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Abstract: In industrial applications, many systems present serious productivity problems due to
limited resources. Generally, the dynamics of resource allocation are inherently discrete-event driven,
such as the buffer allocation in production line systems. In this paper, we develop a discrete-event
mathematical model for resource allocation optimization. In this work, we consider two crucial
optimization objectives, e.g., deadlock-free and efficiency, that originate from the customer’s actual
requirements. The main aim is to develop a resource allocation scheme for fulfilling the production
process (without deadlock) while ensuring that the cost of the process is minimized. As a case study,
we consider the vehicle scheduling problem in a signal-free intersection. The intersection is divided
into several disjoint spatial traffic resources, and vehicles need to occupy different traffic resources
for passing through the intersection. Thus, the traffic control problem at the signal-free intersection is
transformed into a scheduling problem with limited resource constraints. An online control approach
is developed to schedule vehicles to go through the intersection safely and efficiently by optimizing
the resource allocation order. Simulation results demonstrate the efficiency and robustness of the
proposed model and optimization approach.

Keywords: resource allocation; discrete-event model; optimization algorithms; signal-free intersection;
vehicle scheduling

MSC: 93

1. Introduction

A resource allocation system (RAS) consists of a set of concurrently executing processes
that use a group of resources to accomplish a given task [1]. A system resource can be
reused, but it is in limited supply in the sense that it can be occupied by up to n processes
at the same time, where n is its maximum capacity. RASs manifest in many technological
systems that involve resource sharing, such as facility planning [2], job scheduling [3],
traffic management [4,5], computer system [6], and buffer allocation [7]. For instance, in a
typical computer system, jobs, tasks, or transactions are the customers competing for the
attention of servers such as various processors, such as the CPU, or peripheral devices (e.g.,
printers, disks). It is often convenient to represent such a system through an RAS.

The study of RASs can date back to [8–11], where an efficient operating system was
developed. For the RASs, liveness or deadlock-freeness is an essential control requirement
for their automatic operation [12–14]. There exists a deadlock in an RAS if there exists a
group of concurrently executing processes that block each other such that each of them
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requires, for its further continuation, some resource(s) currently occupied by another
process in this group. Thus, to ensure deadlock-free operation, the underlying resource
allocation must be carefully considered. Furthermore, for operational flexibility of the RASs,
one would like to avoid deadlocks in the least restrictive manner. Recently, refs. [12–15]
developed a deadlock avoidance policy (DAP) that is least restrictive in the sense that no
other optimal DAP can generate a larger deadlock-free system behavior. Nevertheless, a
DAP only guarantees a task can be finished without any deadlock, but it does not guarantee
the task can be finished in a specific route. However, in many practical RASs, such as traffic
systems, it is required to “drive” the system to the goal state in a trajectory with a minimum
time cost. In addition, the computation of the optimal DAP is proven to be an NP-hard
problem [16]. Recently, a sequential RAS structure that admits polynomial-time optimal
DAP has been widely investigated [12,14,15,17,18]. In a sequential RAS, every process,
during its execution, need to occupy and release in a predefined order of resources. We
consider the sequential RAS in this paper.

In contrast to [12–15,17,18], we develop a control mechanism to drive the system to the
goal state (marked state) in a specific trajectory. Specifically, we develop an optimal control
mechanism to actively achieve a given task in a deadlock-free manner while minimizing
the cost of the resource allocation process. The sequential RAS is modeled as an automaton,
which has been proven to be a powerful tool for the design, analysis, and control of discrete-
event systems [17,19–22]. In the automaton, the occupation and release of a resource are
both viewed as an “event”. To accomplish a given task, the resource allocation controller
not only disables events but also enforces events. To determine which event should be
disabled or enforced, an online resource allocation strategy, whose objective is to minimize
the cost of the event sequence to be executed (the process of resource allocation and release),
is developed. The objective is accomplished by model predictive control. More accurately,
by looking l steps forward from the current state, we select a deadlock-free event sequence
with the minimum cost, where l is the prediction depth. After each new state updating,
we calculate such an optimal event sequence and execute the first event of it. The above
process is repeatedly performed until the given task is achieved.

Note that in traditional supervisory control of discrete-event systems [23–32], a su-
pervisory controller, which is referred to as a supervisor, is desired to enable a maximum
allowable set of controllable events at any instant to ensure the controlled system is within
the desired specification language. However, an RAS requires us to drive the system to the
goal state at a minimum cost. It is about how to implement the system. However, a super-
visor fails to drive a system from one state to another state following a specific trajectory
(with the minimum cost). Thus, in contrast to traditional supervisory control, we consider a
“positive” controller that selects at most one controllable event to be enforced and disables
all the remaining controllable events at each instant, as described in the last paragraph.

As an application, we apply the proposed modeling and optimizing method to solve the
vehicle scheduling problem in a signal-free traffic intersection [33–38]. It is worth noting that
approaches for the intersection management problem can be classified into two categories: the
signal-based approach [4,39–41] and the signal-free approach [5,33–38,42–52]. The signal-based
approach aims at minimizing queue lengths by optimizing the duration of each signal phase,
and the signal-free approach aims at minimizing the intersection travel time by optimizing
the passing order of vehicles. The signal-based approach has better adaptiveness and relia-
bility, whereas the signal-free approach is more efficient and economical, especially when the
infrastructure cost is a concern. In this paper, we focus on the signal-free approach. Given
the source road and the destination road, the trajectory of a vehicle is fixed. We define a
resource as the crossing location of two trajectories of vehicles. The intersection should
be divided into several resources in terms of granularity. For safety, each resource can be
occupied by one vehicle at a time. A process is defined as the process of a vehicle passing
through an intersection. Then, the intersection management system is “abstracted” as an
RAS modeled as an automaton. In the automaton, vehicle’s movement between adjacent
resources is viewed as an “event”, without considering the vehicle’s kinematics. Using
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the proposed optimization techniques, we present an online vehicular (high-level) control
strategy that minimizes the travel time of vehicles in the intersection. The strategy can
be actively achieved by disabling and enforcing events. The control decisions are made
on-the-fly, and a vehicle can be immediately considered by the controller when it arrives at
the intersection. Simulation results demonstrate the expressiveness of the proposed model
and the effectiveness of the proposed algorithm.

The contributions of this paper are twofold. First, in this paper, we introduce a novel
control mechanism for the RAS. A controller is used to enforce at most one controllable
event and disable all the remaining controllable events at any instant. An optimization-
based approach is developed to design a controller: starting from a given state, it drives
the system to the goal state over a trajectory with the minimum time cost. This is in
contrast to the DAP developed for the RAS in [12–15], where the controller only enables a
maximum allowable set of events at any instant, and no specific selection for executing an
event is made. Second, we show how a signal-free intersection can be modeled as an RAS
and demonstrate how the proposed approach can be applied to schedule vehicles to go
through the intersection. The proposed method for intersection management differs from
the existing works in the following sense.

