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Abstract: This study uses the adaptive Type-II progressively censored competing risks model to esti-
mate the unknown parameters and the survival function of the Gompertz distribution.
Where the lifetime for each failure is considered independent, and each follows a unique Gom-
pertz distribution with different shape parameters. First, the Newton-Raphson method is used to
derive the maximum likelihood estimators (MLEs), and the existence and uniqueness of the esti-
mators are also demonstrated. We used the stochastic expectation maximization (SEM) method to
construct MLEs for unknown parameters, which simplified and facilitated computation. Based on
the asymptotic normality of the MLEs and SEM methods, we create the corresponding confidence
intervals for unknown parameters, and the delta approach is utilized to obtain the interval estimation
of the reliability function. Additionally, using two bootstrap techniques, the approximative interval
estimators for all unknowns are created. Furthermore, we computed the Bayes estimates of unknown
parameters as well as the survival function using the Markov chain Monte Carlo (MCMC) method in
the presence of square error and LINEX loss functions. Finally, we look into two real data sets and
create a simulation study to evaluate the efficacy of the established approaches.

Keywords: Gompertz distribution; competing risks model; adaptive progressively Type-II censoring;
maximum likelihood estimation; stochastic EM algorithm; bootstrap methods; delta method; Bayes
estimator; Markov chain Monte Carlo
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1. Introduction

In practical applications, especially in medical fields and engineering sciences, lifetime
studies are a useful tool to investigate the survival unit distribution. When analyzing
data from these studies, an important component is the assumed lifetime distribution.
Some common lifetime distributions include the exponential, generalized exponential,
Rayleigh, Pareto, and Weibull, to name a few. Besides these common life distributions,
the Gompertz distribution (Gompertz [1]) is also frequently used to analyze lifetime data.
Further, it is used to describe growth in plants, animals, bacteria, and cancer cells, see
Willemse and Koppelaar [2]. In recent studies, the Gompertz model has been success-
fully used to characterize growth curves in many fields, including biology, crop science,
medicine, engineering, computer science, economics, marketing, human mortality, human
demographics, and actuarial mortality, to name a few. Due to the recent global spread
of COVID-19 cases, this distribution has been used to predict and estimate the number
of COVID-19 cases in different countries. For instance, Rodriguez et al. [3] predicted a
different number of COVID-19 cases in Mexico using the Gompertz model. According to
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Jia et al. [4], the Gompertz model has been applied successfully to forecast the amount of
COVID-19 infections in China. The Gompertz distribution is thus worthwhile to investigate
in this paper due to its numerous uses and applications.

The mathematical symbols for the probability density function (PDF) and cumulative
distribution function (CDF) related to the Gompertz distribution are given, respectively, by

f (x; θ, λ) = θeλx exp
{
− θ

λ

(
eλx − 1

)}
, x > 0, λ, θ > 0, (1)

and

F(x; θ, λ) = 1− exp
{
− θ

λ

(
eλx − 1

)}
, x ≥ 0, λ, θ > 0. (2)

The reliability or survival function and the failure rate function become, respectively

S(t) = exp
{
− θ

λ

(
eλt − 1

)}
and h(t) = θeλt, t ≥ 0, λ, θ > 0, (3)

where, λ > 0 is the scale parameter and θ > 0 is the shape parameter. The failure rate (hazard)
function h(t) increases or decreases monotonically, and the log(h(t)) is linear with t. It is
known Gompertz distribution is a flexible model that can be skewed to the left or the right by
varying the values of θ and λ. Where the parameter λ satisfies the criteria listed below:

• If 0 < λ ≤ θ, then d f (x;θ,λ)
dx < 0, where x > 0, hence f (x; θ, λ) is monotonically decreasing.

• If λ > θ, the PDF (1) will monotonically increase when x ∈ (0, ln λ/θ
λ ) and decrease

when x ∈ ( ln λ/θ
λ , ∞).

• If λ < 1, then the hazard monotonically decreases over time t.
• If λ > 1, the hazard then monotonically increases with time t.
• When λ→ 0, the Gompertz distribution tends to become exponential.

The inference of the unknown lifetime parameters of the Gompertz distribution based
on censoring data has been widely discussed in the last two decades. Including, for exam-
ple, Jaheen [5] investigated this distribution based on progressive Type-II censoring using a
Bayesian methodology. Also, based on progressive Type-II censored samples, Wu et al. [6]
developed point and interval estimators for the parameters of the Gompertz distribution.
Wu et al. [7] explored the estimation of Gompertz distribution with a Type-II progressive
censoring scheme, where the units are randomly removed. Ismail [8] used step stress
partially accelerated life tests with two stress levels and Type-I censoring and the Gompertz
distribution as a life model to apply the Bayesian technique to the estimation problem.
The point and interval estimations of a two-parameter Gompertz distribution under par-
tially accelerated life tests with Type-II censoring were also covered by Ismail [9]. Soliman
et al. [10] have dealt with parameter estimation using progressive first-failure censored
data. Soliman and Al Sobhi [11] analyzed first-failure progressive data to deal with the
estimation of Gompertz distribution. The Bayes estimation and expected termination time
for the competing risks model for the Gompertz distribution under progressively hybrid
censoring with binomial removals have been taken into consideration by Wu and Shi [12].
The statistical inference for the Gompertz distribution with Type-II progressive hybrid data
and generalized progressively hybrid censored data have been covered in El-Din et al. [13].

Due to resource shortages, time restraints, employee changes, and accidents, data
cannot be fully completed in practice when studying lifetime experiments. Experimenters
use filtering or censoring techniques to shorten testing times and associated expenses.
The two most common forms of censored systems in literature are Type-I and Type-II.
With Type-I censoring, the test is over at a pre-fixed time, whereas with Type-II censoring,
only the first m failed units in a random sample of size n (m < n) are observed. Or
equivalent, the experiment stops when it collects a specified amount of data. Although this
method is easy to implement, it has the potential to waste a lot of test time. Furthermore,
until the test is over, no unit can be taken out of it. In order to increase the effectiveness of
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the experiment, progressive Type-II censoring was suggested. With this censoring method,
test units can be eliminated at different points throughout the experiment. We refer to
Balakrishnan and Cramer [14] for additional information. The following illustrates how
the progressive Type-II censoring model works.

