means 6.72 0.88 0.78s

Bisecting
K-Means 8.01 0.86 0.78s

GMM None 0.69 1.64s

UEBA Sockets

K-Means 137.82 0.49 11.3s

Bisecting
K-Means - - >>60s

GMM None 0.48 10.9s

For the test, two sets of samples are used for each device. The first set is considered as
a normal set of samples and the second set of samples is considered anomalous.

Table 4 shows the result of measuring the accuracy of a system in an environment
where normal data or data with possible anomalies have been defined. The result shows
that almost all data considered normal and those with possible anomalies are classified
as such.

It should be noted that all these results depend on the training and validation data
provided/generated by each device. Although the data are promising, further testing is
required to substantiate the results.

Table 4. Accuracy in detection.

Device Normal Anomaly

Mobile Networks 98.64% 96.00%

Radio Frequency 94.56% 98.00%

Bluetooth 99.32% 99.26%

WiFi 98.90% 99.30%

Firewall logs 97.98% 96.00%

SIEM logs 99.00% 98.75%

Activity Track 99.00% 99.30%

Browsers 98.00% 86.00%

Files 99.00% 97.63%

Network 96.00% 95.00%

Process 97.66% 99.60%

Sockets 98.90% 95.00%

6.3. Cluster Visualisation

Another way to determine if the cluster creation performance is correct is to visualise
the different clusters created by different models. They need to be shaped correctly as they
are used in the threshold for anomaly detection.

Once the clustering process is completed, in order to avoid any interference and only
for visualisation purposes, it is necessary to perform a dimension reduction process to
represent them in one plane. For this, four types of dimension reducers were used (PCA,
ISOMAP, t-SNE and UMAP). In Figure 11, we show a visualisation where the clusters
obtained with each model can be better identified after the dimension reduction process,
abd we can verify that the anomalies are correctly detected by the model.

Mathematics 2022, 10, 4043 26 of 30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11. Clustering representation of the information from each device. (a) Mobile Network. (b) Ra-
dio Frequency. (c) Bluetooth. (d) WiFi. (e) Firewall Logs. (f) SIEM logs. (g) UEBA/Activity Track.
(h) UEBA/Browsers. (i) UEBA/Files. (j) UEBA/Network. (k) UEBA/Process. (l) UEBA/Sockets.

Mathematics 2022, 10, 4043 27 of 30

6.4. Comparison with Related Works

In Section 2, we presented a relation of the previous works related to anomaly detection
with different techniques in order to present the advantages of our proposal in relation to
those results.

In Table 5, we included our characteristics to be compared with the Related Works,
highlighting that our system obtained high quality results with widespread techniques
and including real-time processing, a study and the pre-processing of data collected by
our devices.

Table 5. Results obtained in previous studies

Research Dataset Preprocessing Models Real Time

This research Own Datasets Yes K-Means Yes

[7] Own Dataset Yes K-Means Yes

[8] KDDCUP99 dataset No Mini Batch Kmeans
with PCA No

[9] UCI Machine Learning
Repository No

K-Means and
distance based

approach
No

[10] NSL-KDD dataset Yes SSC-OCSVM No

[11] Yahoo Webscope dataset No
Statistical and deep-

learning-based
models

No

[12]

SWaT, WADI, SMD,
SMAP and MSL

datasets and internal
dataset

Yes Autoencoders No

[13] Aero-Propulsion System
Simulation dataset Yes Isolated Forest Yes

[14] Own Datasets No AAE No

[15] Own Dataset Yes Isolation Forest
Algorithm Yes

7. Conclusions

Anomaly detection is a commonly addressed issue in recent cybersecurity research
studies and is examined by various approaches. For the real-time processing of these
incidents, unsupervised methods are very useful when the data that contain outliers are
heterogeneous or specific for a certain device.

To do so, we have designed a real-time solution to deal with anomalies from various
sources in a heterogeneous real environment.

After outlining all the modules and processes that make up the real-time anomaly
detection system and conducting various tests with respect to its detection capability and
performance, we were able to determine that the best algorithm among the proposed
algorithms for tackling the threshold detection problem is K-Means, which is sometimes
equivalent to bisecting K-Means, but it has better training times. GMM performed the
worst and scored the lowest in the Silhouette metric. In the clusters obtained with K-Means,
this configured threshold determines the difference between normal traffic and anomalies.