1. In this paper, we assume that different vehicles can travel in the intersection at the
same time as long as they do not conflict with each other, whereas in [42–45], only one
vehicle is allowed to go through the intersection at a time. Thus, the spatial spacing of
the intersection is well utilized in this paper;

2. Different from [46–48], our control scheme does not involve a complex nonlinear
programming (NLP) problem with high-dimensional collision avoidance constraints,
as vehicle travel safety has been guaranteed by the principle that a spatial resource
can be occupied by one vehicle at a time;

3. The passing order calculated in this paper is optimal with respect to all
the vehicles approaching and traveling in the intersection. This is in contrast
to [5,33–35,37,38,51,52], where the passing order of vehicles is calculated for only
a batch of vehicles at a time. Before the first batch of vehicles finish their journey in
the intersection, the second batch of vehicles must wait at the intersection. This may
damage traffic efficiency due to the lack of a global view.

The rest of this paper is organized as follows. In Section 2, some preliminary concepts
and the mathematical model are introduced. In Section 3, we formally formulate the
problem, and a resource allocation optimization algorithm is provided. In Section 4, we
discuss how the proposed model and optimization algorithm can be applied to schedule
vehicles in a signal-free intersection. In Section 5, the simulation results are obtained. In
Section 6, we further discuss how the proposed approach can be applied to schedule robot
in a warehouse. Finally, in Section 7, this paper is concluded.

2. Mathematical Model
2.1. Preliminaries

In this section, the resource allocation process is “abstracted” as a discrete-event system
modeled as an automaton. In the discrete-event systems, the occupation or release of a
resource is viewed as an “event”.

Formally, the automaton is denoted by a six-tuple G = (Q, Σ, f , Γ, q0, Qm), where Q is
the finite set of states, Σ is the finite set of events, f : Q× Σ→ Q is the transition function,
Γ : Q → 2Σ is the active function, q0 is the initial state, and Qm ⊆ Q is the set of marked
states (highlighted by double circles). For any q ∈ Q, Γ(q) = {σ ∈ Σ : f (q, σ)!}, where
“!” means “is defined”. Σ∗ is the set of strings composed by events in Σ (including the
empty string ε). Then, f can be iteratively extended to Q× Σ∗ in the way as, f (q0, ε) = q0,
and for any s ∈ Σ∗ and any σ ∈ Σ, f (q0, sσ) = f ( f (q0, s), σ). The language generated
by G is denoted by L(G) = {s ∈ Σ∗ : f (q0, s)!}. The marked language generated by
G is denoted by Lm(G) = {s ∈ L(G) : f (q0, s) ∈ Qm}. An automaton G is said to be
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accessible if any states in Q can be reached from the initial state q0 via a string s ∈ L(G),
i.e., [(∀q ∈ Q)∃s ∈ L(G)] f (q0, s) = q. The accessible part of G is denoted by Ac(G).

In this paper, the given control objective is achieved using a controller or supervisor,
which dynamically disables or enforces event occurrences of the system based on previous
events that have occurred or been observed. Specifically, the event set Σ is partitioned into
the set of uncontrollable events Σuc and the set of controllable events Σc, i.e., Σ = Σuc ∪ Σc.
For all uncontrollable events (the elapsing of a unit of time, for example), the controller
can never disable its occurrence. We also assume that some events in Σ are enforceable
in the sense that it can be enforced by preempting an uncontrollable event. We denote by
Σ f ⊆ Σ the set of all the enforceable events. Overall, a controller can adopt the following
two different control behaviors to achieve the control objective.

• Disablement: During the resource allocation process, some controllable events may be
disabled by the controller and cannot occur;

• Enforcement: At the same time, some enforceable events can be enforced to execute
by the controller.

2.2. Discrete-Event Model

Next, we model the resource allocation process. Suppose that there are h resources,
denoted by Resources 1, . . . , h. We also suppose that there are d processes, denoted by
Processes 1, . . . , d. We denote R = {1, . . . , h} by the set of resources, where i means
Resource i, and P = {1, . . . , d} by the set of processes, where i means Process i. Note that
both h and d can be determined by the physical system, and they have nothing to do with
each other. Each process needs to use resources in a predetermined order to complete a
specific task. Meanwhile, Resource i can be held by at most mi processes simultaneously
for all i ∈ R. The resource allocation process can be briefly formulated as follows. When a
process wants to use a resource, it first sends a request to the centralized resource manager
(CRM). The CRM receives requests from agents, decides whether the resource is available,
and sends instructions back to it.

To model the resource allocation process, we must first model the resources and the
processes. Specifically, given a process i ∈ P , we assume that it needs to use resources
in the order of x1 → x2 → · · · → xn−1 → xn to complete a given task. As shown in
Figure 1a, we build an automaton Pi to model the dynamics of the working status of
Process i ∈ P . For clarity, we interpret the events appeared in Pi as follows. For any i ∈ P
and any j ∈ R, ei

j means that Process i sends a request to the CRM for using Resource j; σi
j

means that Process i receives an acknowledgement of the usage of Resource j, and then
occupies Resource j; ei

j→k means that Process i finishes the usage of Resource j and sends a

request to the CRM for further using Resource k; σi
j→k means that Process i has occupied

Resource k after the usage of Resource j. πi
j means that Process i releases Resource j. Since

the CRM cannot prevent a process from sending a request, ei
j and ei

j→k are all uncontrollable
for i ∈ P and j, k ∈ R. All the remaining events are controllable.
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Figure 1. Automata Pi and Rj; (a) Automaton Pi for Process i; (b) Automaton Rj for Resource j.

In State 0 of Pi, Process i is placed in standby. To complete a given task, Process i
should first apply for the usage of Resource x1. Thus, when Process i starts to work, it
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sends a Resource x1 occupation request to the CRM. Upon the event occurrence of ei
x1

, Pi
moves from State 0 to State 1. If Process i receives an acknowledgement message from the
CRM (σi

x1
occurs), it immediately occupies Resource x1, and Pi moves from State 1 to State

2. After that, when Process i finishes using Resource x1, it needs to further apply for the use
of Resource x2. Upon the occurrence of ei

x1→x2
, Pi moves from State 2 to State 3. The above

process is repeated until πi
xn occurs in State 2n (Process i finishes the usage of Resource xn).

Next, as shown in Figure 1b, we build an automaton Rj to model the dynamics of the
working status of Resource j ∈ R. In State 0 of Rj, Resource j is idle. By definition, when
σi

j and σi
k→j for i ∈ P and k ∈ R \ {j} occur in State 0, Resource j is occupied and is busy.

Correspondingly, Automaton Rj moves from State 0 to State 1 upon the occurrences of
σi

j and σi
k→j for i ∈ P and k ∈ R \ {j}. When Process i finishes the usage of Resource j,

and no other processes need to use Resource j, Resource j returns to idle. As we can see,
Automaton Rj returns to State 0 from State 1 upon the occurrences of πi

j and σi
j→k for i ∈ P

and k ∈ R \ {j}. On the other hand, if Resource j is further occupied by another process, Rj

moves from State 1 to State 2 upon the occurrences of σi
j and σi

k→j for i ∈ P and k ∈ R \ {j}.
In this way, we can construct Rj.

To combine the resource automata and the process automata, we next introduce
the definition of parallel composition of two different automata [53]. Formally, given
G1 = (Q1, Σ1, f1, Γ1, q01, Qm1) and G2 = (Q2, Σ2, f2, Γ2, q02, Qm2), the parallel composition
of G1 and G2 is denoted by

G1||G2 := Ac(Q1 ×Q2, Σ1 ∪ Σ2, f , (q01, q02), Qm1 ×Qm2).

