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Abstract

:

Job Shop Scheduling Problem (JSSP) is a well-known NP-hard combinatorial optimization problem. In recent years, many scholars have proposed various metaheuristic algorithms to solve JSSP, playing an important role in solving small-scale JSSP. However, when the size of the problem increases, the algorithms usually take too much time to converge. In this paper, we propose a hybrid algorithm, namely EOSMA, which mixes the update strategy of Equilibrium Optimizer (EO) into Slime Mould Algorithm (SMA), adding Centroid Opposition-based Computation (COBC) in some iterations. The hybridization of EO with SMA makes a better balance between exploration and exploitation. The addition of COBC strengthens the exploration and exploitation, increases the diversity of the population, improves the convergence speed and convergence accuracy, and avoids falling into local optimum. In order to solve discrete problems efficiently, a Sort-Order-Index (SOI)-based coding method is proposed. In order to solve JSSP more efficiently, a neighbor search strategy based on a two-point exchange is added to the iterative process of EOSMA to improve the exploitation capability of EOSMA to solve JSSP. Then, it is utilized to solve 82 JSSP benchmark instances; its performance is evaluated compared to that of EO, Marine Predators Algorithm (MPA), Aquila Optimizer (AO), Bald Eagle Search (BES), and SMA. The experimental results and statistical analysis show that the proposed EOSMA outperforms other competing algorithms.
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1. Introduction


Job Shop Scheduling Problem (JSSP) has become a hot topic in the manufacturing industry; a reasonable JSSP solution can effectively help manufacturers improve productivity and reduce production costs. However, JSSP has been proved to be an NP-hard problem, which is among the most difficult problems to solve [1]. This means that even medium-sized JSSP instances cannot be guaranteed to obtain an optimal solution in finite time with exact solution methods [2]. Therefore, many researchers have turned their attention to metaheuristic algorithms. According to the algorithmic principle, metaheuristic algorithms may be categorized into three categories: evolution-based, physics-based, and swarm-based [3]. The Genetic Algorithm (GA) [4] and Differential Evolution (DE) [5] are the two primary evolution-based algorithms that have been developed to simulate Darwinian biological evolution. The most common physics-based algorithms include Simulated Annealing (SA) [6], Gravitational Search Algorithm (GSA) [7], Multi-verse Optimizer (MVO) [8], Atom Search Optimization (ASO) [9], and Equilibrium Optimizer (EO) [10]; all are inspired by the principles of physics. Swarm-based algorithms mainly simulate the cooperative properties of natural biological communities. Typical algorithms include Particle Swarm Optimization (PSO) [11], Artificial Bee Colony (ABC) [12], Social Spider Optimization (SSO) [13], Gray Wolf Optimizer (GWO) [14], Whale Optimization Algorithm (WOA) [15], Seagull Optimization Algorithm (SOA) [16], Salp Swarm Algorithm (SSA) [17], Harris Hawks Optimization (HHO) [18], Teaching Learning-based Optimization (TLBO) [19], Aquila Optimizer (AO) [20], Bald Eagle Search (BES) [21], Slime Mould Algorithm (SMA) [22], Marine Predators Algorithm (MPA) [23], Chameleon Swarm Algorithm (CSA) [24], Adolescent Identity Search Algorithm (AISA) [25], etc.



In recent years, algorithms that have been used to solve JSSP include GA [26], Taboo Search Algorithm (TSA) [27], SA [28], PSO [29], Ant Colony Optimization (ACO) [30], ABC [31], TLBO [32], Bat Algorithm (BA) [33], Biogeography-based Optimization (BBO) [34], Harmony Search (HS) [35], WOA [36], HHO [37], etc. An increasing number of metaheuristic and hybrid algorithms have been developed and improved, providing new ideas and directions for solving the JSSP. However, to the authors’ knowledge, there are no online studies that apply EO or SMA to solve JSSP-related problems.



A novel bio-inspired optimization technique called Slime Mould Algorithm (SMA) was proposed by Li et al. in 2020 [22]. It is inspired by the oscillatory behavior of slime mould when it is foraging. Since it is easy to understand and implement, it has attracted the attention of many scholars since it was proposed and has been applied in various fields. For example, Wei et al. [38] proposed an improved SMA (ISMA) to solve the problem of optimal reactive power dispatch in power systems. Abdel-Basset et al. [39] applied SMA mixed with the WOA (HSMA-WOA) for X-ray image detection of COVID-19 and evaluated the performance of HSMA-WOA on 12 chest X-ray images and compared it with 5 algorithms. Liu et al. [40] proposed an SMA integrating the Nelder–Mead single-line strategy and chaotic mapping (CNMSMA) and applied it to the photovoltaic parameter extraction problem, which was tested on three photovoltaic modules. Yu et al. [41] proposed an enhanced SMA (ESMA) based on an opposing learning strategy and an elite chaotic search strategy, which was used to predict the water demand of Nanchang city and tested on four models, showing a prediction accuracy of 97.705%. Hassan et al. [42] proposed an improved SMA (ISMA) combined with Sine Cosine Algorithm (SCA) and applied it to single and bi-objective economic and emission dispatch problems, which was tested on five systems; the results showed that the proposed algorithm is more robust than other well-known algorithms. Zhao et al. [43] proposed an improved SMA (DASMA) based on diffusion mechanism and association strategy and applied it to Renyi’s entropy multilevel thresholding image segmentation based on a two-dimensional histogram with nonlocal means; the experimental results show that the proposed algorithm has good performance. Yu et al. [44] proposed an improved SMA (WQSMA), which employs a quantum rotating gate and water cycle operator to improve the robustness of basic SMA and keep the algorithm in balance with the tendency of exploration and exploitation. Rizk-Allah et al. [45] proposed a Chaos Opposition SMA (CO-SMA) to minimize the energy cost of wind turbines on high-altitude sites. Houssein et al. [46] proposed a hybrid algorithm called SMA-AGDE by mixing SMA with adaptive guided DE (AGDE), which enables the exploitation capability of SMA and exploration capability of AGDE to be well integrated into CEC2017 and three engineering design problems to validate the effectiveness of the SMA-AGDE. Premkumar et al. [47] proposed a multi-objective SMA (MOSMA) to solve multi-objective engineering optimization problems. Although SMA has been applied in many fields, many researchers have found that SMA also has shortcomings as the research progresses, such as insufficient global search capability and easy-to-fall-into local optimum. In this paper, in order to broaden the application of SMA, we first hybridize the search strategy of EO with SMA (EOSMA), which can balance exploration and exploitation, increase the population diversity, improve the robustness, and enhance the generalization capability of the algorithm. Then, introducing the Centroid Opposition-based Computation (COBC) [48] into the hybrid algorithm can strengthen the performance of the algorithm, help the search agent to jump out of the local optimum, improve the probability of finding the global optimal solution, and accelerate the convergence rate. Since the search space of JSSP is large and is a discrete problem. In order to solve JSSP quickly and efficiently, a local search operator based on Two-point Exchange Neighborhood (TEN) [31] is incorporated into the EOSMA. In order to solve the discrete problem efficiently, this research designs a Sort-Order-Index (SOI)-based coding method.



The main contributions of this paper can answer the following questions:




	
Whether the proposed SOI-based encoding method is effective for JSSP;



	
How SMA can be efficiently combined with the EO algorithm and COBC strategy;



	
Whether neighborhood structure combined with EOSMA is more efficient for JSSP;



	
Whether EOSMA can solve high-dimensional JSSP instances quickly and efficiently.








In this paper, 82 JSSP instance datasets from Operations Research Library (OR Library) are used to test the performance of the proposed EOSMA in comparison with SMA, EO and the newly proposed MPA, AO, and BES with the same neighborhood search. In order to facilitate readers to read and understand the research content of this paper, Table 1 lists the abbreviations used in subsequent sections.




2. Preliminaries


2.1. Job Shop Scheduling Problem


JSSP can be described as: there are  m  machines and  n  jobs, each job contains  k  operations, and the total number of operations is   n × k  . Each operation has a specified processing time    T i    and a processing machine    M i   , each machine can only process one operation at a time, and each job must be produced according to a predefined production sequence    P i   . The operation completion time of each job can be denoted as    C i   , and the total completion time of all jobs can be denoted as    C  max   = max (  C i  )  . The objective of JSSP is to generate a reasonable operation scheduling scheme    X →    that minimizes the maximum completion time    C  max     when all jobs are completed. The explanation of the parameters is shown in Table 2.