Denote X1, X2, . . . , Xn as the respective lifetimes of the n units that are placed on a
life test. the progressive Type-II censoring scheme < =(R1, R2, . . . , Rm) and the number of
units observed m (m < n) are determined before the experiment. Ri > 0, i = 1, 2, . . . , m and

n = m +
m
∑

i=1
Ri. The remaining Ri units are arbitrarily removed from the experiment once

the ith failure is noticed. As long as this rule is followed, the experiment will continue until
m failures are observed and here the experiment ends. As a result, the observed statistics
for the progressive Type-II right censoring order are (X1:m:n, X2:m:n,. . . .,Xm:m:n). This model
simulates the real-world scenario where some units are lost or removed throughout the
experiment, which makes it more logical than Type-II censoring. Even while progressive
censorship can considerably increase the effectiveness of the experiment, the trial’s runtime
is frequently still too long. In many cases, it is important to know how long before a
particular event occurs, especially in clinical research. Ng et al. [15] suggested adaptive
Type-II progressive censoring to improve the effectiveness of statistical inference and
reduce overall test duration. This plan operates as follows: Consider putting n identical
units through a life test. The observed number of failures m(m < n) is predetermined,
and the test time is permitted to extend beyond the time T that is specified beforehand.
The progressive censoring method < is specified, although some of the Ri′s values may
change accordingly during the life test. As explained above, after the ith failure is noticed
during the life test, Ri units are at random removed from the test. We write Xi:m:n, i =
1, 2, . . . , m, to represent the m fully observed lifetimes. If the mth failure time occurs
before time T (i.e. Xm:m:n < T), the test ends at time Xm:m:n using the same progressive

censoring scheme (R1, R2, . . . , Rm), where where Rm = n−m−
m−1
∑

i=1
Ri. If Jth failure time

happens before time T, i.e., XJ:m:n < T < XJ+1:m:n, (1 ≤ J ≤ m− 1), where X0:m:n ≡ 0 and
Xm+1:m:n ≡ ∞, then we adapt the number of units progressively withdrawn from test upon
failures by setting RJ+1 = RJ+2 = . . . = Rm−1 = 0, and at the time Xm:m:n all remaining

units Rm are eliminated, where Rm = n−m−
J

∑
i=1

Ri. So, in this situation, the effectively

applied progressive censored scheme is (R1, R2, . . . , RJ , 0, 0, . . . , 0, n−m−
J

∑
i=1

Ri). In this

study, we employ Xi instead of Xi:m:n; i = 1, 2, . . . , m. One of the following two scenarios
might represent the observed data under-considered censoring scheme:

Case 1: (X1, R1), (X2, R2), . . . , (Xm, Rm), if Xm < T, where Rm = n−m−
m−1
∑

i=1
Ri,

Case 2: (X1, R1), . . . , (XJ , RJ), (XJ+1, 0), . . . , (Xm−1, 0), (Xm, Rm), if XJ < T < XJ+1.

It should be noted that Type-II and Type-II progressive censoring schemes are both
extensions of the the adaptive Type-II censored scheme. While adaptive Type-II censored
scheme reduces to Type-II censoring scheme if T = 0, J = 0, no units will be removed,
and if T = 1, J = m, Ri(i = 1, 2, . . . , m) survival units will be eliminated at random during
the trial, adaptive Type-II censored scheme is exactly Type-II progressive censored scheme.

There have been a lot of discussions recently about the adaptive Type-II censored
scheme. As an illustration, Sobhi and Soliman [16] worked with the exponentiated Weibull
distribution, they investigated the estimate of its parameters, reliability, and hazard func-
tions. They employed the approach of Bayesian estimation as well as the MLE under the
adaptive Type-II censored scheme. ML and Bayes estimates for the unknown parameters
of the inverse Weibull distribution under the adaptive Type-II censored scheme were de-
scribed by Nassar and Abo-Kasem [17]. According to the adaptive Type-II censored scheme,
Sewailem and Baklizi [18] investigated the ML and Bayes estimates for the log-logistic
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distribution parameters. The estimations of entropy for inverse Weibull distributions using
the adaptive Type-II censored scheme were developed by Xu and Gui [19]. The parameters
of an exponentiated inverted Rayleigh model were calculated by Panahi and Moradi [20].
They studied the MLE and Bayesian analysis under an adaptive Type-II censored hybrid
censored scheme. Chen and Gui [21] concentrated on a statistical analysis of the Chen and
Gui Chen model with adaptive progressive Type-II censoring. Kumarswamy-exponential
distribution was taken into consideration in the adaptive progressive Type-II censoring
technique by Mohan and Chacko [22]. Under the adaptive progressive Type-II censoring
scheme, Hora et al. [23] considered the classical and Bayesian inferences for unknown
parameters of the inverse Lomax distribution. Recently, using the adaptive Type-II progres-
sive censored sample from the Gompertz distribution, Amein et al. [24] examined several
estimation strategies.

The adaptive Type-II progressive censored is used in this paper instead of Type-I,
Type-II, and Type-II progressive censored schemes because it favors experiments where
units must be disassembled at different stages of failure before the appropriate intended
sample size is reached and also has a predetermined time during which the experiment
can occur.

In some medical or engineering studies, individuals may fail due to different failure
causes. In literature, it refers to the competing risks model. According to the competing
risks model, observable data include the individual failure time and a cause-of-failure
indicator. These failure factors might or might not be independent. In most cases, when
analyzing data on competing risks, the failure factors are considered to be independent
of each other. For example, a patient can die from breast cancer or stroke, but he cannot
die from both. In the same field, when studying thyroid cancer, three causal factors play a
possible role in thyroid cancer. The first is radiation exposure, the second is an elevated
level of thyroid-stimulating hormone, and the third suggested factor is prolonged exposure
to iodine deficiency. Based on the assessment of these factors, patients are divided into low
or high-risk groups.

Another example is applied in the industrial and mechanical fields, an assembly de-
vice may fail to break the welding/bond plate front due to fatigue, or low electrical/optical
signal (voltage, current, or light intensity) to an unacceptable level due to aging deterio-
ration. In this example, the electronic product fails due to two independent elements of
failure: welding interface fracture (catastrophic failure or difficult failure) and brightness of
electrical/optical signal reductions (degradation failure or fine failure). Crowder [25] is a
reliable source for a comprehensive investigation of several competing risk models.