The transition function δ is defined as: for any (q1, q2) ∈ Q1 ×Q2 and any σ ∈ Σ,

f ((q1, q2), σ) :=


(q′1, q′2) σ ∈ Γ1(q1) ∩ Γ2(q2);
(q′1, q2) σ ∈ Γ1(q1) \ Σ2;
(q1, q′2) σ ∈ Γ2(q2) \ Σ1;
undefined otherwise,

where q′1 = f1(q1, σ) and q′2 = f2(q2, σ).
The overall resource allocation mathematical model G can be obtained by parallelizing

all the agents and resources automata. Formally, we have

G = P1|| · · · ||Pd||R1|| · · · ||Rh. (1)

Example 1. Let us consider a simple example. As shown in Figure 2, suppose that there are two
robots, denoted by Robots 1 and 2, respectively. Both of them need to occupy Resource 1 to fulfill their
tasks. Resource 1 can accommodate one robot at a time. We model Robots 1 and 2 in Figure 3a,b,
respectively. Meanwhile, we model Resource 1 in Figure 3c. The resource allocation mathematical
model G = P1||P2||R1 is obtained in Figure 3d.
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Figure 3. Automata P1, P2, R1, and G; (a) Automaton P1 for Robot 1; (b) Automaton P2 for Robot 2;
(c) Automaton R1 for Resource 1; (d) System model G.

3. Optimization Algorithm
3.1. Problem Formulation

In this section, we calculate an optimal controller for G to achieve a given task. Partic-
ularly, the following two optimization objectives should be satisfied.

• Deadlock-Free : We say a state is a deadlock state if we cannot arrive at a marked
state from it. In other words, once we arrive at a deadlock state, we can never reach a
marked state;

• Efficiency: Among all the strings of G in the solution domain, efficiency requires us to
execute a string with a minimal cost.

Let us first introduce the definition of a deadlock state.

Definition 1. Given a state q ∈ Q, q is a deadlock state if there does not exist a string s ∈ Σ∗ such
that f (q, s) ∈ Qm.

From a deadlock state, we can never reach a marked state. In this paper, we denote
Qdead = {q ∈ Q : (∀s ∈ Σ∗) f (q, s) /∈ Qm} by the set of all the deadlock states of G [53]. We
also denote Qilleg = {q ∈ Q : (∃s ∈ Σ∗uc) f (q, s) ∈ Qdead} by the set of illegal states from
which we can reach a deadlock state via an uncontrollable event sequence. If we are in an
illegal state, we may reach a deadlock state even if we disable all the controllable events in
the future. Thus, to ensure the system is deadlock-free, all the illegal states are prohibited
from reaching.

We define a cost function C : Q×Σ∗ → R, where R is the set of real numbers. Formally,
for any q ∈ Q and any s ∈ Σ∗, C(q, s) is the cost resulting from executing event s when the
system is in state q.

Given a state q ∈ Q and the search depth l ∈ N, we let Ξ(q, l) = {s ∈ Σ∗ : |s| =
l ∧ f (q, s)!} be the set of strings s ∈ Σ∗ that are defined at z and are of the length l. To save
the computational resource, we require that the solution calculated at the current state is
optimal for the next l ∈ N steps. We assume that for each state of the automaton, there is
at least one event defined at this state. This is not a restriction since for any state whose
active event set is empty, we can always add a dumb self-loop with a cost of 0 at it. Thus,
given the current state q ∈ Q, an optimal solution is always included in Ξ(q, l). Now, the
objective function for resource allocation can be expressed as follows.
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Problem 1. Given the system automaton G, the optimization for resource allocation in the current
state q ∈ Q is

[t ∈ Ξ(q, l)] = arg min
s∈Ξ(q,l)

C(q, s) (2)

where l ≥ 1 is the fixed number of prediction steps, and the model constraints are given as follows:

s1 ∈ Σ f ; (3)

f (q, si) ∈ Q \Qilleg, for all i = 0, 1, . . . , l. (4)

Condition (3) states the first event of the solution is enforceable so that it can be
enforced by the controller. Condition (4) states that all the illegal states are prevented from
being reached. By definition, the solution t ∈ Σ∗ of (2) is an event sequence of length l
defined at the current state q and has the minimal cost. Note that there may be several
minimal solutions of (2), i.e., the solutions of (2) need not to be unique. We can select any
one of them and then execute the first event of t, i.e., t1. After execution, the state of the
system is updated, and a new optimal solution of (2) should be calculated. Since the first
event of t is enforceable, it can always be enforced. Meanwhile, when we enforce an event
occurrence, we must disable all the remaining controllable events. Given the current state
q ∈ Q, we next show how to compute the optimal solution t ∈ Ξ(q, l).

3.2. Solution

In this section, a set of algorithms are developed to solve Problem 1. Given a state
q ∈ Q, we define the set of predecessor states of q, denoted by Pre(q), as:

Pre(q) = {q′ ∈ Q : (∃σ ∈ Σ) f (q′, σ) = q}.

Algorithm 1 calculates all the nondeadlock states Q \Qdead of G.

Algorithm 1: Nondeadlock States
Input: Automaton G;
Output: T ∗;

1 Initially, set T ← Qm and unflag all the elements in T ;
2 while ∃ an unflagged state in T do
3 Pick an unflgged q ∈ T ;
4 foreach q′ ∈ Pre(q), one by one do
5 if q′ /∈ T then
6 Set T ← T ∪ {q′};
7 Unflag q′ in T ;

8 Flag q in T ;

9 return T ∗ ← T .

To search for all the nondeadlock states, Algorithm 1 considers all the marked states
first, then all the nondeadlock states that can reach Qm within 1 step, then all the nondead-
lock states that can reach Qm within 2 steps, and so on. Algorithm 1 does not terminate
until all the nondeadlock states are considered at least once. Since Q is finite, Algorithm 1
will terminate in finite steps.

Proposition 1. The returned T ∗ of Algorithm 1 collects all the nondeadlock states of G, i.e.,
T ∗ = Q \Qdead.

Proof. We denote by T 0 the set of states returned by Line 1 and T i the set of states returned
at the end of the ith iteration of the while-loop in Line 2.
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We first prove that T ∗ ⊆ Q \ Qdead. The proof is by induction. Since T 0 = Qm ⊆
Q \Qdead, the base case is trivially true.

The induction hypothesis is that T k ⊆ Q \Qdead. In the k + 1st iteration of the while-
loop, all the predecessor states of T k (if they are not included in T k) are added into T .
Hence, for all q ∈ T k+1 \ T k, there exist a q′ ∈ T k and a σ ∈ Σ such that f (q, σ) = q′. By
the induction hypothesis, q′ ∈ Q \ Qdead. By Definition 1, there exists a sequence s ∈ Σ∗

such that f (q′, s) ∈ Qm. Moreover, since f (q, σ) = q′, we have f (q, σs) ∈ Qm. Therefore,
T k+1 ⊆ Q \Qdead. By Line 9, T ∗ ⊆ Q \Qdead.