In summary, the mathematical model of JSSP can be described by Equation (1):


     Minimize :     C  max       s  . t   .     C q  ≤  C i  −  T i  , i = 1 , 2 , ⋯ , n × k ; q ∈  P i                    ∑  j ∈ A ( t )     R  j , m     ≤ 1 , m ∈ M ; t ≥ 0                      C i  ≥ 0 , i = 1 , 2 , ⋯ , n × k    



(1)




where  q  denotes the predecessor operation before operation  i ,    C q    denotes the completion time of operation  q , and  M  denotes the set of processing machines. The first constraint indicates the priority relationship between operations, that is, the completion time of any operation in front of the operation plus the processing time of the current operation should be less than or equal to the completion time of the current operation; the second constraint indicates that at most one operation can be processed at the same time on a machine; the third constraint indicates that the completion time of any operation must be a non-negative number.




2.2. Encoding and Decoding Mapping


Since both SMA and EO are proposed for continuous problems, they cannot be directly used to solve discrete JSSP. Therefore, in this paper, we propose a novel heuristic rule called Sort-Order-Index (SOI)-based encoding method, which maps the real number encoding to integer encoding, making the proposed EOSMA applicable to solve JSSP. The solution vector of EOSMA does not represent the processing order of the jobs, though the component size of the solution vector has an order relationship. The SOI-based encoding method uses the ordering relationship to map the consecutive locations of the slime mould into a discrete processing order, i.e., the processing order of all operations for all jobs, as shown in Figure 1. The SOI-based encoding method is described as follows: firstly, the components of the search agent are sorted in ascending order to find out the sorted component value corresponding to the position index where the component value before sorting is located to form the sort index   s o r t X  ; then the sort index   s o r t X   is modulo with the number of jobs  n  to obtain the integer-encoded solution vector    X ′   , as shown in Equation (2).


   X ′  =  (  s o r t X mod n  )  + 1  



(2)







Each solution vector    X ′    corresponds to a processing order, which is a scheduling scheme. By this transformation, the feasibility of the scheduling scheme can be guaranteed without modifying the evolutionary operation of the algorithm. For example, in the scheduling sequence shown in Figure 1, there are three jobs, each containing three operations, and the number of occurrences of each job represents the corresponding operation from left to right. Since the processing machine and time for each operation are pre-specified (as shown in Table 3), the sequence of operations in Figure 1 can be decoded into the scheduling Gantt chart shown in Figure 2.





3. Related Works


3.1. Slime Mould Algorithm


Slime Mould Algorithm (SMA) is a swarm-based metaheuristic algorithm developed by Li et al. in 2020 [22]. It simulates the behavioral and morphological changes of slime mould during foraging to find the best food source. The mathematical model for updating the location of slime mould is seen in Equation (3):


    X ( t + 1 )  →  =  {      r a n d · ( U B − L B ) + L B     r a n d < z          X b  ( t )  →  +   v b  →  ·  (   W →  ·    X A  ( t )  →  −    X B  ( t )  →   )      r < p         v c  →  ·   X ( t )  →      r ≥ p        



(3)




where   L B   and   U B   denote the lower and upper bounds of the search range,   r a n d   and  r  denote random numbers in [0, 1],   z = 0.03   is an adjustable parameter,      X b  ( t )  →    is the best location found so far,     v b  →    and     v c  →    are random parameter vectors,     v b  →    takes values in   [ − a , a ]  ,     v c  →    decreases linearly as the number of iterations  t  goes from 1 to 0,    W →    is the thickness of the vein-like vessels,      X A  ( t )  →    and      X B  ( t )  →    are two randomly selected individual locations in the population, and     X ( t )  →    indicates the location of slime mould.



The value of  p  is calculated as Equation (4):


  p = tanh | S ( i ) − D F |  



(4)




where   i ∈ 1 , 2 , … , n  ,   S ( i )   denotes the fitness    X →   , and   D F   denotes the best fitness value obtained so far.



The value of  a  in the range of     v b  →    is calculated as Equation (5):


  a = arctanh  (  1 −  t /  max _ t    )   



(5)




where   max _ t   is the maximum number of iterations.



The formula of    W →    is calculated as Equation (6):


    W ( S m e l l I n d e x ( i ) )  →  =  {      1 + r · log  (    b F − S ( i )   b F − w F   + 1  )      c o n d i t i o n       1 − r · log  (    b F − S ( i )   b F − w F   + 1  )      o t h e r s        



(6)






    S m e l l I n d e x  →  = s o r t (  S →  )  



(7)




where   c o n d i t i o n   denotes the individuals whose fitness   S ( i )   ranks in the top half,  r  denotes a random number in [0, 1],   b F   denotes the best fitness of the current iteration,   w F   denotes the worst fitness of the current iteration, and     S m e l l I n d e x  →    denotes the result of ranking the fitness   S ( i )   in ascending order (in the minimization problem). The pseudo-code of SMA is shown in Algorithm 1 [22].






	Algorithm 1: Pseudo-code of SMA



	
	1.

	
Initialize the parameters   z , m a x _ t , N , D i m  ;




	2.

	
Initialize the locations of slime mould      X i   →  ( i = 1 , 2 , ⋯ , N )  ;




	3.

	
While (  t ≤ m a x _ t  )




	4.

	
   Check the boundary and calculate the fitness    S →   ;




	5.

	
   Sort the fitness    S →   ;




	6.

	
   Update   b F , w F , D F ,    X b   →   ;




	7.

	
   Calculate the    W →    by Equation (6);




	8.

	
   Update   p ,   v b  →  ,   v c  →  , A , B  ;




	9.

	
      For each search agents




	10.

	
      Update locations by Equation (3);




	11.

	
     End For




	12.

	
    t = t + 1  ;




	13.

	
End While




	14.

	
Return  D F ,    X b   →   ;















3.2. Equilibrium Optimizer


Faramarzi et al. [10] proposed the Equilibrium Optimizer (EO) in 2020, a novel optimization algorithm inspired by physical phenomena of control volume mass balance models. The mass balance equation is usually described by a first-order ordinary differential equation, as shown in Equation (8), which embodies the physical processes of entrance, departure, and generation of mass inside the control volume.


  V   d C   d t   = Q  C  e q   − Q C + G  



(8)




Here,  V  denotes the control volume,  C  denotes the concentration within the control volume,  Q  denotes the volume flow rate into or out of the control volume,    C  e q     denotes the concentration when equilibrium is achieved, and  G  denotes the mass generation rate in the control volume.



Equation (9) can be obtained by solving the ordinary differential equation described by Equation (8):


  C =  C  e q   +  (   C 0  −  C  e q    )  F +  G  λ V    (  1 − F  )   



(9)




where    C 0    is the concentration of the control volume at the initial start time    t 0   ,  λ  is the flow rate, and  F  is the exponential term coefficient, which can be calculated by Equation (10).


  F = exp  [  − λ  (   t 1  −  t 0   )   ]   



(10)







The EO is mainly based on Equation (9) iterative optimization search. For an optimization problem, the concentration represents the individual solution,  C  represents the solution generated by the current iteration,    C 0    represents the solution obtained in the previous iteration, and    C  e q     represents the best solution found so far.



To meet the optimization needs of different problems, the specific operation procedure and parameters of EO are designed as follows.



(1) Initialization: the algorithm performs random initialization within the upper and lower bounds of each optimization variable, as Equation (11):


   C i 0  =  C  min   + r a n  d i   (   C  max   −  C  min    )  , i = 1 , 2 , ⋯ , N  



(11)




where    C  min     and    C  max     are the lower and upper bound of the optimization variables, respectively, and   r a n  d i    represents the random number vector for individual  i , each element in [0, 1];



(2) Equilibrium pool: In order to improve the exploration capability of the algorithm and avoid falling into local optimum, the equilibrium state (i.e., the optimal individual) in Equation (9) will be selected from the five candidate solutions of the equilibrium pool, which is shown in Equation (12):


     C  e q , p o o l    →  =  {     C  e q , 1    →  ,    C  e q , 2    →  ,    C  e q , 3    →  ,    C  e q , 4    →  ,    C  e q , a v e    →   }   



(12)




where      C  e q , 1    →  ,    C  e q , 2    →  ,    C  e q , 3    →  ,    C  e q , 4    →    are the four best solutions found so far, and      C  e q , a v e    →    represents the average concentration of the four optimal solutions. The five solutions in the equilibrium pool are chosen as      C  e q    →    with equal probability;



(3) Exponential term factor    F →   : In order to better balance the exploration and exploitation capabilities of the algorithm, Equation (10) is improved as Equation (13).