Many academics have recently studied statistical inference for the parameters of vari-
ous lifetime parametric models utilizing various censoring techniques with competing risk
data. Kundu et al. [26], for instance, took into account the analysis of competing risks data
when the data are progressively Type-II censored from exponential distributions. Based on
progressive Type-II censoring of competing risks, Pareek et al. [27] determined the MLEs
of the parameters of Weibull distributions and their asymptotic variance-covariance. When
the lifetime distributions are Weibull distributions, Kundu and Pradhan [28] studied the
Bayesian inference of the unknown parameters of the progressively censored competing
risks data. The estimators of the parameters for Lomax distributions were determined by
Cramer and Schmiedt [29] using a progressive Type-II censoring competitive risks model.
For the distribution parameters, they calculated the expected Fisher information matrices
and MLEs. Generalized exponential distribution with adaptive Type-II progressive hybrid
censored competing risks data was studied by Ashour and Nassar [30]. A competing risks
model with a generalized Type I hybrid censoring method was presented by Mao et al. [31].
They estimated both exact and approximate confidence intervals using the exact dis-
tributions,asymptotic distributions, and parametric bootstrap approaches, respectively.
Wu and Shi [12]developed the Bayes estimation for the two-parameter Gompertz distri-
bution competitive risks model under Type-I gradually hybrid censoring scheme with
binomial removals. The point estimate and point prediction for a class of an exponen-



Mathematics 2022, 10, 4274 5 of 38

tial distribution with Type-I progressively interval-censored competing risks data were
studied by Ahmadi et al. [32]. Dey et al. [33] took into account the Bayesian analy-
sis of modified Weibull distribution under progressively censored competing risk mod-
els. Inference techniques for the Weibull distribution under adaptive Type-I progres-
sive hybrid censored competing risks data are described by Ashour and Nassar [34].
Additionally, a competing risk model using exponential distributions and the adaptive
Type-II progressively censoring scheme is also taken into account by Hemmati and Khor-
ram [35]. They developed MLEs of unknown parameters and constructed the confidence in-
tervals as well as the two different bootstraps of different unknown parameters. The Bayes
estimates and associated two-sides probability intervals were also likewise driven by
them. Azizi et al. [36] considered statistical inference for a competing risks model using
Weibull data with progressive interval censoring. Based on progressive Type-II censored
competing risks data with binomial removals, Chacko and Mohan [37] developed the
Bayesian analysis of the Weibull distribution. Baghestani and Baharanchi [38] investigate
an improper Weibull distribution for competing for risk analysis using a Bayesian tech-
nique. The statistical inference of the Burr-XII distribution under progressive Type-II cen-
sored competing risks data with binomial removals has been studied by Qin and Gui [39].
Progressive Type-II censored competing risks data from the linear exponential distribution
have been examined by Davies and Volterman [40]. In the adaptive Progressive Type-II
censored model with independent competing risks, Ren and Gui [41] proposed several of
statistical inference techniques to estimate the parameters and reliability of the Weibull
distribution. Recent research by Lodhi et al. [42] examined a competing risks model
utilizing the Gompertz distribution under progressive Type-II censoring where failure
cause probability distributions are identically distributed with a similar scale and variable
shape parameters.

The major goal of this research is to analyze the adaptive progressively Type-II cen-
sored with competing risks sample from the Gompertz distribution because there aren’t
many relevant works that deal with adaptive progressively Type-II censored competing
risks data. The model parameters and reliability function are estimated using the maximum
likelihood method. In this method, with the help of the graphical method, developed
by Balakrishnan and Kateri [43], the issue of the starting value of the MLEs is resolved
here. The existence and uniqueness of the MLEs of the model parameters are established.
The Newton-Rapshon (NR) method and the stochastic expectation-maximization (SEM)
algorithm are the two algorithms that are being taken into consideration to numerically
determine the MLEs for the parameters. We cover interval estimation using the two ap-
proximation information matrix methods and the bootstrap method. With the assumption
that the model parameters follow independent gamma priors for the two different shape
parameters and inverted gamma for the scale parameter, the Bayes estimators and asso-
ciated credible intervals are then obtained using the Metropolis-Hasting (MH) algorithm
based on squared error (SE) and linear-exponential (LINEX) loss functions. Last but not
least, through Monte Carlo simulation, the performances of estimates are assessed using
average bias and mean squared error (MSE) for point estimation and average length and
probability coverage for interval estimation.

The remaining portions of this article are structured as follows: We describe the model
in Section 2 of the paper. The MLEs of the unknown parameters based on the NR and
SEM techniques are discussed in Section 3 of this article. We also present the estimated
confidence intervals using the corresponding MLEs’ normalcy requirement. In Section 4,
The bootstrap confidence intervals for the unknown parameters as well as the reliability
function are obtained. The Markov chain Monte Carlo (MCMC) approach is used in
Section 5 to approximate the Bayesian estimates and to generate MCMC intervals for the
unknowns. Section 6 presents a Monte Carlo simulation analysis that contrasts the results
of the various approaches. This part also introduces actual data sets to demonstrate the
efficacy of the methods used in this paper. Several conclusions are provided as a conclusion
in Section 7.



Mathematics 2022, 10, 4274 6 of 38

2. Model Assumptions

In this light, failure times have an independent Gompertz distribution and two dif-
ferent causes for failure. As a result, the cause-specific density function for the random
variable Xik, k = 1, 2 is given by

fk(x; ϑ) = θkeλx exp
{
− θk

λ

(
eλx − 1

)}
, x > 0, λ, θk > 0, k = 1, 2, (4)

and the cause specific survival (reliability) function is defined as

F̄k(x; ϑ) = exp
{
− θk

λ

(
eλx − 1

)}
, x > 0, λ, θk > 0, k = 1, 2, (5)

where item’s lifetime is shown as Xi, i = 1, 2, . . . , n and the time the element i fails as a
result of cause k is Xi, where Xi = min{Xi1, Xi2}.