We next prove T ∗ ⊇ Q \Qdead. For an arbitrary q ∈ Q \Qdead, by Definition 1, there
exists a sequence s = σ1 · · · σn ∈ Σ∗ such that f (q, s) ∈ Qm. Without loss of generality,
we write f (q, si) = qi for i = 0, 1, . . . , n. By the while-loop on Line 2, qi ∈ T n−i for
i = 0, 1, . . . , n. Therefore, q ∈ Q \Qdead.

Given the set of nondeadlock states, Algorithm 2 returns the set of all the legal states.

Algorithm 2: Legal States
Input: System automaton G;
Output: L∗;

1 Initially, call Algorithm 1 to compute the set of nondeadlock states T ∗;
2 Set i← 0 and L0 ← T ∗;
3 repeat
4 Set i← i + 1;
5 Li ← Li−1 \ {q ∈ Li−1 : (∃σ ∈ Σuc) f (q, σ) /∈ Li−1};
6 until Li = Li−1;
7 return L∗ ← Li.

Algorithm 2 computes all the legal states by iteratively removing the states q from the
set of nondeadlock states T ∗ if we can arrive at a deadlock state from q via an uncontrollable
event sequence. Since Q is finite, the algorithm will terminate in finite steps. The following
proposition states that Algorithm 2 indeed returns all the legal states.

Proposition 2. The returned L∗ of Algorithm 2 collects all the legal states of G, i.e., L∗ =
Q \Qilleg.

Proof. We first prove that L∗ ⊇ Q \ Qilleg. The proof is by induction. Initially, we have
L0 = T ∗ = Q \Qdead. By the definitions of Qilleg and Qdead, we have Qdead ⊆ Qilleg, which
implies Q \Qdead ⊇ Q \Qilleg. Thus, L0 ⊇ Q \Qilleg is true.

The induction hypothesis is that Lk ⊇ Q \ Qilleg. In the k + 1st iteration of the
repeat-until loop, Line 5 of Algorithm 2 removes all the q ∈ Lk such that ∃σ ∈ Σuc
with f (q, σ) /∈ Lk. Since f (q, σ) /∈ Lk and Lk ⊇ Q \ Qilleg, f (q, σ) ∈ Qilleg. Then, by
the definition of Qilleg, there exists a sequence s ∈ Σ∗uc such that f (q, σs) ∈ Qdead. Since
σs ∈ Σ∗uc, all the q ∈ Lk that are removed from Lk are illegal states, i.e., q ∈ Qilleg. Therefore,
Lk+1 ⊇ Q \Qilleg.

We next prove that L∗ ⊆ Q \ Qilleg. Given any q ∈ L∗, by the repeat-until loop, if
there exists s ∈ Σ∗uc such that f (q, s)!, then f (q, s) ∈ L∗. Otherwise, it contradicts the
assumption that the repeat-until loop does not terminate until Li = Li−1. Moreover, since
L∗ ⊆ L0 = Q \ Qdead, for any q ∈ L∗ and any s ∈ Σ∗uc, we have f (q, s) ∈ Q \ Qdead. By
the definition of Qilleg, q /∈ Qilleg or equivalently q ∈ Q \Qilleg. Since q is arbitrarily given,
L∗ ⊆ Q \Qilleg.

We let q ∈ Q be the current state of the system G and l ∈ N be the prediction depth.
Algorithm 3 is used to calculate Ξ(q, l).

Algorithm 3 involves a breadth-first search of a tree with a depth of h. Each node of
the tree is a pair (q, s) ∈ Q× Σ≤l , where q is a state of G and s is a sequence with the length
no larger than l (its length is the search depth). We say a node (q, s) is promising if q is legal,
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i.e., q ∈ Q \ Qilleg. Algorithm 3 visits the root node (q, ε) first, followed by all promising
nodes at level 1, all promising nodes at level 2, and so on. The following theorem states
that Algorithm 3 returns all possible promising nodes that can be reached from the initial
node (q, ε) over a sequence in Ξ(q, l).

Algorithm 3: Computation of Feasible Sequences
Input: The current state q ∈ Q and the prediction depth l;
Output: Ξ∗;

1 Call Algorithms 1 and 2 to compute the set of legal states Q \Qilleg;
2 Set Ξ← {(q, ε)} and unflag (q, ε) in Ξ;
3 while ∃ an unflagged element in Ξ do
4 Randomly pick an unflagged (q′, s) ∈ Ξ;
5 if |s| < l then
6 foreach σ ∈ Γ(q′), one by one do
7 if f (q′, σ) ∈ Q \Qilleg then
8 Set Ξ← Ξ ∪ {( f (q′, σ), sσ)} and unflag ( f (q′, σ), sσ) in Ξ;

9 Flag (q′, s) in Ξ;

10 return Ξ∗ ← Ξ.

Theorem 1. We let Ξ∗ be the set of pairs returned by Algorithm 3. Then, ∃s ∈ Ξ(q, l) such that
f (q, si) ∈ Q \Qilleg for i = 0, 1, . . . , l if and only if ∃( f (q, s), s) ∈ Ξ∗.

Proof. We denote by Ξi the set of nodes obtained at the end of the ith iteration of the
repeat-until loop.

(⇒) Since f (q, si)! and f (q, si) ∈ Q \Qilleg, by recursively applying the while-loop on
Line 3 of Algorithm 3, we have ( f (q, si), si) ∈ Ξi. Therefore, we have ( f (q, s), s) ∈ Ξl = Ξ∗.

(⇐) For any (q′, s) ∈ Ξi, we prove that q′ = f (q, s), q′ ∈ Q \ Qilleg, and |s| = i. The
proof is by induction on i = 0, 1, . . . , l. The base case is trivially true since Ξ0 = {(q, ε)},
q = f (q, ε), q ∈ Q \Qilleg, and |s| = 0. The induction hypothesis is that for all (q′, s) ∈ Ξi

with i < l, we have q′ = f (q, s), q′ ∈ Q \ Qilleg, and |s| = i. We now prove that the same
is also true for all (q′′, s′) ∈ Ξi+1. By the while-loop on Line 3 of Algorithm 3, there exist
(q′, s) ∈ Ξi and σ ∈ Σ such that q′′ = f (q′, σ) ∈ Q \ Qilleg and s′ = sσ. Since q′ = f (q, s)
and |s| = i, we have q′′ = f (q, sσ) = f (q, s′) and |q′| = i + 1. Thus, for all (q′′, s′) ∈ Ξi+1,
we have q′′ = f (q, s′), q′′ ∈ Q \ Qilleg, and |s′| = i + 1. Therefore, for all (q′, s) ∈ Ξl = Ξ,
we have q′ = f (q, s), q′ ∈ Q \Qilleg, and |s| = l. By definition, s ∈ Ξ(q, l).

Corollary 1. For any s ∈ Ξ(q, l), it is a solution of Problem 1 if ∃( f (q, s), s) ∈ Ξ∗ such that
s1 ∈ Σ f and there does not exist another ( f (q, t), t) ∈ Ξ∗ with t1 ∈ Σ f and C(q, t) < C(q, s).