The conclusion drawn from the test conducted to check the system’s ability to detect
anomalies is that the detection of normal events and anomalous events had an acceptable
performance, with an accuracy metric close to 99%. The UEBA–Browsers model had the
lowest results, which was 86% for anomaly detection, while Process is the most accurate at
identifying anomalous logs.

Mathematics 2022, 10, 4043 28 of 30

Finally, testing the performance of an unsupervised learning model is more complex
than for other paradigms. The fact that events are undefined with respect to which are
anomalous and which are normal is a major obstacle in determining the performance of
the model. This means that the results shown may vary if the execution conditions or the
configuration of different models change.

In the development of the real use case presented in this paper, we found some
limitations, such as the impossibility to complete hyperparameter optimisation in some
models because they exceeded the defined runtime for meeting the real-time condition or
the lack of real logs for some of the models, which we had to synthetically generate. These
issues may be addressed in the continuation of this line of research.

Moreover, for future developments, improving the treatment of possible abnormal
events by temporal features is proposed. Since it is difficult to integrate this type of
detection with the others, spliting the models (for each data source) into two models is
proposed so that one can detect anomalies using non-temporal features and another can
detect anomalies using temporal features. For better control over the process, we would
also implement a blacklist/whitelist mechanism with the models to manually narrow down
which hours are anomalous for the operator. On the other hand, we would like to test
the result of combining the outputs of multiple models, especially the result of combining
K-Means with GMM since one of the biggest problems of GMM is that it gets stuck in the
local minima, which could be solved by first running K-Means and then initialising GMM
with the centroids given by K-Means. Eventually, this proposal could be integrated into a
cyber situational awareness platform.

Author Contributions: Conceptualization, C.S.-Z., X.L.-N. and V.A.V.; methodology, C.S.-Z., X.L.-N.
and V.A.V.; software, C.S.-Z. and X.L.-N.; validation, C.S.-Z., X.L.-N. and V.A.V.; formal analysis,
C.S.-Z., X.L.-N. and V.A.V.; investigation, C.S.-Z. and X.L.-N.; resources, C.S.-Z.; data curation,
C.S.-Z. and X.L.-N.; writing—original draft preparation, C.S.-Z.; writing—review and editing, C.S.-Z.,
X.L.-N., V.A.V., M.S.R. and J.I.M.; visualization, C.S.-Z.; supervision, X.L.-N., V.A.V., M.S.R. and J.I.M.;
project administration, V.A.V.; funding acquisition, V.A.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partially supported by the Ministerio de Defensa of the Spanish Govern-
ment within the frame of PLICA project (Ref. 1003219004900-Coincidente).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef] [PubMed]
2. Apache Spark™—Unified Engine for Large-Scale Data Analytics. Available online: https://spark.apache.org/ (accessed on

9 December 2021).
3. Larriva-Novo, X.A.; Vega-Barbas, M.; Villagrá, V.A.; Sanz Rodrigo, M. Evaluation of Cybersecurity Data Set Characteristics

for Their Applicability to Neural Networks Algorithms Detecting Cybersecurity Anomalies. IEEE Access 2020, 8, 9005–9014.
[CrossRef]

4. ZANID HAYTAM. Outliers Detection in Pyspark #3—K-MEANS. Available online: https://blog.zhaytam.com/2019/08/06
/outliers-detection-in-pyspark-3-k-means/ (accessed on 24 August 2022).

5. El ELK Stack: De los Creadores de Elasticsearch. | Elastic. Available online: https://www.elastic.co/es/what-is/elk-stack
(accessed on 15 August 2022).

6. Jawale, A.; Magar, G. Survey of Clustering Methods for Large Scale Dataset. Int. J. Comput. Sci. Eng. 2019, 7, 1338–1344. [CrossRef]
7. Zhang, T.; Li, H.; Xu, L.; Gao, J.; Guan, J.; Cheng, X. Comprehensive IoT SIM Card Anomaly Detection Algorithm Based on Big

Data. In Proceedings of the IEEE International Conferences on Ubiquitous Computing & Communications (IUCC) and Data
Science and Computational Intelligence (DSCI) and Smart Computing, Networking and Services (SmartCNS), Shenyang, China,
21–23 October 2019.