Remark 1. If X1 ∼Gompertz(θ1, λ) and X2 ∼Gompertz(θ2, λ) are mutually independent random
variables, then the survivor function of X = min{X1, X2} is a Gompertz random variable with
scale parameter (θ1 + θ2) and shape parameter λ. Suppose F̄(x) is a surviving function of X that
may be obtained by

F̄(x) = P(min{X1, X2} > x) = P(X1 > x)P(X2 > x)

= F̄1(x)F̄2(x) = exp
{
− θ1

λ

(
eλx − 1

)}
exp

{
− θ2

λ

(
eλx − 1

)}
= exp

[
− (θ1 + θ2)

λ

(
eλx − 1

)]
.

Consequently, the cumulative distribution function (F(x)) and probability density function
( f (x)) are given by

F(x) = 1− exp
[
− (θ1 + θ2)

λ

(
eλx − 1

)]
and f (x) = (θ1 + θ2)eλx exp

[
− (θ1 + θ2)

λ

(
eλx − 1

)]
. (6)

The life test experiment is ended with an adaptive progressively Type-II censoring sys-
tem under competing risks Gompertz models when the number of failures exceeds m < n.
The following algorithm is then used to create the random sample of total lifetime X:

A1: Generate two i.i.d samples of size n for each cause of failure as follows:

(X11, X21, . . . , Xn)
i.i.d
v Gompertz(θ1, λ) and (X12, X22, . . . , Xn)

i.i.d
v Gompertz(θ2, λ),

A2: For each i = 1, . . . , n, If Xi1 ≤ Xi2 set δi = 1 and Xi = Xi1, else, if Xi1 > Xi2 set δi = 2
and Xi = Xi1. We now have the data as follows.(X1, δ1), (X2, δ2), . . . , (Xn, δn). Set
n1 = {#Xi : Xi ∈ Xi1}, n2 = {#Xi : Xi ∈ Xi2}, and n = n1 + n2.

A3: This is now ordered irrespective of the cause of failure, but without losing track of the
corresponding cause of failure. Thus we now have the n usual order statistics.(X1:n, δ1),
(X2:n, δ2), . . . , (Xn:n, δn).

A4: In advance of the experiment, the number of units observed m (m < n) and the Type-
II progressive censoring scheme < =(R1, R2, . . . , Rm) are both determined, where

Ri > 0, i = 1, 2, m and
m
∑

i=1
Ri = n + m.

A5: To begin with X1:n is observed as the first failure and thus X1:m:n = X1:n. Then R1
of the n − 1 units that are still alive are chosen at random and removed from the
experiment. At this point, the second failure is observed as the next smallest lifetime
of the remaining units, i.e., (X2:m:n), and as a result, R2 of the remaining n− R1 − 2
units are arbitrarily censored from the study. This procedure is carried out repeatedly
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until all of the remaining Rm = n−m−
m−1
∑

i=1
Ri units are censored at the time of the

mth observed failure (Xm:m:n). We now have a progressively Type-II censoring data
(X1:m:n, δ∗1 ), (X2:m:n, δ∗2 ), . . . , (Xm:m:n, δ∗m), where we introduce the notation ∗ since δ∗′i s
are concomitants of the order statistics. Thus, δ∗i may not be equal to δi.

A6: Here, the expression δ∗i = k, k = 1, 2 indicates that the failure of unit i at time Xi:m:n
was failed by cause k. Let Ik(A) is the indicator of the event A, where

I1(δ
∗
i = 1) =

{
1, δ∗i = 1
0 else

and I2(δ
∗
i = 2) =

{
1, δ∗i = 2
0 else

.

The number of failures attributable to the first and second causes of failure, re-

spectively, are thus described by the random variables m1 =
m
∑

i=1
I(δ∗i = 1) and

m2 =
m
∑

i=1
I(δ∗i = 2), where m1 + m2 = m, and m > 0.

A7: Let’s say a test has a predetermined expected completion time T, but we allow the total test
time to exceed T. When Xm:m:n < T, the life testing experiment comes to an end. In the
absence of this, the experiment ends when XJ:m:n < T < XJ+1:m:n, (1 ≤ J ≤ m− 1).
We don’t discard any survival unit, it means that the censoring scheme < will be

changed to RJ+1 = RJ+2 = . . . = Rm−1 = 0, Rm = n−m−
J

∑
j=1

Rj. where J = max{j :

Xj:m:n < T}. Thus, under the adaptive Type-II progressive censoring scheme and in
presence of competing risks data, our observations are of the form (X1:m:n, δ∗1 , R1), . . . ,
(XJ:m:n, δ∗J , RJ), (XJ+1::m:n, δ∗J+1, 0), . . . , (Xm−1:m:n, δ∗m−1, 0), (Xm:m:n, δ∗m−1, Rm).

3. Maximum Likelihood Estimation

In this section, we look at the issue of constructing maximum likelihood estimators
(MLEs), their confidence intervals for unknown parameters, and the reliability function of
the Gompertz distribution using the adaptive Type-II progressive censoring scheme and
competing risks data. Here, it is suggested to estimate the unknown parameters using
the NR and SEM algorithms. These two algorithms each have benefits and drawbacks.
In this case, the SEM algorithm outperforms the NR algorithm by avoiding saddle points
and resolving the issues with local maxima by repeatedly simulating new values.
Moreover, the calculations are accelerated and made simpler by the NR approach. There-
fore, it can be challenging to select one algorithm over another. It might be preferable to
consider the two strategies as alternatives and do a numerical search to assess how the
outcomes respond to each technique.