Proof. For any q ∈ Q, Problem 1 intends to find a s ∈ Ξ(q, l) having the minimum cost
such that (i) s1 ∈ Σ f and (ii) f (q, si) ∈ Q \ Qilleg for i = 0, 1, . . . , |s|. By Theorem 1, Ξ∗

collects all the ( f (q, s), s) such that ∃s ∈ Ξ(q, l) and f (q, si) ∈ Q \Qilleg for i = 0, 1, . . . , |s|.
Thus, s is a solution of Problem 1 if and only if s1 ∈ Σ f and there does not exsit another
( f (q, t), t) ∈ Ξ∗ such that t1 ∈ Σ f and C(q, t) < C(q, s). That completes the proof.

By Corollary 1, we can always obtain a solution of Problem 1 (if it exists) by selecting
one (q, s) ∈ Ξ∗ with s1 ∈ Σ f that has a minimum cost C(q, s).

Flow diagrams of the algorithm for optimal resource allocation are given in Figure 4.
Specifically, we first model the resource automata and process automata as described in
Section 2.2. The overall system model G can be obtained by paralleling all these automata
as in (1). When the state of the system is updated, we apply Algorithms 1–3 to calculate all
the feasible event sequences that start from the current state. By Corollary 1, by calculating
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the time cost of all the feasible event sequences, we can always select one having the
minimum time cost. Then, we enforce the first event of this sequence at the right time.
After the execution of this event, the state of the system is updated again, and we repeat
the above process.

Resource Automata

Process Automata

System Model
(1)

Nondeadlock States
(Algorithm 1)

Legal States
(Algorithm 2)

Feasible Sequences
(Algorithm 3)

Optimal Sequence  
(Corollary 1)

𝜎𝜎

Current State 
𝑞𝑞

RAS

Optimization

Modeling

Control Action

Figure 4. The implementation process of the proposed algorithm.

4. Case Study

In this section, we consider an application of the proposed resource allocation opti-
mization algorithm.

Intersection

Intersection management is essential for safety and traffic efficiency. As shown in
Figure 5, the research object of this section is a signal-free intersection connected by eight
two-lane roads, which are denoted, respectively, by Roads 1, 2, . . . , 8. The intersection is
divided into five mutually disjoint Resources a, b, c, d, and e. A vehicle coming from Road 3
and going to Road 7 needs to occupy in the order of Resource b and Resource a to complete
the straight movement. A vehicle coming from Road 1 and going to Road 8 needs to occupy
in the order of Resource a, Resource e, and Resource c to complete a left turn. A vehicle
coming from Road 4 and going to Road 5 needs to occupy Resource d to complete a right
turn, and so on in a similar fashion.

Within the intersection, the trajectory of a vehicle is determined by its source road
(before the intersection) and its destination road (after the intersection). For example, a
vehicle coming from Road 1 (source road) and going to Road 5 (destination road) must
occupy in the order of Resources a and d to pass through the intersection. As shown in
Table 1, the vehicles arriving at the intersection are classed into 12 different types according
to their source roads (SRs) and their destination roads (DRs). Figure 6 visually shows all
the vehicle types. For example, as shown in Figure 6a, the 1st type of vehicle is a going-
straight vehicle that is coming from Road 1 and going to Road 5, the 3rd type of vehicle is
a going-straight vehicle that is coming from Road 3 and going to Road 7, the 6th type of
vehicle is a right-turn vehicle that is coming from Road 2 and going to Road 8, and the 12th
type of vehicle is a left-turn vehicle that is coming from Road 4 and going to Road 6.
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Figure 5. An unsignalized intersection.

Table 1. Types of vehicles.

Type SR DR Type SR DR Type SR DR Type SR DR

1 R1 R5 4 R4 R8 7 R3 R6 10 R2 R7
2 R2 R6 5 R1 R7 8 R4 R5 11 R3 R5
3 R3 R7 6 R2 R8 9 R1 R8 12 R4 R6
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2
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1 6

3
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5 2
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3

8

7

4

7

4

7

4

(a)
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2
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(c)

Figure 6. Different vehicle types; (a) Vehicle types of 1, 3, 6, and 12; (b) Vehicle types of 2, 4, 5, and 11;
(c) Vehicle types of 7, 8, 9, and 10.

We next discuss how to model processes and resources in the traffic systems. We
refer to the process of a vehicle of type i passing through the intersection as Process i. As
shown in Figure 7a, Automaton P1 is used to model the working status of Process 1. The
1st type of vehicle needs to occupy Resources a and d successively to pass through the
intersection. Thus, in State 0, the vehicle should first apply for the usage of Resource a.
Upon the occurrence of e1

a , A1 moves from State 0 to State 1. In State 1, if the vehicle receives
an acknowledgement from the CRM, it drives into Resources a, and A1 moves from State 1
to State 2. After that, the vehicle further sends the usage of Resource d to the CRM (e1

a→d
occurs in State 2). After receiving an acknowledgment, the vehicle drives into Resource d
(σ1

a→d occurs in State 3). When the vehicle leaves Resource d (π1
d occurs in State 4), it passes

through the intersection. Similarly, we can construct P2, . . . , P12.
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Figure 7. Automata P1 and Ra; (a) Automaton P1 for Process 1; (b) Automaton Ra for Resource a.

Next, we show how to model Resources a. By Figure 6, Resource a can be occupied by
the 1st type of vehicle (a vehicle coming from Road 1 and going to Road 5), the 3rd type of
vehicle (a vehicle coming from Road 3 and going to Road 7), a 5th type of vehicle (a vehicle
coming from Road 1 and going to Road 7), or the 10th type of vehicle (a vehicle coming
from Road 2 and going to Road 7). Thus, in Figure 7b, σ1

a , σ3
b→a, σ5

a , and σ10
e→a are defined in

State 0 of Ra. When σ1
a , σ3

b→a, σ5
a , and σ10

e→a occurs in State 0, Resource 1 is occupied by a 1st,
3rd, 5th, and 10th type of vehicles, respectively, and Automaton Ra moves from State 0 to
State 1. When the 1st, 3rd, 5th, 9th, and 10th type of vehicles leave Resource a, upon the
occurrences of σ1

a→d, π3
a , π5

a , σ9
a→e, and π10

a , automaton Ra returns to State 0 from States 1.
Similarly, we can construct R2, . . . , R5.

Suppose that there are n vehicles arriving at the intersection. Without loss of gen-
erality, let vehicle i be a vehicle of type mi, i = 1, . . . , n. Then, the dynamics of re-
source occupation of the traffic system can be obtained by G = (Q, Σ, f , Γ, q0, Qm) =
Pm1 || · · · ||Pmn ||Ra|| · · · ||Re. Note that the traffic system should be safe, i.e., all the vehicles
in an intersection cannot collide. Since a resource can be occupied by one vehicle at a time,
the safety of the system has been guaranteed by the system model G. To guide vehicles to
leave the intersection efficiently, we define deadlock-free and the efficiency of the traffic
system as follows.