8. Peng, K.; Leung, V.C.; Huang, Q. Clustering Approach Based on Mini Batch Kmeans for Intrusion Detection System Over Big
Data. IEEE Access 2018, 6, 11897–11906. [CrossRef]

http://doi.org/10.1007/s42979-021-00592-x
http://www.ncbi.nlm.nih.gov/pubmed/33778771
https://spark.apache.org/
http://dx.doi.org/10.1109/ACCESS.2019.2963407
https://blog.zhaytam.com/2019/08/06/outliers-detection-in-pyspark-3-k-means/
https://blog.zhaytam.com/2019/08/06/outliers-detection-in-pyspark-3-k-means/
www.elastic.co/es/what-is/elk-stack
http://dx.doi.org/10.26438/ijcse/v7i5.13381344
http://dx.doi.org/10.1109/ACCESS.2018.2810267

Mathematics 2022, 10, 4043 29 of 30

9. Erdem, Y.; Ozcan, C. Fast Data Clustering and Outlier Detection using K-Means Clustering on Apache Spark. Int. J. Adv. Comput.
Eng. Netw. 2017, 5–7, 86–90.

10. Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol.
2021, 26, 146–153. [CrossRef]

11. Munir, M.; Siddiqui, S.A.; Chattha, M.A.; Dengel, A.; Ahmed, S. FuseAD: Unsupervised Anomaly Detection in Streaming Sensors
Data by Fusing Statistical and Deep Learning Models. Sensors 2019, 19, 2451. [CrossRef] [PubMed]

12. Audibert, J.; Michiardi, P.; Guyard, F.; Marti, S.; Zuluaga, M.A. USAD: UnSupervised Anomaly Detection on Multivariate Time
Series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’20),
Virtual Event, 6–10 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 3395–3404. [CrossRef]

13. Khan, S.; Liew, C.F.; Yairi, T.; McWilliam, R. Unsupervised anomaly detection in unmanned aerial vehicles. Appl. Soft Comput.
2019, 83, 105650. [CrossRef]

14. Rajendran, S.; Meert, W.; Lenders, V.; Pollin, S. Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features.
IEEE Trans. Cogn. Commun. Netw. 2019, 5, 637–647. [CrossRef]

15. Mercader, P.; Haddad, J. Automatic incident detection on freeways based on Bluetooth traffic monitoring. Accid. Anal. Prev. 2020,
146, 105703. [CrossRef] [PubMed]

16. Palacio-Niño, J.; Galiano, F. Evaluation Metrics for Unsupervised Learning Algorithms. arXiv 2019, arXiv:1905.05667.
17. Tkachenko, R.; Izonin, I. Model and Principles for the Implementation of Neural-Like Structures Based on Geometric Data

Transformations. In International Conference on Computer Science, Engineering and Education Applications; Springer: Cham, Switzer-
land, 2018. [CrossRef]

18. Tkachenko, R. An Integral Software Solution of the SGTM Neural-Like Structures Implementation for Solving Different Data
Mining Tasks. In International Scientific Conference “Intellectual Systems of Decision Making and Problem of Computational Intelligence”;
Springer: Cham, Switzerland, 2021. [CrossRef]

19. Unsupervised Learning and Data Clustering | by Sanatan Mishra | Towards Data Science. Available online: https://
towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a (accessed on 26 August 2022).

20. Roman, V. Medium. 12 June 2019. Available online: https://medium.com/datos-y-ciencia/aprendizaje-no-supervisado-en-
machine-learning-agrupaci%C3%B3n-bb8f25813edc (accessed on 3 August 2022).

21. Bora, M.; Jyoti, D.; Gupta, D.; Kumar, A. Effect of Different Distance Measures on the Performance of K-Means Algorithm: An
Experimental Study in Matlab. arXiv 2014. arXiv:1405.7471.

22. K Means Clustering | K Means Clustering Algorithm in Python. Available online: https://www.analyticsvidhya.com/blog/2019
/08/comprehensive-guide-k-means-clustering/ (accessed on 5 August 2022).

23. Understanding the Concept of Hierarchical Clustering Technique | by Chaitanya Reddy Patlolla | Towards Data Science.
Available online: https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e82437
58ec (accessed on 25 August 2022).

24. Gaussian Mixture Models | Clustering Algorithm Python. Available online: https://www.analyticsvidhya.com/blog/2019/10/
gaussian-mixture-models-clustering/ (accessed on 11 September 2022).

25. Lavrenko and Sutton. IAML: Dimensionality Reduction. 2011. Available online: http://www.inf.ed.ac.uk/teaching/courses/
iaml/2011/slides/pca.pdf (accessed on 15 August 2022).

26. Tenenbaum, J.B.; Silva, V.D.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction; Science: New York,
NY, USA, 2001.

27. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
28. Cao, Y.; Wang, L. Automatic Selection of t-SNE Perplexity. arXiv 2017, arXiv:1708.03229.
29. McInnes, L.; Healy, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018. arXiv:1802.03426.
30. Coenen, A.; Pearce, A. Understanding UMAP. Available online: https://pair-code.github.io/understanding-umap/ (accessed on

1 August 2022).
31. Finding the K in K-Means Clustering | The Data Science Lab. Available online: https://datasciencelab.wordpress.com/2013/12/

27/finding-the-k-in-k-means-clustering/ (accessed on 5 September 2022).
32. Wei, H. How to Measure Clustering Performances When There Are No Ground Truth? Available online: https://medium.com/

@haataa/how-to-measure-clustering-performances-when-there-are-no-ground-truth-db027e9a871c (accessed on 14 August 2022).
33. Chaudhary, M. Silhouette Analysis in K-Means Clustering. Available online: https://medium.com/@cmukesh8688/silhouette-

analysis-in-k-means-clustering-cefa9a7ad111 (accessed on 15 August 2022).
34. Drakos, G. Silhouette Analysis vs. Elbow Method vs. Davies-Bouldin Index: Selecting the Optimal Number of Clusters for

KMeans Clustering. Available online: https://gdcoder.com/silhouette-analysis-vs-elbow-method-vs-davies-bouldin-index-
selecting-the-optimal-number-of-clusters-for-kmeans-clustering/ (accessed on 12 August 2022).

35. Apache Kafka. Available online: https://kafka.apache.org/documentation/streams/ (accessed on 13 September 2022).
36. Alvarez-Campana, M.; López, G.; Vázquez, E.; Villagrá, V.A.; Berrocal, J. Smart CEI Moncloa: An IoT-based Platform for People

Flow and Environmental Monitoring on a Smart University Campus. Sensors 2017, 17, 2856. [CrossRef] [PubMed]
37. Vega-Barbas, M.; Álvarez-Campana, M.; Rivera, D.; Sanz, M.; Berrocal, J. AFOROS: A Low-Cost Wi-Fi-Based Monitoring System

for Estimating Occupancy of Public Spaces. Sensors 2021, 21, 3863. [CrossRef] [PubMed]

http://dx.doi.org/10.26599/TST.2019.9010051
http://dx.doi.org/10.3390/s19112451
http://www.ncbi.nlm.nih.gov/pubmed/31146357
http://dx.doi.org/10.1145/3394486.3403392
http://dx.doi.org/10.1016/j.asoc.2019.105650
http://dx.doi.org/10.1109/TCCN.2019.2911524
http://dx.doi.org/10.1016/j.aap.2020.105703
http://www.ncbi.nlm.nih.gov/pubmed/32835955
http://dx.doi.org/10.1007/978-3-319-91008-6_58
http://dx.doi.org/10.1007/978-3-030-82014-5_48
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://towardsdatascience.com/unsupervised-learning-and-data-clustering-eeecb78b422a
https://medium.com/datos-y-ciencia/aprendizaje-no-supervisado-en-machine-learning-agrupaci%C3%B3n-bb8f25813edc
https://medium.com/datos-y-ciencia/aprendizaje-no-supervisado-en-machine-learning-agrupaci%C3%B3n-bb8f25813edc
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e8243758ec
https://towardsdatascience.com/understanding-the-concept-of-hierarchical-clustering-technique-c6e8243758ec
https://www.analyticsvidhya.com/blog/2019/10/gaussian-mixture-models-clustering/
https://www.analyticsvidhya.com/blog/2019/10/gaussian-mixture-models-clustering/
http://www.inf.ed.ac.uk/teaching/courses/iaml/2011/slides/pca.pdf
http://www.inf.ed.ac.uk/teaching/courses/iaml/2011/slides/pca.pdf
https://pair-code.github.io/understanding-umap/
https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/
https://datasciencelab.wordpress.com/2013/12/27/finding-the-k-in-k-means-clustering/
https://medium.com/@haataa/how-to-measure-clustering-performances-when-there-are-no-ground-truth-db027e9a871c
https://medium.com/@haataa/how-to-measure-clustering-performances-when-there-are-no-ground-truth-db027e9a871c
https://medium.com/@cmukesh8688/silhouette-analysis-in-k-means-clustering-cefa9a7ad111
https://medium.com/@cmukesh8688/silhouette-analysis-in-k-means-clustering-cefa9a7ad111
https://gdcoder.com/silhouette-analysis-vs-elbow-method-vs-davies-bouldin-index-selecting-the-optimal-number-of-clusters-for-kmeans-clustering/
https://gdcoder.com/silhouette-analysis-vs-elbow-method-vs-davies-bouldin-index-selecting-the-optimal-number-of-clusters-for-kmeans-clustering/
https://kafka.apache.org/documentation/streams/
http://dx.doi.org/10.3390/s17122856
http://www.ncbi.nlm.nih.gov/pubmed/29292790
http://dx.doi.org/10.3390/s21113863
http://www.ncbi.nlm.nih.gov/pubmed/34205031