3.1. MLE via Newton–Raphson Procedure

According to the previously mentioned assumptions, the likelihood function of the
competing risk model can be expressed as follows (see Kundu et al. [26])

L(ϑ; x) = CJ

m

∏
i=1

[ f1(xi)(F̄2(xi))]
I(δi=1){[ f2(xi)(F̄1(xi))]

I(δi=2)}
J

∏
i=1

[F̄(xi)]
Ri [F̄(xm)]

R∗ , (7)

where

CJ =
m

∏
i=1

(n− i + 1−
max{i−1,J}

∑
j=1

Rj, ), R∗ = n−m−
J

∑
i=1

Ri, and F̄k(xi) = 1− Fk(xi), k = 1, 2
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From (1), (2) and (7), we obtain the likelihood function of observed sample data X, it
can be written as

L(ϑ; x) = CJθ
m1
1 θm2

2 eλ ∑m
i=1 xi exp

{
−A(x, λ)∑2

k=1 θk

λ

}
, (8)

where

A(x, λ) =
m

∑
i=1

(
eλxi − 1

)
+

J

∑
i=1

Ri

(
eλxi − 1

)
+ R∗

(
eλxm − 1

)
. (9)

The additive constant CJ is ignored by the log-likelihood function, which is given by:

L(ϑ; x) ∝
2

∑
k=1

mk log θk + λ
m

∑
i=1

xi −
A(x, λ)∑2

k=1 θk

λ
,

The log-likelihood function’s first order derivatives with respect to θ1, θ2 and λ are
given by

∂L(ϑ; x)
∂θk

=
mk
θk
− A(x, λ)

λ
= 0, k = 1, 2, (10)

and
∂L(ϑ; x)

∂λ
=

m

∑
i=1

xi +
∑2

k=1 θk

λ

{
A(x, λ)

λ
− B(x, λ)

}
= 0, (11)

where, A(x, λ) is given by (9) and B(x, λ) = ∑m
i=1 xieλxi + ∑J

i=1 Rixieλxi + Rmxmeλxm .
From Equation (10), the MLE of θk is given by

θ̂k(λ) =
mkλ̂

A(x, λ̂)
, k = 1, 2. (12)

Theorem 1. Assume that under an adaptive Type-II progressively censoring scheme, the failure
rates for the competing risks follow the Gompertz distribution with different parameters θ1 and θ2,
for θ1 > 0, θ2 > 0 and λ > 0, the MLE of θk, k = 1, 2 exists and is given by (12).

Proof. Since log t ≤ t− 1, t > 0 holds and let t = θk
θ̂k

, then

mk log θk = mk log
θk

θ̂k
+ mk log θ̂k

≤ mk
θk

θ̂k
−mk + mk log θ̂k

=
θk A(x, λ)

λ
−mk + mk log θ̂k.

Which implies that

L(ϑ; x) ∝
2

∑
k=1

mk log θk + λ
m

∑
i=1

xi −
∑2

k=1 θk

λ
A(x, λ)

≤
2

∑
k=1

[
θk A(x, λ)

λ
−mk + mk log θ̂k

]
+ λ

m

∑
i=1

xi −
∑2

k=1 θk

λ
A(x, λ).

From (12), by using

mk =
θ̂k A(x, λ)

λ
,
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then we have

L(ϑ; x) ≤
2

∑
k=1

mk log θ̂k + λ
m

∑
i=1

xi −
∑2

k=1 θk

λ
A(x, λ) = L

(
ϑ̂; x
)

Equality holds if and only if θ1 = θ̂k, k = 1, 2.
By omitting the constant and substituting θ̂k(λ) into L(ϑ; x), we may obtain the profile

log-likelihood function of λ as follows.

H(λ) ∝ m[log λ− log A(x, λ)] + λ
m

∑
i=1

xi . (13)

Shi and Wu [44] proof that the profile log-likelihood function H(λ) is concave by using
Cauchy–Schwarz inequality. From this point, we can conclude H(λ) is unimodal and has a
singular maximum. Since H(λ) is unimodal, most of the common iterative approaches can
be used to determine the MLE of λ. The MLE λ̂ of λ satisfies the following equation,

λ = g(λ) , (14)

where,

g(λ) =
[

B(x, λ)

A(x, λ)
− x̄
]−1

(15)

From (14), we can determine the estimated value of the shape parameter λ by applying
the method of a simple iterative scheme described by Kundu [45]. Once the iteration results
become stable, the MLEs of unknown parameters, say θ̂1NR , θ̂2NR and λ̂NR can be obtained.
The main process is as follows:

Step 1: Start with an initial guess of λ, say λ(0) and set l = 0.

Step 2: Substitute λ(0) into the right of Equation (14) and λ(l+1) can be calculated.

Step 3: Stop the iterative procedure when
∣∣∣λ(l+1) − λ(l)

∣∣∣ < ε, where ε is a tolerable error.

Step 4: Once we obtain λ̂NR, the MLEs of θk, k = 1, 2 can be obtained from (12), say θ̂kNR ,

k = 1, 2.

Using the MLE’s invariance property and the MLEs θ̂1NR , θ̂2NR and λ̂NR, the reliability
function’s MLE can be determined from (6) by

ŜNR(t) = exp[−
(θ̂1NR + θ̂2NR)

λ̂NR
(eλ̂NRt − 1)], t ≥ 0. (16)

3.2. Asymptotic Confidence Intervals

In this part, we use the MLE of the parameter ϑ to estimate the asymptotic distribution
and the confidence interval of ϑ = (θ1, θ2, λ). The Fisher information matrix, represented
by the symbol I(ϑ), is the inverse of the variance-covariance matrix of the MLE of the

vector parameter ϑ, which is given by I(ϑ) = −E
{

∂2L(ϑ;x)
∂ϑ2

}
. Additionally, the symmetric

matrix Iobs(ϑ), which represents the observed fisher information matrix, can be used to
approximate the value of I(ϑ), and it is easily obtained by

Iobs(ϑ) = Iobs(θ1, θ2, λ) =
(
Oij
)
= (
−∂2L(ϑ; x)

∂ϑi∂ϑj
), ϑ = (ϑ1, ϑ2, ϑ3) = (θ1, θ2, λ). (17)
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The following equations can be used to determine the components of the observed
fisher information matrix from (10).