• Deadlock-Free: All the vehicles must not block each other so that each of them cannot
accomplish the movement. Deadlock-freeness requires that vehicles in an intersection
should not block other vehicles. There exists a deadlock in the traffic system if there
exists a group of vehicles that block each other and cannot move in the intersection.
For each deadlock, there exists a group of vehicles that want to drive into a resource
already occupied by another vehicle in this group. For example, it is supposed that
Resources a and e are occupied by left-turn vehicles v1 (coming from Road 1) and v2
(coming from Road 2), respectively. The intersection system is blocked since Vehicle v1
is waiting for Vehicle v2 to leave Resource e, and Vehicle v2 is waiting for Vehicle v1 to
leave Resource a. When there exists a deadlock, there does not exist an event sequence
from the current state to the marked state of G since some vehicles can never leave
the intersection.

• Efficiency: the total time for all the vehicles to accomplish their movements is minimal.
That is, among all the sequences that start from the current state and end up at the
marked state, efficiency requires us to select one with a minimal time cost. In other
words, the more efficient the proposed approch is, the less time a vehicle should take
for passing through the intersection. Correspondingly, the intersection can enjoy a
larger throughout capacity, and the queue length of vehicles delayed at the intersection
is smaller.

For a state q ∈ Q and an event sequence s ∈ Σ∗, the required time for the execution of
s from q, denoted by C(q, s), needs to be calculated. For example, we consider a sequence
s = σ3

3→be9
a→eσ9

a→ee3
b→ae9

e→cσ3
b→aσ9

e→c that is defined at the current state q. By s, it is not
hard to find that two vehicles are traveling in the intersection (a Type 3 vehicle from Road
3 to Road 7 and a Type 9 vehicle from Road 1 to Road 8). To calculate C(q, s), as shown in
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Figure 8, we need to first translate s into a “calendar” according to the execution order of
events in s. The calendar for the sequence s explicitly describes when each event in s should
be executed, and how long the execution lasts. In Figure 8, each line exhibits the movement
of a vehicle. The solid vertical bars and hollow rectangles represent uncontrollable events
and controllable events, respectively. The continuous parts of each line indicate that the
corresponding vehicle is traveling in the intersection. The broken parts of each line indicate
that the vehicle has stopped and is waiting at the intersection. The dashed arrows indicate
the execution order of the events, i.e., σ3

b→a is executed after e9
e→c. By Figure 8, the time cost

for executing s is about 5 s.

0 1 2 43 5

𝜎𝜎3→b3

𝑒𝑒b→a3

𝜎𝜎b→a3

𝜎𝜎1→a9

𝑒𝑒a→e9

𝜎𝜎a→e9

𝑒𝑒e→c9

𝜎𝜎e→c9

Time (s)

Figure 8. Calendar: the process of two vehicles passing through an intersection.

The structure of the traffic management system is depicted in Figure 9. It is worth
noting that in the traffic management system, we have Σc = Σ f = {σi

j , σi
k→j, πi

j : i ∈
P , j, k ∈ R}, i.e., all the controllable events are enforceable, and vice versa. For each
q ∈ Q and the prediction depth l ∈ N, the blue parts of Figure 9 compute all the feasible
sequences in Ξ(q, l). By definition, the state of G can be updated following the execution of
an enforceable event or an uncontrollable event occurrence. When the state of G is updated,
the red parts of Figure 9 return the solution of Problem 1 and execute its first event σ ∈ Σ f .
The yellow parts of Figure 9 translate σ into appropriate input time-driven signals to the
actuators of the vehicles. After the execution of σ, the state of the system is updated again,
and we repeat the above process.

Solution of 
Problem 1

System Automaton 
G 

q Q

f  Vehicle Local 
Controller

Model
Construction

,v 

Feasible Sequences 
(Algorithms 1& 2& 3)

( , )q l

Intersection Vehicle

An Uncontrollable
 Event Occurrence

State
Updation

Current State

Figure 9. The structure of the traffic management system.

In this section, we adopt an Instant Services Measure (ISM) to implement the proposed
approach. Specifically, the ISM immediately considers a vehicle once it arrives at the
intersection. In other words, the calculated solution is optimal for all the vehicles arriving
at the intersection.

Remark 1. Note that the system model must be refined upon each new vehicle arrival. Specifically,
suppose that system G now is in state q ∈ Q, if a new vehicle of type i approaches the intersection,
the system should first be updated to G(q)||Pi, where G(q) v G (“v” denotes subgraph) is the
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accessible part of G from q. Then, an optimal control strategy is calculated using the proposed
approach and the system model G(q)||Pi.

5. Simulation Results

Simulations are provided in this section to demonstrate the effectiveness of the pro-
posed mathematical model and optimization algorithm. The simulations were run on a
Windows 10.0 PC with a 3.8 GHz AMD CPU and 16 GB memory. All of the algorithms
were implemented in the Python programming language. In this paper, the arrival of
vehicles from each source road satisfies the Poisson distribution, where the parameter of
the Poisson distribution λ is 0.1, 0.13, 0.17, and 0.2. Note that λ is also called the vehicle
arrival rate (VAR). For example, when the VAR λ = 0.1, the average time interval between
two incoming vehicles is 10 s. On the other hand, it is 5 s when λ = 0.2. The probability of
going straight, turning left, or turning right for each vehicle arriving at the intersection is
specified as a uniform distribution.

5.1. Queue Length under Different VARs

First, we test the effectiveness and efficiency of the proposed algorithm by changing the
VARs. Figure 10 visualizes the volume of traffic density in terms of the quantity of vehicles
arriving at the intersection every 50 seconds. It is observed that a higher λ leads to a higher
traffic density. For example, in the second 50 s, there are 11, 12, 18, and 19 vehicles entering
the intersection when the arrival rates λ are set as 0.1, 0.13, 0.17, and 0.2, respectively. In
Figure 11, the x-axis, y-axis, and z-axis denote, respectively, the simulation time, vehicle
queue length, and VAR. As we can see from Figure 11, when λ = 0.1 and λ = 0.13, all the
vehicles can pass through the intersection freely, and the vehicle queue length is small. As
λ increases to 0.17, a minor traffic jam occurs. However, the queue length will not diverge
to an infinitely large number, and the intersection still works. When λ = 0.2, a traffic jam
occurs at the intersection due to the limitation of the spatial space.

[ 0 , 5 0 ] ( 5 0 , 1 0 0 ] ( 1 0 0 , 1 5 0 ] ( 1 5 0 , 2 0 0 ] ( 2 0 0 , 2 5 0 ] ( 2 5 0 , 3 0 0 ] ( 3 0 0 , 3 5 0 ] ( 3 5 0 , 4 0 0 ] ( 4 0 0 , 4 5 0 ] ( 4 5 0 , 5 0 0 ]

8

1 2

1 6

2 0

Nu
mb

er 
of 

veh
icle

s a
rriv

ing
 ev

ery
 50
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T i m e ( s )

 0 . 1
 0 . 1 3
 0 . 1 7
 0 . 2

Figure 10. Number of vehicles arriving at the intersection every 50 s when the VARs are 0.1, 0.13,
0.17, and 0.2.
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Figure 11. Numbers of vehicles queued at the intersection (queue lengths) when the VARs are 0.1,
0.13, 0.17, and 0.2.