Mathematics 2022, 10, 4043 30 of 30

38. Sv3ndk, Milanvdm, FHachez, Thomas-jakemeyn, Petervandenabeele. Trumania. 2020. Available online: https://github.com/
RealImpactAnalytics/trumania (accessed on 12 August 2022).

39. Larriva-Novo, X.; Vega-Barbas, M.; Villagrá, V.A.; Rivera, D.; Álvarez-Campana, M.; Berrocal, J. Efficient distributed preprocessing
model for machine learning-based anomaly detection over large-scale cybersecurity datasets. Appl. Sci. 2020, 10, 3430. [CrossRef]

40. StringIndexer—PySpark 3.3.0 Documentation. Available online: https://spark.apache.org/docs/latest/api/python/reference/
api/pyspark.ml.feature.StringIndexer.html (accessed on 13 September 2022).

41. MinMaxScaler—PySpark 3.3.0 Documentation. Available online: https://spark.apache.org/docs/latest/api/python/reference/
api/pyspark.ml.feature.MinMaxScaler.html (accessed on 13 September 2022).

42. StandardScaler—PySpark 3.3.0 Documentation. Available online: https://spark.apache.org/docs/latest/api/python/reference/
api/pyspark.ml.feature.StandardScaler.html (accessed on 13 September 2022).

43. OneHotEncoder—PySpark 3.3.0 Documentation. Available online: https://spark.apache.org/docs/latest/api/python/
reference/api/pyspark.ml.feature.OneHotEncoder.html (accessed on 13 September 2022).

44. FeatureHasher—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/
api/pyspark.ml.feature.FeatureHasher.html (accessed on 13 September 2022).

45. RegexTokenizer—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/
api/pyspark.ml.feature.RegexTokenizer.html (accessed on 13 September 2022).

46. CountVectorizer—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/
api/pyspark.ml.feature.CountVectorizer.html (accessed on 13 September 2022).

47. IDF—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/api/
pyspark.ml.feature.IDF.html (accessed on 13 September 2022).

48. Word2Vec—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/api/
pyspark.ml.feature.Word2Vec.html (accessed on 13 September 2022).

49. VectorAssembler—PySpark 3.1.3 Documentation. Available online: https://spark.apache.org/docs/3.1.3/api/python/reference/
api/pyspark.ml.feature.VectorAssembler.html (accessed on 13 September 2022).

https://github.com/RealImpactAnalytics/trumania
https://github.com/RealImpactAnalytics/trumania
http://dx.doi.org/10.3390/app10103430
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StringIndexer.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StringIndexer.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.MinMaxScaler.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.MinMaxScaler.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StandardScaler.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.StandardScaler.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.OneHotEncoder.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.feature.OneHotEncoder.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.FeatureHasher.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.FeatureHasher.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.RegexTokenizer.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.RegexTokenizer.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.CountVectorizer.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.CountVectorizer.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.IDF.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.IDF.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.Word2Vec.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.Word2Vec.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html
https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.ml.feature.VectorAssembler.html

	Introduction
	Related Works
	Unsupervised Learning
	Clustering
	K-Means
	Hierarchical Clustering
	Gaussian Mixture Modelling (GMM)

	Size Reduction
	Principal Component Analysis (PCA)
	ISOMAP
	T-Distributed Stochastic Neighbor Embedding (t-SNE)
	Uniform Manifold Approximation and Projection (UMAP)

	Metrics
	Within Set Sum of Squared Error (WSSSE)
	Silhouette
	Selection Criterion

	Proposal
	Designed Solution
	Training Dataset
	Synthetic Data Generation
	Preprocessing
	Training and Validation
	Machine Learning Algorithm Threshold
	Selection of the Hyperparameters

	Real-Time Processing

	Results
	Model Comparison
	Detection Ratio
	Cluster Visualisation
	Comparison with Related Works

	Conclusions
	References