     F →  =  a 1  · s i g n  (   r →  − 0.5  )  ·  (   e  −  λ →   t 1    − 1  )       t 1  =   (  1 −  t /  max _ t    )    (   a 2   t /  max _ t    )       



(13)




where    a 1    means the weight constant coefficient of the global search, the larger    a 1    the stronger the exploration ability of the algorithm and the weaker the exploitation ability,   s i g n   is the sign function,    r →    and    λ →    represent the random number vector, each element in [0, 1],  t  is the number of current iterations, and   max _ t   is the maximum number of iterations;



(4) Mass generation rate    G →   : In order to enhance the exploitation capability of the algorithm, the generation rate is designed as Equation (14):


     G →  =   G C P  →   (     C  e q    →  −  λ →   C →   )   F →        G C P  →  =  {      0.5  r 1       r 2  ≥ G P      0     r 2  < G P          



(14)




where     G C P  →    is the vector of generation rate control parameter,    r 1    and    r 2    are random numbers in [0, 1], and   G P = 0.5   is the generation probability.



Finally, the individual solution can be updated as shown in Equation (15):


   C →  =    C  e q    →  +  (   C →  −    C  e q    →   )   F →  +    G →     λ →  V    (  1 −  F →   )   



(15)




where   V = 1   is considered as a unit.



The pseudo-code of EO is shown in Algorithm 2 [10].






	Algorithm 2: Pseudo-code of EO



	
	1.

	
Initialize the parameters    a 1  ,  a 2  , V , G P , max _ t , N , D i m  ;




	2.

	
Initialize the concentration in control volume      C i   →  ( i = 1 , 2 , ⋯ , N )  ;




	3.

	
Initialize the equilibrium pool      C  e q , p o o l    →   ;




	4.

	
While (  t ≤ m a x _ t  )




	5.

	
   Check the boundary and calculate the fitness   F i t C  ;




	6.

	
   Update the equilibrium pool      C  e q , p o o l    →   ;




	7.

	
   Update    C →    and   F i t C   with greedy strategy;




	8.

	
      For each search agents




	9.

	
        Update random variables    λ →  ,    r n   →  ,  r 1  ,  r 2   ;




	10.

	
      Randomly select the      C  e q    →    in the      C  e q , p o o l    →   ;




	11.

	
      Calculate the    F →    and    G →    by Equations (13) and (14);




	12.

	
      Update concentrations    C →    by Equation (15);




	13.

	
     End For




	14.

	
    t = t + 1  ;




	15.

	
End While




	16.

	
Return     C  e q , 1    →    and its fitness;















3.3. Centroid Opposition-Based Computation


Centroid Opposition-based Computation (COBC) is an opposition-based computation scheme proposed by Rahnamayan et al. in 2014 [48]. Experimental results have shown that the average performance of COBC improves by 15% over conventional opposition-based computation method, which is a better improvement strategy. Interested readers can find a detailed description of COBC in [48]. The pseudo-code of COBC is shown in Algorithm 3.






	Algorithm 3: Pseudo-code of COBC



	
	1.

	
Get initial location      X i   →  ( i = 1 , 2 , ⋯ , N )  ;




	2.

	
Centroid point evaluation    M →  = m e a n (  X →  )  ;




	3.

	
Centroid opposite population calculation     O  X i   →  = 2  M →  −    X i   →  ( i = 1 , 2 , ⋯ , N )  ;




	4.

	
For each search agents




	5.

	
  Calculate the fitness of     O X  →   ;




	6.

	
     If   F i t O X < F i t X  




	7.

	
     Update    X →    and   F i t X   with greedy strategy;




	8.

	
     End If




	9.

	
End For




	10.

	
Return   X →  , F i t X  ;















3.4. Variable Neighborhood Search


Variable Neighborhood Search (VNS) [49] is a local search algorithm that uses alternating neighborhood structures composed of different actions to achieve a good balance between centralization and sparsity. The VNS is often used to solve combinatorial optimization problems, which rely on the fact: (1) the locally optimal solution of one neighborhood structure may not be the locally optimal solution of another neighborhood structure; (2) the globally optimal solution is the locally optimal solution of all possible neighborhoods. In order to enhance the local search capability of the metaheuristic algorithm for solving JSSP, a simplified VNS is introduced into the hybrid algorithm in this paper. The pseudo-code of the VNS is shown in Algorithm 4.






	Algorithm 4: Pseudo-code of VNS



	
	1.

	
Get initialize solution    X →  =    X 0   →   ;




	2.

	
Calculate the fitness   F i t X   of    X →   ;




	3.

	
Set   L = l e n g t h (  X →  )  ;




	4.

	
While (  s t e p ≤ L  )




	5.

	
   Take random integers  i  and  j  from 1 to  L , and   i ≠ j  ;




	6.

	
   Update     X X  →  = E x c h a n g i n g (  X →  , i , j )  ;




	7.

	
   Calculate the fitness   F i t X X   of     X X  →   ;




	8.

	
      If   F i t X X < F i t X  




	9.

	
      Update    X →  =   X X  →    and   F i t X = F i t X X  ;




	10.

	
     End If




	11.

	
    s t e p = s t e p + 1  ;




	12.

	
End While




	13.

	
If  F i t X < F i t  X 0   




	14.

	
     Return    X →   ;




	15.

	
Else




	16.

	
     Return      X 0   →   ;




	17.

	
End If














The   E x c h a n g i n g (  X →  , i , j )   executes a Two-point Exchange Neighborhood (TEN) [50], which implies exchanging the job operations in solution    X →    between the ith and jth dimensions, its pseudo-code is shown in [32]. The example of the exchanging process is shown in Figure 3. It is worth noting that, unlike the setup in [32], in this paper, in order to reduce the time complexity of VNS,   E x c h a n g i n g (  X →  , i , j )   does not evaluate all solutions of TEN (a total of     L  (  L − 1  )   / 2    solutions); only  L  solutions are randomly selected for evaluation and then the best solution among them is chosen.





4. Proposed EOSMA for JSSP


The shortcomings of the original SMA are unbalanced exploration and exploitation, weak exploration ability, and easy-to-fall-into local optimum. Changing the simple random search strategy in SMA to an equilibrium optimizer strategy can not only enhance the exploration ability but also improve the diversity of the population. The search agent of EOSMA performs a heuristic search based on the Equation (16):


    X ( t + 1 )  →  =  {         X  e q   ( t )  →  +  (    X ( t )  →  −    X  e q   ( t )  →   )  ·  F →  +    G →  ·  (  1 −  F →   )   /   λ →  V       r a n d < z          X  e q , 1   ( t )  →  +   v b  →  ·  (   W →  ·    X A  ( t )  →  −    X B  ( t )  →   )      r < p         X ( t )  →  +   v c  →  ·   X ( t )  →      r ≥ p        



(16)




where   z = 0.6   is an empirical value;      X  e q    →    denotes a randomly selected solution from the equilibrium pool;      X  e q , 1    →    denotes the first solution in the equilibrium pool, i.e., the optimal solution found so far; and the remaining parameters in the Equation (16) use the settings of the original algorithm.



It is worth noting that all components of the solution vector of the first equation of Equation (16) are updated synchronously, independent of the next two equations, while the components of the solution vector of the second and third equations are updated separately; i.e., the same solution vector    X →    may be updated using the second or third equation. Experiments show that asynchronous updates possess better performance than synchronous updates. In addition, EOSMA needs to update the equilibrium pool and the fitness weights of individuals at each generation, which increases the computational effort but does not increase the time complexity of the algorithm. Updating the equilibrium pool requires   O ( n )   and updating the fitness weights requires sorting the fitness and, therefore, requires   O ( n log n )  . Finally, EOSMA uses greedy selection repeatedly during iterations to speed up convergence, while SMA does not use the greedy strategy.



To further improve the performance of the hybrid algorithm for solving JSSP, the COBC strategy and the VNS strategy are introduced. The former enhances the exploration capability of the algorithm by selecting some individuals in each generation to perform the opposing computation; the latter is often used to solve combinatorial optimization problems, which is a local search algorithm framework that enhances the exploitation capability of the algorithm. The flow chart of EOSMA for solving JSSP is shown in Figure 4 and its pseudo-code is shown in Algorithm 5.






	Algorithm 5: Pseudo-code of EOSMA for JSSP



	
	1.

	
Initialize the parameters   z ,  a 1  ,  a 2  , V , G P , m a x _ t , N , D i m , J r  ;




	2.