O11 =
−∂2L(ϑ; x)

∂θ2
1

=
m1

θ2
1

, O12 = O21 =
−∂2L(ϑ; x)

∂θ1∂θ2
= 0, O22 =

−∂2L(ϑ; x)
∂θ2

2
=

m2

θ2
2

,

O13 = O31 = O23 = O32 =
−∂2L(ϑ; x)

∂θ1∂λ
=
−∂2L(ϑ; x)

∂θ2∂λ
=

A(x, λ)

λ2 − B(x, λ)

λ
,

and

O33 =
−∂2L(ϑ; x)

∂λ2 =
2 ∑2

k=1 θk A(x, λ)

λ3 − ∑2
k=1 θkB(x, λ)

λ2 − ∑2
k=1 θkB(x, λ)

λ2 +
∑2

k=1 θkC(x, λ)

λ
,

where, C(x, λ) = ∑m
i=1 x2

i eλxi + ∑J
i=1 Rix2

i eλxi + Rmx2
meλxm . The approximate confidence

intervals for the unknown model parameters are based on the asymptotic distribution of
the MLEs. It can be easily shown that for large n,

ϑ̂NR − ϑ v N(0, v(ϑ̂NR)), (18)

where a v(ϑ̂NR) is the Cramer-Rao lower bound represented by the inverse matrix of I(ϑ),
let’s say I−1

obs(ϑ̂NR), and it is denoted as follows

I−1
obs(ϑ̂NR) =

 V11 V12 V13
V21 V22 V23
V31 V32 V33

 (19)

be the variance-covariance matrix of ϑ̂NR. Based on Slutsky’s Theorem, we can show that
the pivotal quantities Zϑi = (ϑ̂iNR − ϑi)/

√
Vii, i = 1, 2, 3, converge in distribution to the

standard normal distribution. Therefore, two-sided 100(1− α)% approximate confidence
intervals (ACIs) for ϑ are given by:

ϑ̂iNR ∓ Zα/2
√

Vii, i = 1, 2, 3, ϑ̂NR = θ̂1NR , θ̂2NR or λ̂NR,

where, Zα/2 is the upper (α/2)-th point of the standard normal distribution.
The lower approximative confidence intervals computed using the previous procedure

occasionally have negative values. The delta approach, proposed by Green [46], can be used
to approximate confidence intervals to get around this issue. It is possible to approximate
the distribution of log ϑ̂NR (Meeker and Escobar [47]) using a normal distribution. Or
equivalent

Zlog θ =
log ϑ̂NR − log ϑ

V̂ar(log ϑ̂NR)
→ N(0, 1); ϑ = θ1, θ2, or λ, (20)

where the V̂ar(log ϑ̂NR) can be approximated by delta method as
V̂ar(log ϑ̂NR) = V̂ar(ϑ̂NR)/ϑ̂2

NR. In light of this, the two-sided 100(1− α)% normal ap-
proximation confidence interval for a positive parameter like ϑ can be expressed asϑ̂NR exp

−Z(1−α/2)

√
V̂ar(ϑ̂NR)

ϑ̂NR

, ϑ̂NR exp

Z(1−α/2)

√
V̂ar(ϑ̂NR)

ϑ̂NR

, (21)

where ϑ̂NR and V̂ar(ϑ̂NR) are the MLE and asymptotic variance of ϑ̂NR = θ̂1NR , θ̂2NR or λ̂NR,
respectively.

It is evident that the variance of S(t) is required to compute the asymptotic confidence
interval of it. For this purpose, the delta method is also used again. The delta method is
a statistical approach to derive an approximate probability distribution for a function of
an asymptotically normal estimator using the Taylor series approximation. If W(ϑ), is any
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function of ϑ, the variance of ϑ and the first derivative of the function W(ϑ) need to be
considered in calculating the approximate for the variance of W(ϑ). Using this method,
the approximate variances of ŜNR(t) is given by

V(ŜNR(t)) w (
∂S(t)
∂θ1

,
∂S(t)
∂θ2

,
∂S(t)

∂λ
)V(ϑ̂NR)(

∂S(t)
∂θ1

,
∂S(t)
∂θ2

,
∂S(t)

∂λ
)T , (22)

where V(ϑ̂NR) = I−1
obs(ϑ̂NR) is given by (19). Upon using the approximate variances of

ŜNR(t) given above, the 100(1− α)% asymptotic confidence intervals of S(t) with respect
to NR method is given byŜNR(t) exp

−Z(1−α/2)

√
V(ŜNR(t))

ŜNR(t)

, ŜNR(t) exp

Z(1−α/2)

√
V(ŜNR(t))

ŜNR(t)

, (23)

The second derivatives of the log-likelihood are required for all iterations of the NR
method, which can occasionally be challenging. Additionally, it is well known that the NR
technique does not always converge and that the MLEs obtained by using it are highly
sensitive to the starting parameter values. The stochastic expectation maximization (SEM)
algorithm is used in the following paragraph to compute the MLEs and their asymptotic
variance-covariance matrix.

3.3. MLE via Stochastic EM Algorithm

The expectation maximization (EM) algorithm is an effective method for estimating the
MLEs in a missing or incomplete information environment. Dempster and colleagues [48]
developed the EM algorithm as an iterative method for computing MLEs. Two steps are
used in the algorithm’s estimation of the parameters: the expectation step (E-step) and
the maximization step (M-step). Expectation-Maximization, sometimes known as the EM
algorithm, is the name given to the process. Assuming that incomplete data is observed,
the E-step determines the expected value of the likelihood function with complete data.
By maximizing the expected likelihood function derived in the E-step, we find the estimates
in the M-step. After identifying the values that best fit the expected likelihood function,
the parameters update the preliminary estimations. We acquire the MLEs for model
parameters by doing the E-step and the M-step repeatedly up until the point at which the
preliminary estimates converge. Here, the adaptive progressive Type-II censoring scheme
can be viewed as missing data, so the EM algorithm is developed to obtain the MLEs of
the parameters.