5.2. Comparisons of Different Approaches under Different VARs

In the second simulation, we consider another two implementation measures of the
proposed approach, which are denoted by the First-Come-First-Serve Measure (FCFSM)
and the Period-Based Measure (PBM). In contrast to ISM, the FCFSM iteratively decides the
passing order of vehicles by their earliest arrival times at an intersection. In other words,
the earlier a vehicle arrives at the intersection, the higher priority it has going through the
intersection. This principle is adopted in [42–45] for scheduling vehicles in an intersection.
Different from the FIFOM and the ISM, the PBM first calculates an optimal passing order
of a batch of vehicles coming in the current period, then followed by the next period,
and so on. Before the first batch of vehicles leaves the intersection, the second batch of
vehicles must wait at the intersection. We found that [33–35,37,38,51–53] optimize vehicle
scheduling in a period-based principle.

All the measures are evaluated by two criteria: (i) traffic throughput (TT), i.e., the
number of vehicles leaving the intersection per unit time, and (ii) traffic smoothness (TS),
i.e., the average waiting time when vehicles arrive at and pass through the intersection.
Table 2 illustrates the performance of the above two measures under different VARs λ.
Particularly, in Table 2, “Mea” stands for “Measure”.

Table 2. Comparision of FCFSM, PBM, and ISM under different VARs.

Mea VAR TT (unit/s) TS (s) Mea VAR TT (unit/s) TS (s) Mea VAR TT (unit/s) TS (s)

FCFSM

0.10 1.37 42.29

PBM

0.10 1.78 32.25

ISM

0.10 2.02 27.33
0.13 1.42 40.86 0.13 1.87 33.06 0.13 2.00 31.00
0.17 1.37 41.94 0.17 1.58 38.42 0.17 1.87 33.41
0.20 1.73 45.19 0.20 2.08 40.66 0.20 2.18 34.74

As we can see from Table 2, compared with the FCFSM, the ISM increases the TT by
47.45%, 40.85%, 36.50%, and 26.01%, and it decreases the TS by 35.37%, 24.13%, 20.34%,
and 23.12%, when the VARs are taken as 0.10, 0.13, 0.17, and 0.20, respectively. The ISM
outperforms the FCFSM because the ISM allows more than one vehicle to drive in the
intersection as long as they do not collide with each other. However, FCFSM allows only
one vehicle to pass through the intersection simultaneously, which leads to extra delay.
Next, we compare the ISM with the PBM. As shown in Table 2, the ISM increases the TT
by 13.48%, 6.95%, 18.35%, and 4.81%, and it decreases the TS by 16.03%, 6.23%, 13.04%,
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and 14.56% when the VARs are taken as 0.10, 0.13, 0.17, and 0.20, respectively. The ISM
is more efficient than the PBM since the ISM considers all the vehicles approaching the
intersection, whereas the PBM considers only vehicles approaching the intersection in
one period. PBM leads to extra delay in the sense that all the vehicles approaching the
intersection have to wait at the intersection until the current batch of vehicles finish their
journey in the intersection.

5.3. Performance of Different Approaches under Changing VARs

In the above simulations, the performance of the proposed approach is tested under
four constant VARs λ. In practice, however, λ cannot be a constant. In other words, the
value of λ can change during the simulation. In the third simulation, we use a Markov
model to describe the changing conditions of the VAR λ. As depicted in Figure 12, there
are two states in the Markov model M. When M is in State 0, the VAR is λ1; and when M is
in State 1, the VAR is λ2. The state of the Markov model can be updated in each step of
the simulation. More specifically, in each step of the simulation, if M is in State 0, then the
system may make a state transition to State 1 with a probability of p2 and make no state
transition (still in State 0) with a probability of p1. If M is in State 1, the system may make
a state transition to State 0 with a probability of p4 and make no state transition (still in
State 1) with a probability of p3. Considering that the VAR cannot be changed in a short
space of time, we set p1 = 0.9, p2 = 0.1, p3 = 0.9, and p4 = 0.1. We consider four different
combinations of λ1 and λ2 in this experiment, as shown in Table 3.

Nondeadlock States 
(Algorithm 1)

Legal States 
(Algorithm 2)

Solution of 
Problem 1

Reference Trajectory
(5)

/ deadX / illegX

The Timed Petri 
Net Structure G 

(Fig.2)

z

ct T
uct T

Feedback Controller
(8)

Bicycle Model
(3)

A New Vehicle 
Arrival

State 
Updation

,v 
Actual
Action , ,e e ex y 

Feasible Sequences 
(Algorithm 3)

( , )z h
Intersection

Vehicle

0 11p
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4p

Figure 12. The Markov structure M for modeling the changing VARs.

Table 3. Combinations of the VARs λ1 and λ2.

Case λ1 λ2 Case λ1 λ2 Case λ1 λ2 Case λ1 λ2

1 0.10 0.13 2 0.13 0.15 3 0.15 0.17 4 0.17 0.20

Figure 13 shows the changing VARs when we take different combinations of λ1 and
λ2. We take Case 4 (λ1 = 0.17 and λ2 = 0.2) as an example. In the first 15 s, it has a VAR
of 0.2, and M is in State 0. Then, the Markov model M moves to State 1, and the VAR
is changed to 0.17. Next, after approximately 8 s, M returns to State 0, and the VAR is
again set to 0.2. Figure 14 shows the queue length of vehicles under different cases. Similar
to the first simulation, if Case 1 occurs, i.e., λ1 = 0.1 ∧ λ2 = 0.13, or Case 2 occurs, i.e.,
λ1 = 0.13 ∧ λ2 = 0.15, all the vehicles can pass through the intersection freely. If Case 3
occurs, i.e., λ1 = 0.15 ∧ λ2 = 0.17, a small traffic jam occurs at the intersection. If Case 4
occurs, i.e., λ1 = 0.17∧ λ2 = 0.2, a traffic jam occurs. The result reveals that our proposed
algorithm is robust to the changing VARs. In Table 4, we compare the ISM with the FCFSM
and the PBM under Cases 1, 2, 3, and 4. As shown in Table 4, compared with the FCFSM,
the ISM increases the TT by 34.78%, 46.09%, 30.41%, and 39.26%, and it decreases the TS
by 55.13%, 53.55%, 33.50%, and 29.05%, when we take cases 1, 2, 3, and 4, respectively.
Furthermore, compared with the PBM, the ISM increases the TT by 13.14%, 14.72%, 15.57%,
and 19.75%, and it decreases the TS by 43.25%, 37.39%, 23.66%, and 19.72% when we take
Cases 1, 2, 3, and 4, respectively. The proposed ISM still outperforms the FCFSM and the
PBM under changing VARs.



Mathematics 2022, 10, 4183 17 of 22

� ��� ��� ��� ��� ���

0 . 1

0 . 1 3

0 . 1 5

0 . 1 7

0 . 2

�

T i m e ( s )

 C a s e 1  C a s e 2  C a s e 3  C a s e 4

Figure 13. The changing arrival rates for different combinations of λ1 and λ2.
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Figure 14. Number of vehicles queued at the intersection (queue lengths) with different combinations
of λ1 and λ2.

Table 4. Comparision of FCFSM, PBM, and ISM under different cases.