	
Initialize the locations of search agent      X i   →  ( i = 1 , 2 , ⋯ , N )  ;




	3.

	
Calculate the fitness   F i t X   of    X →   ;




	4.

	
Execute COBC to update the initial locations;




	5.

	
While (  t ≤ m a x _ t  )




	6.

	
   Calculate the fitness   F i t X  ;




	7.

	
      If (  r a n d < J r  )




	8.

	
        Execute COBC to update individual locations;




	9.

	
      End If




	10.

	
  Retain better solutions compared to previous iteration;




	11.

	
  Sort the fitness   F i t X  ;




	12.

	
  Update the equilibrium pool      C  e q , p o o l    →   ;




	13.

	
  Update the   b F , w F  ;




	14.

	
  Calculate the    W →    by Equation (6);




	15.

	
     For each search agents




	16.

	
       Update locations    X →    by Equation (16);




	17.

	
       Execute VNS to update individual locations;




	18.

	
     End For




	19.

	
    t = t + 1  ;




	20.

	
End While




	21.

	
Return     X  e q , 1    →    and its fitness;















5. Experimental Results and Discussions


In this paper, the performance of the EOSMA is evaluated by testing it on 82 test datasets taken from the OR Library. They are low-dimensional FT and ORB from [51,52], higher-dimensional LA and ABZ from [53,54], and high-dimensional YN and SWV from [55,56]. All experiments were executed on Win 10 Operating System and all algorithm codes were run in MATLAB R2019a with hardware details: Intel® Core™ i7-9700 CPU (3.00 GHz) and 16 GB RAM.



For a fair comparison, the population size of all comparison algorithms was set to 25, the maximum number of iterations was set to 100, and all comparison algorithms were run 20 times independently on each dataset. In this paper, five algorithms were selected for comparison experiments with the EOSMA, namely SMA [22], EO [10], MPA [23], AO [20], and BES [21], which are the latest proposed algorithms with superior performance. For a fair comparison, all comparison algorithms incorporate the VNS strategy described in Algorithm 4. The specific parameters of the comparison algorithms are kept consistent with the original paper, as shown in Table 4. The performance of the algorithms is evaluated using the best fitness and the average fitness. The performance metrics are then ranked and the Friedman mean rank of the algorithms on different test instances is tallied; the experimental results are shown in Table 5, Table 6 and Table 7. In these tables, Instance denotes the case name; Size denotes the problem size, i.e., the number of jobs and machines; BKS denotes the best-known solution for that instance as reported by Liu et al. [36]; Best denotes the best fitness obtained by the algorithm; and Mean denotes the average fitness.



From Table 5, we can know that EOSMA can obtain better results on the low-dimensional JSSP. The results show that for the FT instance, EOSMA achieves the best results on all three instances and finds BKS on FT06. For the ORB instance, EOSMA achieves the best average performance on 10 instances; finds better solutions than other algorithms on 8 instances; and obtains BKS on ORB07, while VMPA and VBES, respectively, achieve the best results on ORB2 and ORB10 obtained the best solutions. Thus, EOSMA has good performance in solving JSSP-related problems compared to the recently proposed metaheuristic algorithms.



From Table 6, it can be seen that EOSMA can effectively solve JSSP. For 45 instances of LA and ABZ, EOSMA can obtain better performance metrics than other algorithms on all instances except LA18 where the best result is obtained by VBES and find BKS on 24 instances of LA. This shows that EOSMA overcomes the SMA exploration capability shortcomings, and its global search capability is stronger than the latest proposed algorithm to avoid falling into local optimum.



Table 7 presents the algorithm’s solution results on the high-dimensional JSSP; the optimal solution on these instances has not been found yet, so only approximate solutions obtained by different algorithms can be compared. The experimental results show that VAO shows a competitive advantage on high-dimensional instances, achieving better solutions than EOSMA on six instances of SWV, and VMPA achieves the best solutions on YN4 and SWV10, respectively; however, the average solution performance is inferior to that of EOSMA. Therefore, EOSMA still has better performance than other comparative algorithms on high-dimensional JSSP, verifying the effectiveness, accuracy, and robustness of EOSMA on the JSSP.



The execution times of the algorithms are shown in Figure 5 and Figure 6. Figure 5 represents the total time consumed by the six algorithms running 20 times on the six case datasets and Figure 6 shows the average single run times of the six algorithms on the 82 datasets.



As can be seen from Figure 5 and Figure 6, the execution time of EOSMA is the shortest among the six well-known comparison algorithms on ABZ, LA, YN, and SWV. The VAO has the shortest execution time on FT and ORB, followed by EOSMA, VEO, and VMPA. Since all six algorithms introduce the neighborhood search strategy, the main time consumption also comes from VNS but the execution time of EOSMA is significantly lower than VSMA on all instances. Particularly, the execution time of EOSMA is the shortest when solving the high-dimensional JSSP. It shows that EOSMA not only outperforms the well-known comparison algorithms in terms of convergence accuracy and robustness, but also has a shorter execution time.



In order to further analyze the convergence process of EOSMA and the comparison algorithm, two instances are selected from each instance set and their convergence curves and box plots are drawn in Figure 7 and Figure 8. It can be concluded that the convergence speed of EOSMA is faster than VSMA and VEO, and the final convergence accuracy is also better. It is worth noting that VSMA without hybridized EO operator has the slowest convergence speed, which is mainly due to the fact that SMA does not use a greedy selection strategy during the iterative process and the second equation of the Equation (3) uses the optimal solution of the current generation instead of the optimal solution found so far. Although EOSMA does not converge as fast as VAO and VBES in the early stages, the latter tends to fall into a local optimum later in the iteration, suggesting that EOSMA strikes a better balance between exploration and exploitation. The box plot likewise shows that EOSMA can find better solutions than other algorithms, with an average performance better than the comparison algorithms and far better than VSMA.



The Wilcoxon rank-sum test [37] was performed to examine whether there was a statistically significant difference between the two sets of data, i.e., whether the results obtained by the algorithm were influenced by random factors. A similar comparison of statistical experiments is required to confirm the validity of the data because the metaheuristic algorithm is random [57]. The smaller the p-value, the greater the degree of confidence that there is a significant difference between the two data sets. When the p-value is less than 0.05, it indicates that the results obtained by the two algorithms are significantly different at the 95% confidence interval. Table 8 exhibits the results of the Wilcoxon p-value test for EOSMA and other well-known comparison algorithms.



The results of the Wilcoxon rank-sum test indicate that there are fewer instances without significant differences (as shown in bold), where NaN indicates that the two algorithms find exactly the same solution, in which case the optimal solution for that instance is usually found. Moreover, EOSMA significantly outperforms VSMA, VEO, VMPA, VAO, and VBES on 76, 60, 49, 69, and 53 instances, respectively, indicating that the algorithm has performance advantages on different instances of JSSP. In conclusion, the performance of EOSMA is significantly different from SMA, EO, and AO on JSSP; the results are statistically significant, indicating that the results obtained by EOSMA can be reproducibly achieved with more than 95% confidence.




6. Conclusions and Future Work


SMA is a novel swarm-based optimization algorithm inspired by the foraging behavior of slime mould; EO is a superior performance physics-based optimization algorithm inspired by the control volume mass balance equation. Although SMA has been applied in various fields due to the novelty of its metaheuristic rules, SMA still suffers from slow convergence, poor robustness, unbalanced exploration and exploitation, and the tendency to fall into local optimality. To overcome these drawbacks, we propose a hybrid algorithm, EOSMA, which uses a centroid opposition-based computation and VNS strategy combined with an SOI rule-based encoding method for fast and efficient solution of job shop scheduling problems. In EOSMA, the random search strategy of SMA is first replaced by the concentration update operator of EO and the third equation of Equation (3) is replaced by the third equation of Equation (16). Then, the centroid opposition-based calculation was introduced into the hybrid algorithm. With these changes, the search agent has a higher probability of finding a better solution and reduces the number of invalid searches, thus improving the exploration and exploitation capabilities of SMA. Finally, to solve JSSP more effectively, the two-point exchange neighborhood search strategy is added to EOSMA, which enhances the local search capability of EOSMA to solve JSSP. The performance of EOSMA was tested on 82 JSSP datasets from the OR Library and compared with recently proposed algorithms with superior performance. The experimental results show that EOSMA exhibits better search capability than SMA, EO, MPA, AO, and BES in solving JSSP.