Let’s use the notation X = (X1, X2, . . . , Xm) and Zi = (Zi1, Zi2, . . . , ZiRi ) to represent
the observed data and Zi = (Zi1, Zi2, . . . , ZiRi ), Zm = (Zm1, Zm2, . . . , ZmRm) for the censored
data at the time Xi, i = 1, 2, . . . ,J and Xm. We represent Z as

Z = {Zij, j, 1, 2, . . . , Ri, i, 1, 2, . . . , J} ∪ {Zmj, j, 1, 2, . . . , Rm}, Rm = n − m −
J

∑
j=1

Rj. Then,

W = (X, Z) indicates the complete data in this case. In terms of competing risks with
adaptive progressive Type-II censoring, the joint density function of W = (X, Z) is thus
given by

LW = CJ

2

∏
k=1

mk

∏
i=1

[ fk(xi)(F̄3−k(xi))]
I(δ∗i =k)

J

∏
i=1

Ri

∏
j=1

[
fk
(
zij
)(

F̄3−k
(
zij
))]I(δ∗i =k)

×
Rm

∏
j=1

[
fk
(
zmj
)(

F̄3−k
(
zmj
))]I(δ∗i =k), (24)
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The corresponding log-likelihood function, with exception of the constant term, is
given by

LW = n1 log(θ1) + n2 log(θ2) +
n(θ1 + θ2)

λ
+ λ

[
m

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

zij +
Rm

∑
j=1

zmj

]

− (θ1 + θ2)

λ

[
m

∑
i=1

eλxi +
J

∑
i=1

Ri

∑
j=1

eλzij +
Rm

∑
j=1

eλzmj

]
, (25)

where the number of failures nk due to risk k is given by

nk =
n

∑
i=1

I(δi = 1), k = 1, 2 and n = n1 + n2.

In an E-step, the pseudo-likelihood function must be selected. This function is ob-
tained from LW by substituting any function of zij, say w(zij) by its conditional expecta-
tion E(w(zij|zij > xi)), and w(zmj) by E(w(zmj|zmj > xm)). Consequently, the pseudo-
likelihood function is provided by

L∗W = n1 log(θ1) + n2 log(θ2) +
n(θ1 + θ2)

λ

+λ

{
m

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

E
[
zij|zij > xi

]
+

Rm

∑
j=1

E
[
zmj|zmj > xm

]}

− θ1 + θ2

λ

[
m

∑
i=1

eλxi +
J

∑
i=1

Ri

∑
j=1

E
[
eλzij |zij > xi

]
+

Rm

∑
j=1

E
[
eλzmj |zmj > xm

]]
, (26)

To obtain MLEs for unknown parameters θ1, θ2 and λ, we next calculate the partial
derivatives of L∗W for each of these unknown parameters. As a result, the following
equations exist.

E
[

∂L∗W
∂θk
|x
]
=

nk
θk

+
1
λ

[
n−

m

∑
i=1

eλxi −
J

∑
i=1

Ri

∑
j=1

E
[
eλzij |zij > xi

]
−

Rm

∑
j=1

E
[
eλzmj |zmj > xm

]]
(27)

and

E
[

∂L∗W
∂λ
|x
]

= −n(θ1 + θ2)

λ2 +

[
m

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

E
[
zij|zij > xi

]
+

Rm

∑
j=1

E
[
zmj|zmj > xm

]]

− (θ1 + θ2)

λ

[
m

∑
i=1

xieλxi +
J

∑
i=1

Ri

∑
j=1

E
[
zije

λzij |zij > xi

]
+

Rm

∑
j=1

E
[
zmje

λzmj |zmj > xm

]]
,

+
(θ1 + θ2)

λ2

[
m

∑
i=1

eλxi +
J

∑
i=1

Ri

∑
j=1

E
[
eλzij |zij > xi

]
+

Rm

∑
j=1

E
[
eλzmj |zmj > xm

]]
(28)

Therefore, we should calculate the following conditional expectations: E
[
eλt|t > xi

]
,

E[t|t > xi] and E
[
teλt|t > xi

]
, where, the conditional distribution of zij follows a truncated

Gompertz distribution accompanied by left truncation at xi, see Ng et al. [15].

fZij |Xi
(zij|xi, θ1, θ2, λ) =

fZij(zij; θ1, θ2, λ)

1− FXi (xi; θ1, θ2, λ)
, zij > xi, (29)
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where fZij(zij; θ1, θ2, λ) and FXi (xi; θ1, θ2, λ) are defined in (6). Hence,

fZij |Xi
(zij|xi, θ1, θ2, λ) = (θ1 + θ2)eλzij exp

[
− (θ1 + θ2)

λ

{
eλzij − eλxi

}]
, zij > xi. (30)

In this situation, it is challenging to find out the expectation required for the E-step.
We suggest simulating this expectation to estimate it. As a result, we can employ the SEM
algorithm that Celeux and Diebolt [49] first proposed. The S-Step, which is relatively simple
to construct regardless of the underlying distribution and the missing data, replaces the
E-Step in this algorithm, which is a very appealing feature. Numerous studies demon-
strate that the SEM algorithm outperforms the EM method. For more information, see
Belaghi et al. [50] and Mitra and Balakrishnan [51].

Denoting ϑ(l) = (θ
(l)
1 , θ

(l)
2 , λ(l)) the value of ϑ at the lth SEM cycle, then the (l + 1)th

cycle proceeds as follows
The S-Step: First, we generate the missing samples, zij ; i = 1, 2, . . . , J, j = 1, 2, . . . , Ri

and zmj, j = 1, 2, . . . , Rm, whose conditional distributions functions are given by

Gi (zij; θ1, θ2, λ|xi) =
FZ(zij; ϑ)− FXi (xi; ϑ)

1− FXi (xi; ϑ)
, zij > xi, (31)

and

Gm(zmj; θ1, θ2, λ|xm) =
FXi (zmj; ϑ)− FXm(xm; ϑ)

1− FXm(xm; ϑ)
, zmj > xm. (32)

To create a random sample from Equation (31), we can first create a random realization
of U(0, 1), let’s say, u, and then acquire a realization of zij as

zij = F−1(u + (1− u)FXi (xi; ϑ)),

where the inverse function of F(.) is represented by F−1(.). The conditional expectation
can be approximated by the sample data as

E
[
zij|zij > xi

]
v zij, E

[
eλzij |zij > xi

]
v eλzij , and E

[
zije

λzij |zij > xi

]
v zije

λzij .

In other words, given xi and xm, zij is a Gompertz variable left-truncated at xi. Given

(31), a random realization of z is readily generated from Gi (z; θ
(l)
1 , θ

(l)
2 , λ(l)|xi).