Mea Case TT (unit/s) TS (s) Mea Case TT (unit/s) TS (s) Mea Case TT (unit/s) TS (s)

FCFSM

1 1.15 38.24

PBM

1 1.37 30.24

ISM

1 1.55 17.16
2 1.28 41.03 2 1.63 30.44 2 1.87 19.06
3 1.48 37.55 3 1.67 32.71 3 1.93 24.97
4 1.35 41.14 4 1.57 36.36 4 1.88 29.19

5.4. Performance of the ISM under Different Prediction Depths

As shown in Problem 1, an optimal control action can be calculated by looking ahead
l steps from the current state and then finding a sequence having the minimun cost and
executing the first component of this sequence. Intuitively, the deeper we search from the
current state (taking a larger l), the better a solution returns. If we set l to be infinitely large,
the returned solution would be the global optimum value. However, to save computing
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resources, we would like to take a small l. To balance the computing resources and
computing results, we next test the performance of the proposed approach under different
l. The performances are measured by the average queue length (AQL) and the number of
leaving vehicles (NLV), i.e., the number of vehicles passing through the intersection. The
results are shown in Table 5.

Table 5. Performance of ISM under different search depths.

Depth VAR AQL (unit) NLV (unit) Depth VAR AQL (unit) NLV (unit)

1

0.10 3.45 96.00

3

0.10 3.42 96.00
0.13 11.18 97.00 0.13 8.78 104.00
0.17 19.38 106.00 0.17 14.99 117.00
0.20 33.46 104.00 0.20 30.65 112.00

2

0.10 3.42 96.00

4

0.10 3.42 96.00
0.13 9.05 104.00 0.13 8.72 106.00
0.17 17.25 113.00 0.17 14.93 118.00
0.20 31.92 111.00 0.20 30.65 112.00

By Table 5, when the VAR is 0.10, both the AQL and the NLV have no dramatic changes
when l is taken as 1, 2, 3, and 4. That is because when the traffic flow is light, the “greedily
optimal” solution approximates the “global optimal” solution. We can look one step from
the current state to find an optimal control action to execute. However, when the VAR
increases to 0.2, the AQL is 33.46 and the NLV is 104 if l = 1, whereas for l = 4, the AQL is
30.65 and the NLV is 112. Clearly, if the traffic flow is heavy, a larger l will return a better
solution. In addition, the improvement of the performance is insignificant when we take
l = 3 and l = 4 even if the VAR is 0.2. This implies that we can find a near-global-optimal
control action by looking ahead only three steps at any instant, which can significantly
reduce computing resource consumption.

A video containing the simulation results that can be accessed at all time has been
shared on Onedrive (https://1drv.ms/v/s!Av-fOZK0QsIHhTlWwB4HjDlSk2Qd?e=pFw6
Ko, accessed on 1 October 2022). In this video, a PID controller is used for longitudinal
tracking, and a pure pursuit controller is used for lateral tracking. The execution frequency
of the low-level vehicle control module is 40.0 Hz.

6. Discussion

The proposed mathematical model can be applied to other physical systems that
involve resource sharing, such as robot scheduling in a warehouse [54,55].

To illustrate this, let us consider a simple warehouse environment depicted in
Figure 15a, where two mobile robots named R1 and R2 are serving in the planner en-
vironment. The warehouse environment is portioned into eight disjoint cells, and each
position is assigned a natural number of 1, . . . , 8. We call such a cell as a position. We
denote by P = {1, . . . , 8} the set of all the positions. For a given Position i ∈ P , we say
Position j ∈ P is a successor of Position i, denoted by i→ j, if there is a route from Position
i to Position j. Similarly, we say Position j ∈ P is a predecessor of Position i, denoted by
j → i, if there is a route from Position j to Position i. Let Suc(i) = {j ∈ P : i → j} be
the set of all the successors of Position i, and Pre(i) = {j ∈ P : j → i} be the set of all
the predecessors of Position i. For example, let us consider Position 2 in Figure 15a. Its
predecessors are Pre(2) = {1, 3}, and its successors are Suc(2) = {1, 3}.

https://1drv.ms/v/s!Av-fOZK0QsIHhTlWwB4HjDlSk2Qd?e=pFw6Ko
https://1drv.ms/v/s!Av-fOZK0QsIHhTlWwB4HjDlSk2Qd?e=pFw6Ko
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Figure 15. Modeling for warehouse; (a) A warehouse; (b) Process P1 for Robot 1; (c) Resource R2 for
Position 2.

Each robot is associated with a task, which is characterized as a target position in the
warehouse. A robot should move to the target position over a specific trace for completing
the task. The “dynamics” of the robot are modeled as a process automaton. In the automa-
ton, the system behaviors are abstracted to kinds of suitable-defined events, such as “a
robot moves from Position i to Position j” . For example, we assume that Robot R1 needs
to move to Position 5 via the position sequence of 1 → 2 → 3 → 5 to fulfill its task. The
process automaton for Robot R1 is modeled as P1 in Figure 15b, where e1

i→j means that

Robot R1 sends a request to the CRM for moving from Position i to Position j, and σ1
i→j

means that Robot R1 receives an acknowledgement and starts to move from Position i to
Position j. Similarly, we can model Robot R2 that moves from Position 7 to Position 2 via a
position sequence of 7→ 6→ 4→ 1→ 2.

At the same time, the resource automaton R2 for Position 2 is given in Figure 15c. By
Figure 15a, Position 2 can be occupied by robots coming from Position i ∈ Pre(2), and a
robot that is in Position 2 can move to Position i ∈ Suc(2). Thus, upon the occurrence of
σi

j→2, j ∈ Pre(2), Position 2 is occupied by Robot i, and R2 moves to State 1. When R2 is

in State 1, upon the occurrence of σi
2→j, j ∈ Suc(2), Position 2 becomes idle again, and R2

returns to State 0. Similarly, we can model Positions 1 and 3 ∼ 8.
The overall system can be obtained by G = P1||P2||R1|| · · · ||R8. By applying the

proposed algorithm, we can always find an optimal sequence to guide Robots 1 and 2 to
finish their tasks safely (without collision and deadlock) and efficiently (with the minimum
time cost).

7. Conclusions

In this paper, we have proposed an automaton model for resource allocation opti-
mization. This model is general in the sense that it can be applied to different types of
resource allocation problems. With the proposed model, we have developed an optimal
control mechanism that positively drives the system to a marked state in the most efficient
way. That is, among all the deadlock-free sequences, we develop algorithms to select one
having the minimum cost and then execute it by disabling and enforcing events. This is
accomplished in two steps, the first of which computes all the legal states from which we
can always arrive at a marked state, and the second step repeatedly enforces controllable
events by looking ahead so that only legal states can be reached and the cumulative cost for
executing these control decisions is minimized. As a case study, we have considered the
vehicle scheduling problem in a signal-free intersection. The intersection is divided into
several resources according to the crossing location of two different vehicles’ trajectories.
The algorithm is sufficiently efficient to consider each arrived vehicle in real time. The
simulation results demonstrated the effectiveness of the proposed model and algorithm.

One direction for future research is currently underway to validate the proposed
approach through physical experiments. Another direction in which one can enhance
the application scope of the proposed approach by accommodating partially observable
events in the system model, as some events are often unobservable by nature. Furthermore,
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according to the practical applications, other notions of optimality could also be specified,
and new algorithms for obtaining new type of the optimal controller may be developed.
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