JSSP is one of the well-known NP-hard problems. As the size increases, the search space of the problem increases dramatically and the execution time of many existing algorithms will increase dramatically, which cannot solve the larger scale job shop scheduling problem well. Additionally, EOSMA can effectively solve the larger scale JSSP in a reasonable running time. This is mainly because EOSMA not only relies on the local search capability of VNS but also has a strong global search capability before the local search, which can better guide the VNS strategy to find the optimal solution. Therefore, EOSMA is a promising algorithm. Future work will consider more practical scheduling problems, such as the flow shop scheduling problem considering material handling time and the permutation flow shop dynamic scheduling problem considering dynamic changes of processed raw materials, etc.
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Figure 1. SOI-based encoding mapping. 
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Figure 2. SOI-based decoding mapping. 
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Figure 3. Exchanging process in VNS method [31]. 
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Figure 4. Flow chart of the EOSMA for JSSP. 
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Figure 5. Execution time of six algorithms running 20 times. 
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Figure 6. Average execution time of six algorithms on all instances. 
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Figure 7. Average convergence curves of all comparison algorithms. 
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Figure 8. Box plots of all algorithms executed 20 times on instances. 
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Table 1. List of abbreviations.
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	Abbreviations
	Meaning of Abbreviations





	BKS
	Best-known solution



	COBC
	Centroid opposition-based computation



	EO
	Equilibrium optimizer



	EOSMA
	Proposed algorithm



	JSSP
	Job shop scheduling problem



	SMA
	Slime mould algorithm



	SOI
	Sort-order-index



	TEN
	Two-point exchange neighborhood



	VAO
	Aquila optimizer with VNS



	VBES
	Bald eagle search with VNS



	VEO
	Equilibrium optimizer with VNS



	VMPA
	Marine predators algorithm with VNS



	VNS
	Variable neighborhood search



	VSMA
	Slime mould algorithm with VNS
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Table 2. Detailed description of parameters [36].
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	Parameters
	Meaning of Parameters





	  n  
	Number of jobs



	  m  
	Number of machines



	    C i    
	Completion time of operation  i 



	    T i    
	Processing time of operation  i  on given machine



	    P i    
	All predecessor operations of operation  i 



	   A ( t )   
	Set of operations processed at time  t 



	    R  j , m     
	Token of operation  j  that requires processing on machine  m 



	    C  max     
	Maximum completion time when complete all operations
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Table 3. A case of JSSP [36].
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Jobs

	
(Mi, Ti)




	
O1

	
O2

	
O3






	
1

	
(1, 10)

	
(3, 15)

	
(2, 5)




	
2

	
(2, 15)

	
(1, 8)

	
(3, 20)




	
3

	
(3, 9)

	
(2, 10)

	
(1, 15)
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Table 4. Parameter settings of algorithms.
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	Algorithms
	Parameter Settings





	EOSMA
	   z = 0.6 ;  a 1  = 2 ;  a 2  = 1 ; V = 1 ; G P = 0.5 ; J r = 0.3   



	VSMA
	   z = 0.03   



	VEO
	    a 1  = 2 ;  a 2  = 1 ; V = 1 ; G P = 0.5   



	VMPA
	   F A D s = 0.2 ; P = 0.5   



	VAO
	   α = 0.1 ; δ = 0.1   



	VBES
	   α = 2 ; a = 10 ; R = 1.5 ; c 1 = 2 ; c 2 = 2   
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Table 5. Comparison of solution results of algorithms on FT and ORB.
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Instances

	
Size

	
BKS

	
EOSMA

	
VSMA

	
VEO

	
VMPA

	
VAO

	
VBES




	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean






	
FT06

	
6 × 6

	
55

	
55

	
55

	
55

	
58.05

	
55

	
55

	
55

	
55

	
55

	
56.65

	
55

	
55




	
FT10

	
10 × 10

	
930

	
942

	
978.95

	
954

	
1128.5

	
976

	
998.25

	
971

	
997.9

	
981

	
1033

	
983

	
1009.55




	
FT20

	
20 × 5

	
1165

	
1180

	
1212.45

	
1199

	
1335.15

	
1199

	
1234.45

	
1198

	
1240.2

	
1207

	
1245.4

	
1213

	
1254.45




	
Friedman mean rank

	
1.83

	
1.50

	
3.00

	
6.00

	
3.67

	
2.50

	
2.83

	
2.50

	
4.50

	
4.67

	
5.17

	
3.83




	
ORB01

	
10 × 10

	
1059

	
1086

	
1137.2

	
1090

	
1216.9

	
1104

	
1145.45

	
1122

	
1162

	
1104

	
1193.7

	
1141

	
1161.9




	
ORB02

	
10 × 10

	
888

	
899

	
926.5

	
902

	
986.85

	
921

	
936.65

	
894

	
945.3

	
931

	
965.6

	
920

	
940.35




	
ORB03

	
10 × 10

	
1005

	
1027

	
1089.2

	
1053

	
1223.7

	
1064

	
1109

	
1076

	
1108.25

	
1080

	
1166.8

	
1095

	
1126.8




	
ORB04

	
10 × 10

	
1005

	
1011

	
1043.4

	
1042

	
1195.25

	
1032

	
1059.7

	
1036

	
1064.65

	
1040

	
1084.65

	
1046

	
1063.55




	
ORB05

	
10 × 10

	
887

	
899

	
932.25

	
918

	
1019.35

	
909

	
952

	
899

	
951.95

	
920

	
996.15

	
910

	
961.1




	
ORB06

	
10 × 10

	
1010

	
1031

	
1060.45

	
1035

	
1154.45

	
1034

	
1082.75

	
1034

	
1090.9

	
1070

	
1156.7

	
1046

	
1098




	
ORB07

	
10 × 10

	
397

	
397

	
412.45

	
407

	
471.8

	
406

	
419.5

	
408

	
422.7

	
408

	
435.2

	
412

	
426.1




	
ORB08

	
10 × 10

	
899

	
916

	
966.15

	
942

	
1118.2

	
931

	
976.6

	
924

	
983.55

	
970

	
1037.35

	
934

	
986.9




	
ORB09

	
10 × 10

	
934

	
950

	
977.4

	
970

	
1097.15

	
969

	
984.5

	
962

	
993.75

	
957

	
1019.45

	
963

	
981.75




	
ORB10

	
10 × 10

	
944

	
957

	
983.3

	
983

	
1081.2

	
967

	
998.1

	
973

	
1003.5

	
1009

	
1047.8

	
955

	
1004.4




	
Friedman mean rank

	
1.25

	
1.00

	
4.00

	
5.90

	
3.20

	
2.30

	
3.05

	
3.20

	
4.90

	
5.10

	
4.60

	
3.50








The optimal values are shown in bold.
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Table 6. Comparison of solution results of algorithms on ABZ and LA.
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Instances

	
Size

	
BKS

	
EOSMA

	
VSMA

	
VEO

	
VMPA

	
VAO

	
VBES




	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean






	
ABZ5

	
10 × 10

	
1234

	
1242

	
1259.55

	
1245

	
1340.5

	
1248

	
1271.5

	
1249

	
1266.45

	
1260

	
1297.5

	
1251

	
1272.15




	
ABZ6

	
10 × 10

	
943

	
947

	
964.75

	
948

	
1007.8

	
948

	
975.05

	
958

	
974.6

	
951

	
994.9

	
951

	
971.65




	
ABZ7

	
20 × 15

	
656

	
717

	
743.8

	
724

	
812.8

	
744

	
773.2

	
729

	
751.95

	
736

	
770.8

	
740

	
755.05




	
ABZ8

	
20 × 15

	
665

	
723

	
760.65

	
742

	
858.3

	
772

	
800.3

	
752

	
774

	
759

	
792.6

	
768

	
780.3




	
ABZ9

	
20 × 15

	
678

	
742

	
777.25

	
770

	
877.3

	
776

	
810.9

	
763

	
787.4

	
773

	
809.7

	
789

	
802.75




	
Friedman mean rank

	
1.00

	
1.00

	
2.30

	
6.00

	
4.50

	
4.40

	
3.60

	
2.20

	
4.50

	
4.40

	
4.50

	
3.00




	
LA01

	
10 × 5

	
666

	
666

	
666

	
666

	
692

	
666

	
666

	
666

	
666

	
666

	
670.7

	
666

	
666




	
LA02

	
10 × 5

	
655

	
655

	
665.3

	
655

	
718.05

	
655

	
669.2

	
655

	
674.55

	
655

	
690.35

	
655

	
666.7




	
LA03

	
10 × 5

	
597

	
597

	
612.55

	
611

	
667.5

	
606

	
619.5

	
605

	
624.35

	
617

	
640.75

	
604

	
617.75




	
LA04

	
10 × 5

	
590

	
590

	
598.15

	
590

	
638.75

	
590

	
601.8

	
590

	
604.25

	
599

	
618.45

	
590

	
601.8




	
LA05

	
10 × 5

	
593

	
593

	
593

	
593

	
596.8

	
593

	
593

	
593

	
593

	
593

	
593

	
593

	
593




	
LA06

	
15 × 5

	
926

	
926

	
926

	
926

	
948.35

	
926

	
926

	
926

	
926

	
926

	
926

	
926

	
926




	
LA07

	
15 × 5

	
890

	
890

	
890

	
890

	
958.4

	
890

	
890

	
890

	
891.65

	
890

	
894.35

	
890

	
890




	
LA08

	
15 × 5

	
863

	
863

	
863

	
863

	
894.9

	
863

	
863

	
863

	
863

	
863

	
866.45

	
863

	
863




	
LA09

	
15 × 5

	
951

	
951

	
951

	
951

	
979.65

	
951

	
951

	
951

	
951

	
951

	
951

	
951

	
951




	
LA10

	
15 × 5

	
958

	
958

	
958

	
958

	
973.2

	
958

	
958

	
958

	
958

	
958

	
958

	
958

	
958




	
LA11

	
20 × 5

	
1222

	
1222

	
1222

	
1222

	
1263.2

	
1222

	
1222

	
1222

	
1222

	
1222

	
1222

	
1222

	
1222




	
LA12

	
20 × 5

	
1039

	
1039

	
1039

	
1039

	
1081.15

	
1039

	
1039

	
1039

	
1039

	
1039

	
1039

	
1039

	
1039




	
LA13

	
20 × 5

	
1150

	
1150

	
1150

	
1150

	
1186.95

	
1150

	
1150

	
1150

	
1150

	
1150

	
1150

	
1150

	
1150




	
LA14

	
20 × 5

	
1292

	
1292

	
1292

	
1292

	
1302.15

	
1292

	
1292

	
1292

	
1292

	
1292

	
1292

	
1292

	
1292




	
LA15

	
20 × 5

	
1207

	
1207

	
1207

	
1207

	
1248.8

	
1207

	
1212.35

	
1207

	
1208.3

	
1207

	
1225.05

	
1207

	
1209.1




	
LA16

	
10 × 10

	
945

	
946

	
975.65

	
959

	
1090.25

	
946

	
982.2

	
959

	
990.75

	
988

	
1014.8

	
978

	
987.95




	
LA17

	
10 × 10

	
784

	
784

	
792.85

	
784

	
860.05

	
787

	
797.35

	
784

	
801

	
789

	
821.45

	
792

	
801.35




	
LA18

	
10 × 10

	
848

	
852

	
866.8

	
853

	
937.25

	
854

	
869

	
852

	
883.8

	
861

	
917.1

	
849

	
875.25




	
LA19

	
10 × 10

	
842

	
842

	
877.1

	
852

	
990.6

	
852

	
883.6

	
866

	
883.5

	
875

	
926.1

	
869

	
887.15




	
LA20

	
10 × 10

	
902

	
907

	
916.05

	
907

	
1005.45

	
907

	
928.65

	
907

	
929.05

	
924

	
961.85

	
914

	
934.2




	
LA21

	
15 × 10

	
1046

	
1081

	
1119.95

	
1117

	
1213.25

	
1111

	
1142.7

	
1089

	
1128.95

	
1105

	
1166.2

	
1104

	
1130.1




	
LA22

	
15 × 10

	
927

	
951

	
980.65

	
968

	
1071.75

	
964

	
1007.7

	
951

	
1011.15

	
997

	
1048.8

	
967

	
1008.4




	
LA23

	
15 × 10

	
1032

	
1032

	
1047

	
1032

	
1202.55

	
1042

	
1064.95

	
1032

	
1064.6

	
1037

	
1085.3

	
1032

	
1060.65




	
LA24

	
15 × 10

	
935

	
970

	
1008.95

	
984

	
1107.5

	
990

	
1029.5

	
987

	
1019.45

	
993

	
1042.25

	
994

	
1018.75




	
LA25

	
15 × 10

	
977

	
998

	
1046.5

	
1023

	
1114.85

	
1025

	
1070.9

	
1015

	
1060

	
1057

	
1111.7

	
1040

	
1066.35




	
LA26

	
20 × 10

	
1218

	
1225

	
1276.65

	
1251

	
1420.2

	
1290

	
1326.55

	
1256

	
1291.6

	
1273

	
1334.25

	
1249

	
1295.6




	
LA27

	
20 × 10

	
1235

	
1288

	
1346.4

	
1313

	
1513.95

	
1347

	
1380

	
1305

	
1358.05

	
1310

	
1383.95

	
1311

	
1361.3




	
LA28

	
20 × 10

	
1216

	
1256

	
1304.25

	
1279

	
1397.55

	
1311

	
1351.35

	
1284

	
1326.15

	
1285

	
1357.75

	
1285

	
1330.7




	
LA29

	
20 × 10

	
1152

	
1245

	
1288.3

	
1247

	
1411.7

	
1278

	
1338.85

	
1256

	
1310.55

	
1292

	
1345.3

	
1287

	
1315.4




	
LA30

	
20 × 10

	
1355

	
1355

	
1407.55

	
1387

	
1542.45

	
1399

	
1453.25

	
1407

	
1442.5

	
1407

	
1473.3

	
1396

	
1438.1




	
LA31

	
30 × 10

	
1784

	
1784

	
1785.4

	
1784

	
1947.6

	
1784

	
1818.05

	
1784

	
1794.2

	
1784

	
1800.4

	
1784

	
1786.1




	
LA32

	
30 × 10

	
1850

	
1850

	
1853.45

	
1850

	
1930.5

	
1863

	
1910.75

	
1850

	
1860.35

	
1850

	
1865.75

	
1850

	
1853.75




	
LA33

	
30 × 10

	
1719

	
1719

	
1722

	
1719

	
1879.6

	
1732

	
1774.9

	
1719

	
1725.65

	
1719

	
1748.8

	
1719

	
1722.65




	
LA34

	
30 × 10

	
1721

	
1721

	
1758.1

	
1750

	
1881.6

	
1790

	
1832.1

	
1722

	
1779.5

	
1747

	
1801.3

	
1743

	
1789.35




	
LA35

	
30 × 10

	
1888

	
1888

	
1895.85

	
1888

	
2043.65

	
1894

	
1935.9

	
1888

	
1909.65

	
1888

	
1935.6

	
1895

	
1932.75




	
LA36

	
15 × 15

	
1268

	
1311

	
1348.95

	
1336

	
1469.35

	
1359

	
1386.35

	
1334

	
1375.05

	
1362

	
1429.7

	
1350

	
1399.35




	
LA37

	
15 × 15

	
1397

	
1464

	
1524.65

	
1484

	
1717.7

	
1509

	
1559.45

	
1490

	
1535.55

	
1524

	
1602.1

	
1519

	
1565.15




	
LA38

	
15 × 15

	
1196

	
1280

	
1329.8

	
1281

	
1469.4

	
1309

	
1364.25

	
1300

	
1341.4

	
1334

	
1398.8

	
1335

	
1365.95




	
LA39

	
15 × 15

	
1233

	
1276

	
1337

	
1307

	
1479.8

	
1303

	
1366.3

	
1327

	
1376.4

	
1328

	
1424.25

	
1345

	
1377.5




	
LA40

	
15 × 15

	
1222

	
1269

	
1331.15

	
1277

	
1510.4

	
1300

	
1351.9

	
1312

	
1354

	
1327

	
1381

	
1316

	
1352.6




	
Friedman mean rank

	
2.23

	
1.50

	
3.24

	
6.00

	
4.01

	
3.26

	
3.11

	
2.85

	
4.51

	
4.48

	
3.90

	
2.91








The optimal values are shown in bold.
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Table 7. Comparison of solution results of algorithms on YN and SWV.
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Instances

	
Size

	
EOSMA

	
VSMA

	
VEO

	
VMPA

	
VAO

	
VBES




	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean

	
Best

	
Mean






	
YN1

	
20 × 20

	
985

	
1013.3

	
993

	
1121.85

	
1034

	
1064.95

	
990

	
1035.2

	
991

	
1047.4

	
1002

	
1038.25




	
YN2

	
20 × 20

	
1004

	
1052.25

	
1024

	
1148.2

	
1061

	
1095.5

	
1013

	
1055.1

	
1024

	
1070.65

	
1033

	
1067.6




	
YN3

	
20 × 20

	
982

	
1034.15

	
1017

	
1245.4

	
1045

	
1086.6

	
1018

	
1050.05

	
995

	
1062.3

	
1031

	
1061.05




	
YN4

	
20 × 20

	
1084

	
1124.3

	
1094

	
1268.5

	
1138

	
1179.95

	
1070

	
1142.1

	
1136

	
1180.5

	
1127

	
1156.85




	
Friedman mean rank

	
1.25

	
1.00

	
3.38

	
6.00

	
6.00

	
4.75

	
2.25

	
2.00

	
3.38

	
4.25

	
4.75

	
3.00




	
SWV01

	
20 × 10

	
1590

	
1684.55

	
1639

	
1747.85

	
1693

	
1754.85

	
1646

	
1728.8

	
1699

	
1791.9

	
1720

	
1765.75




	
SWV02

	
20 × 10

	
1653

	
1723.35

	
1652

	
1908.65

	
1730

	
1777.7

	
1709

	
1756.1

	
1716

	
1806.5

	
1745

	
1785.85




	
SWV03

	
20 × 10

	
1588

	
1650.7

	
1627

	
1790.35

	
1640

	
1727.25

	
1621

	
1688.45

	
1654

	
1754.85

	
1674

	
1712.9




	
SWV04

	
20 × 10

	
1655

	
1727.9

	
1713

	
1884.5

	
1735

	
1789.45

	
1705

	
1760.2

	
1661

	
1785.7

	
1733

	
1777.25




	
SWV05

	
20 × 10

	
1620

	
1706.2

	
1649

	
1941.2

	
1684

	
1743.6

	
1681

	
1722.15

	
1666

	
1747.1

	
1678

	
1718.05




	
SWV06

	
20 × 15

	
1964

	
2036.95

	
2009

	
2286.95

	
2045

	
2147.85

	
2001

	
2069.05

	
1957

	
2098.35

	
2044

	
2080.25




	
SWV07

	
20 × 15

	
1832

	
1935.95

	
1907

	
2148.9

	
1928

	
2022.1

	
1906

	
1960.65

	
1890

	
1985

	
1912

	
1962.15




	
SWV08

	
20 × 15

	
2024

	
2152.05

	
2120

	
2473.1

	
2182

	
2252.9

	
2076

	
2173.7

	
2129

	
2211.05

	
2122

	
2176.75




	
SWV09

	
20 × 15

	
1893

	
1981.4

	
1942

	
2288

	
1992

	
2101.9

	
1973

	
2034.9

	
1975

	
2066.7

	
2007

	
2047.45




	
SWV10

	
20 × 15

	
2007

	
2085

	
2071

	
2246.3

	
2132

	
2192.25

	
2001

	
2123.05

	
2033

	
2149.15

	
2073

	
2118.65




	
SWV11

	
50 × 10

	
3750

	
3877.35

	
3722

	
3951.2

	
3843

	
4063.8

	
3786

	
3913.25

	
3574

	
3739.1

	
3991

	
4042.8




	
SWV12

	
50 × 10

	
3755

	
3924.65

	
3845

	
4190.9

	
3906

	
4052.75

	
3851

	
3989.95

	
3702

	
3784.95

	
3955

	
4046.8




	
SWV13

	
50 × 10

	
3818

	
3933.3

	
3771

	
3991.25

	
4012

	
4128.65

	
3953

	
4041.35

	
3622

	
4041.5

	
4051

	
4137




	
SWV14

	
50 × 10

	
3690

	
3759.4

	
3676

	
3959.8

	
3815

	
3955.25

	
3774

	
3863.6

	
3514

	
3614.4

	
3825

	
3941.75




	
SWV15

	
50 × 10

	
3662

	
3829.55

	
3737

	
4008.25

	
3848

	
3991.75

	
3783

	
3879.65

	
3559

	
3669.45

	
3914

	
4020.75




	
SWV16

	
50 × 10

	
2924

	
2924

	
2924

	
3112.95

	
2924

	
2924.3

	
2924

	
2924

	
2924

	
2924

	
2924

	
2924




	
SWV17

	
50 × 10

	
2794

	
2794

	
2794

	
2932.5

	
2794

	
2810.25

	
2794

	
2794

	
2794

	
2799.15

	
2794

	
2796.1




	
SWV18

	
50 × 10

	
2852

	
2852

	
2852

	
3028.9

	
2852

	
2852.75

	
2852

	
2852

	
2852

	
2852.9

	
2852

	
2852




	
SWV19

	
50 × 10

	
2843

	
2847.3

	
2843

	
3014.5

	
2871

	
2955.2

	
2843

	
2853.75

	
2843

	
2878.55

	
2843

	
2864.25




	
SWV20

	
50 × 10

	
2823

	
2823

	
2823

	
3005.25

	
2823

	
2827

	
2823

	
2823.2

	
2823

	
2828.4

	
2823

	
2823




	
Friedman mean rank

	
2.15

	
1.38

	
2.90

	
5.50

	
4.95

	
4.65

	
3.25

	
2.40

	
2.80

	
3.68

	
4.95

	
3.40








The optimal values are shown in bold.
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Table 8. The p-value generated by Wilcoxon rank-sum test (two-tailed).
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	Instances
	VSMA
	VEO
	VMPA
	VAO
	VBES
	Instances
	VSMA
	VEO
	VMPA
	VAO
	VBES





	FT06
	3.10 × 10−6
	NaN
	NaN
	1.62 × 10−4
	NaN
	LA24
	1.06 × 10−3
	3.53 × 10−4
	1.80 × 10−1
	5.06 × 10−4
	3.71 × 10−2



	FT10
	5.24 × 10−5
	1.61 × 10−3
	4.67 × 10−3
	1.28 × 10−6
	1.31 × 10−5
	LA25
	6.00 × 10−2
	4.68 × 10−3
	1.67 × 10−1
	4.48 × 10−7
	2.29 × 10−3



	FT20
	1.24 × 10−5
	1.41 × 10−3
	3.54 × 10−4
	2.02 × 10−5
	1.77 × 10−6
	LA26
	6.84 × 10−4
	1.32 × 10−5
	1.72 × 10−1
	2.03 × 10−5
	3.59 × 10−2



	ORB01
	1.02 × 10−2
	4.49 × 10−1
	1.78 × 10−3
	6.23 × 10−6
	8.31 × 10−4
	LA27
	2.34 × 10−3
	1.78 × 10−4
	2.79 × 10−1
	1.28 × 10−3
	2.94 × 10−2



	ORB02
	2.21 × 10−2
	3.81 × 10−2
	4.47 × 10−3
	8.96 × 10−7
	3.92 × 10−3
	LA28
	1.06 × 10−3
	3.04 × 10−6
	7.05 × 10−3
	9.18 × 10−4
	4.13 × 10−4



	ORB03
	9.62 × 10−4
	6.98 × 10−2
	2.47 × 10−2
	3.26 × 10−6
	2.87 × 10−4
	LA29
	2.15 × 10−2
	8.54 × 10−6
	3.37 × 10−2
	7.07 × 10−6
	9.62 × 10−4



	ORB04
	5.41 × 10−6
	4.84 × 10−3
	4.54 × 10−4
	7.97 × 10−6
	1.20 × 10−4
	LA30
	6.21 × 10−4
	8.25 × 10−5
	4.83 × 10−4
	3.72 × 10−6
	9.18 × 10−4



	ORB05
	1.43 × 10−4
	3.25 × 10−2
	2.56 × 10−2
	5.86 × 10−6
	2.21 × 10−4
	LA31
	3.76 × 10−5
	1.19 × 10−7
	1.07 × 10−2
	2.03 × 10−4
	3.50 × 10−1



	ORB06
	1.52 × 10−4
	5.54 × 10−3
	2.20 × 10−4
	1.91 × 10−7
	3.28 × 10−5
	LA32
	9.93 × 10−4
	7.53 × 10−8
	1.76 × 10−2
	2.43 × 10−2
	6.96 × 10−1



	ORB07
	6.93 × 10−5
	1.70 × 10−2
	1.40 × 10−3
	2.72 × 10−5
	8.46 × 10−6
	LA33
	7.85 × 10−6
	3.88 × 10−8
	4.03 × 10−1
	2.87 × 10−4
	1.62 × 10−1



	ORB08
	2.92 × 10−5
	1.85 × 10−1
	4.10 × 10−2
	1.79 × 10−6
	6.81 × 10−3
	LA34
	1.28 × 10−4
	1.52 × 10−7
	1.43 × 10−2
	5.21 × 10−5
	9.72 × 10−5



	ORB09
	3.27 × 10−5
	5.46 × 10−2
	1.65 × 10−2
	6.20 × 10−5
	3.16 × 10−1
	LA35
	2.08 × 10−2
	5.62 × 10−7
	7.78 × 10−2
	1.69 × 10−4
	7.96 × 10−7



	ORB10
	3.48 × 10−5
	4.23 × 10−2
	1.73 × 10−2
	3.65 × 10−7
	7.68 × 10−3
	LA36
	4.14 × 10−4
	4.82 × 10−4
	7.68 × 10−3
	1.80 × 10−6
	9.65 × 10−6



	ABZ5
	1.01 × 10−3
	9.66 × 10−3
	1.55 × 10−1
	4.09 × 10−5
	7.86 × 10−4
	LA37
	5.62 × 10−4
	2.44 × 10−3
	3.30 × 10−1
	1.47 × 10−6
	1.36 × 10−4



	ABZ6
	2.80 × 10−2
	2.24 × 10−2
	2.10 × 10−2
	3.87 × 10−5
	7.52 × 10−2
	LA38
	1.73 × 10−2
	1.15 × 10−4
	1.99 × 10−1
	2.35 × 10−6
	7.50 × 10−6



	ABZ7
	3.63 × 10−3
	1.69 × 10−5
	1.01 × 10−1
	1.51 × 10−4
	1.48 × 10−2
	LA39
	1.14 × 10−2
	1.28 × 10−2
	2.60 × 10−4
	9.09 × 10−7
	1.36 × 10−4



	ABZ8
	3.20 × 10−4
	3.15 × 10−7
	1.54 × 10−2
	8.70 × 10−4
	4.62 × 10−5
	LA40
	7.57 × 10−4
	4.24 × 10−2
	4.38 × 10−2
	8.75 × 10−5
	1.85 × 10−2



	ABZ9
	1.25 × 10−5
	8.47 × 10−6
	1.48 × 10−1
	7.49 × 10−6
	5.44 × 10−6
	YN1
	1.35 × 10−3
	1.63 × 10−7
	5.78 × 10−3
	2.21 × 10−4
	3.55 × 10−4



	LA01
	4.01 × 10−4
	NaN
	NaN
	9.54 × 10−3
	NaN
	YN2
	1.60 × 10−2
	1.91 × 10−6
	7.87 × 10−1
	7.85 × 10−2
	1.10 × 10−2



	LA02
	7.00 × 10−3
	1.77 × 10−1
	2.13 × 10−2
	1.23 × 10−4
	6.81 × 10−1
	YN3
	2.58 × 10−5
	4.81 × 10−6
	5.77 × 10−3
	3.95 × 10−3
	2.21 × 10−4



	LA03
	5.04 × 10−6
	2.84 × 10−2
	3.09 × 10−4
	1.26 × 10−6
	1.40 × 10−1
	YN4
	1.14 × 10−2
	1.92 × 10−6
	3.71 × 10−2
	4.20 × 10−6
	2.42 × 10−5



	LA04
	4.03 × 10−6
	4.76 × 10−2
	2.45 × 10−2
	7.67 × 10−7
	8.19 × 10−2
	SWV01
	2.73 × 10−1
	1.04 × 10−4
	8.68 × 10−3
	5.81 × 10−6
	2.84 × 10−6



	LA05
	4.53 × 10−3
	NaN
	NaN
	NaN
	NaN
	SWV02
	7.87 × 10−2
	3.74 × 10−4
	3.37 × 10−2
	4.83 × 10−4
	2.15 × 10−5



	LA06
	9.30 × 10−4
	NaN
	NaN
	NaN
	NaN
	SWV03
	1.18 × 10−2
	2.44 × 10−5
	2.00 × 10−2
	1.67 × 10−6
	5.99 × 10−7



	LA07
	1.10 × 10−6
	NaN
	8.06 × 10−2
	9.58 × 10−3
	NaN
	SWV04
	5.56 × 10−3
	3.92 × 10−5
	3.85 × 10−2
	2.80 × 10−3
	8.71 × 10−5



	LA08
	1.67 × 10−4
	NaN
	NaN
	3.42 × 10−1
	NaN
	SWV05
	3.96 × 10−3
	1.67 × 10−2
	3.72 × 10−1
	1.61 × 10−2
	3.58 × 10−1



	LA09
	6.68 × 10−5
	NaN
	NaN
	NaN
	NaN
	SWV06
	8.33 × 10−4
	2.94 × 10−7
	8.01 × 10−3
	1.03 × 10−4
	1.29 × 10−4



	LA10
	1.67 × 10−4
	NaN
	NaN
	NaN
	NaN
	SWV07
	5.34 × 10−4
	3.05 × 10−6
	2.08 × 10−1
	3.48 × 10−2
	9.07 × 10−2



	LA11
	1.67 × 10−4
	NaN
	NaN
	NaN
	NaN
	SWV08
	1.12 × 10−3
	2.30 × 10−5
	2.79 × 10−1
	1.23 × 10−2
	1.33 × 10−1



	LA12
	6.68 × 10−5
	NaN
	NaN
	NaN
	NaN
	SWV09
	1.16 × 10−4
	6.65 × 10−6
	1.95 × 10−3
	4.66 × 10−5
	1.89 × 10−4



	LA13
	2.57 × 10−5
	NaN
	NaN
	NaN
	NaN
	SWV10
	7.95 × 10−4
	2.20 × 10−6
	3.96 × 10−3
	2.60 × 10−4
	3.19 × 10−3



	LA14
	4.53 × 10−3
	NaN
	NaN
	NaN
	NaN
	SWV11
	4.82 × 10−1
	3.98 × 10−6
	3.98 × 10−2
	6.86 × 10−4
	6.77 × 10−8



	LA15
	9.58 × 10−3
	9.58 × 10−3
	1.63 × 10−1
	6.67 × 10−5
	8.06 × 10−2
	SWV12
	1.86 × 10−2
	1.17 × 10−5
	1.86 × 10−2
	1.91 × 10−5
	1.33 × 10−5



	LA16
	2.16 × 10−6
	2.24 × 10−1
	2.19 × 10−3
	2.40 × 10−7
	2.60 × 10−2
	SWV13
	1.26 × 10−1
	2.56 × 10−7
	3.48 × 10−5
	1.89 × 10−4
	1.65 × 10−7



	LA17
	1.07 × 10−5
	1.57 × 10−2
	7.11 × 10−3
	5.16 × 10−6
	7.84 × 10−4
	SWV14
	3.60 × 10−2
	2.56 × 10−7
	1.25 × 10−5
	3.93 × 10−5
	2.22 × 10−7



	LA18
	6.13 × 10−3
	6.31 × 10−1
	9.84 × 10−3
	1.32 × 10−6
	6.56 × 10−2
	SWV15
	6.79 × 10−2
	8.06 × 10−6
	2.15 × 10−2
	1.17 × 10−5
	1.57 × 10−6



	LA19
	1.89 × 10−5
	1.43 × 10−1
	9.66 × 10−2
	8.85 × 10−7
	1.31 × 10−2
	SWV16
	1.67 × 10−4
	3.42 × 10−1
	NaN
	NaN
	NaN



	LA20
	1.23 × 10−3
	3.58 × 10−3
	7.82 × 10−3
	1.35 × 10−7
	8.98 × 10−5
	SWV17
	4.53 × 10−3
	1.67 × 10−4
	NaN
	8.06 × 10−2
	8.06 × 10−2



	LA21
	1.10 × 10−5
	5.30 × 10−4
	1.04 × 10−1
	1.36 × 10−4
	1.13 × 10−1
	SWV18
	6.68 × 10−5
	8.06 × 10−2
	NaN
	1.63 × 10−1
	NaN



	LA22
	1.47 × 10−3
	3.36 × 10−4
	4.58 × 10−4
	1.64 × 10−7
	1.98 × 10−4
	SWV19
	1.62 × 10−5
	3.46 × 10−8
	4.38 × 10−2
	1.75 × 10−3
	3.65 × 10−4



	LA23
	7.89 × 10−4
	5.90 × 10−4
	1.99 × 10−2
	9.08 × 10−6
	9.34 × 10−3
	SWV20
	1.67 × 10−4
	2.09 × 10−3
	3.42 × 10−1
	8.06 × 10−2
	NaN







No significant differences are shown in bold.
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