The M-Step: Subsequently, from (28) the ML estimators of λ at the (l + 1)th stage are
given by iterating the following fixed

λ(l+1) =
(−n + W(x, z,λ))

V(x, z,λ)
+

U(x, z)
[
λ(l)

]2

(θ
(l)
1
(
λ(l)

)
+ θ

(l)
2
(
λ(l)

)
)V(x, z,λ)

, (33)

where

U(x, z) =
m

∑
i=1

xi +
J

∑
i=1

Ri

∑
j=1

zij +
Rm

∑
j=1

zmj, V(x, z,λ) =
m

∑
i=1

xieλxi +
J

∑
i=1

Ri

∑
j=1

zije
λzij +

Rm

∑
j=1

zmje
λzmj ,

W(x, z,λ) =
m

∑
i=1

eλxi +
J

∑
i=1

Ri

∑
j=1

eλzij +
Rm

∑
j=1

eλzmj ,

and θ
(l+1)
k (.) is given from (27) by

θ
(l+1)
k (.) =

λnk
[W(x, z,λ)− n]

, k = 1, 2. (34)
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The MLEs of θ1, θ2, and λ, based on NR method can be considered as the initial values
in this algorithm. After an initial burn-in period (K0), the sequence of {ϑ(l), ϑ = θ1, θ2, or λ}
is averaged to obtain an approximation of the MLEs (θ̂1SEM , θ̂2SEM , λ̂SEM). Or equivalent,
the MLEs of the parameters are thus given by

ϑ̂SEM =
1

K− K0

K

∑
i=K0+1

ϑ(l), ϑ = θ1, θ2, or λ, (35)

where K = 1000 iterations are sufficient to estimate the parameters, and a burn-in period
of K0 = 100 iterations is sufficient under moderate missing data rates, see Ye and Ng [52].
Once we have obtained these estimates we can use the invariance property of MLE’s to
estimate the reliability function, i.e.,

ŜSEM(t) = exp

[
−
(θ̂1SEM + θ̂2SEM)

λ̂SEM
(eλ̂SEMt − 1)

]
, t ≥ 0, (36)

Additionally, we can generate the observed fisher’s information matrix using the
SEM algorithm. The observed information matrix I∗−1

obs (ϑ̂) can be inverted to produce the
asymptotic variance-covariance matrix of the MLEs (θ̂1SEM , θ̂2SEM, λ̂SEM) of θ1, θ2, and λ
and it is provided by

I∗−1
obs (ϑ̂) = −


∂LW
∂θ2

1

∂LW
∂θ1∂θ2

∂LW
∂θ1∂λ

∂LW
∂θ2

2

∂LW
∂θ2∂λ
∂LW
∂λ2


−1

θ1=θ̂1SEM ,θ2=θ̂2SEM ,λ=λ̂SEM

. (37)

The observed Fisher information matrix’s quantities can be found as

∂2LW

∂θ2
1

=
−n1

θ2
1

,
∂2LW

∂θ2
1

=
−n2

θ2
2

,
∂2LW
∂θ1∂θ2

=
∂2LW
∂θ2∂θ1

= 0,

∂2LW
∂λ2 =

2(θ1 + θ2)(n−W(x, z,λ))
λ3 +

2(θ1 + θ2)W
′
(x, z,λ)

λ2 − (θ1 + θ2)W
′′
(x, z,λ)

λ
,

∂2LW
∂λ∂θ1

=
∂2LW
∂λ∂θ2

=
W(x, z,λ)− n

λ2 − W
′
(x, z,λ)

λ
,

where,

W
′
(x, z,λ) =

m

∑
i=1

xieλxi +
J

∑
i=1

Ri

∑
j=1

zije
λzij +

Rm

∑
j=1

zmje
λzmj ,

W
′′
(x, z,λ) =

m

∑
i=1

x2
i eλxi +

J

∑
i=1

Ri

∑
j=1

z2
ije

λzij +
Rm

∑
j=1

z2
mje

λzmj .

Using the above variance-covariance matrix, one can derive the 100(1− α)% confi-
dence intervals for the parameter Ψ = (θ1, θ2, λ, S(t)) as followingΨ̂SEM exp

−Z(1−α/2)

√
V̂ar(Ψ̂SEM )

Ψ̂SEM

, φ̂SEM exp

Z(1−α/2)

√
V̂ar(Ψ̂SEM )

Ψ̂SEM

, (38)

where Ψ̂SEM = (θ̂1SEM , θ̂2SEM, λ̂SEM, ŜSEM(t)), V̂ar(θ̂1SEM ), V̂ar(θ̂2SEM ), and V̂ar(λ̂SEM ) are
given from (37) and V̂ar(ŜSEM(t)) can be obtained by using delta method.
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4. Confidence Intervals via Parametric Bootstrap

As described in the previous section, normal approximations work well when the
appropriate sample size is large. On the other hand, the assumption of normality does not
apply to a small sample size. Resampling methods, like the bootstrap, offer more precise
approximations of confidence intervals in this case. To determine approximate confidence
intervals for the Gompertz distribution’s parameters θ1, θ2, λ, and S(t), two bootstrap
resampling techniques are suggested in this section.

4.1. Bootstrap-p Method

Based on the percentile parametric bootstrap (Boot-p) approach described by Efron
and Tibshirani [53], we construct confidence intervals in this subsection. The procedure for
obtaining percentile Boot-p confidence intervals is shown below.

Step 1: Create an adaptive progressively Type-II censored competing risks sample x1:m:n,
x2:m:n, . . . , xm:m:n using the Gompertz distributions (Gompertz(θ1, λ), Gompertz(θ2, λ))
using the θ1, θ2, λ, n, m, t, T, and progressive censoring scheme (R1, R2, . . . , Rm). Then
calculate the MLEs Ψ̂ = (θ̂1, θ̂2, λ̂, Ŝ(t)). To create the adaptive Type II censored data
set with two competing causes of failure from Gompertz lifetimes, we follow the
instructions below.

(i) Generate m independent and identical observations W1, W2, . . . , Wm of size m
using a standard uniform distribution Uniform(0, 1).

(ii) For the progressive censoring schemes R1, R2, . . ., Rm, set

Vi = W1/(i+Rm+Rm−1+...+Rm−i+1)
i for i = 1, . . . , m.

(iii) Evaluate Ui = 1−VmVm−1 . . . Vm−i+1, i = 1, 2, . . . , m. Then {U1, U2, . . . , Um} is
progressive Type-II censored sample coming from Uniform(0, 1) distribution.

(iv) Thus, given initial values of θ1, θ2, λ, the sample data from Gompertz(θk, λ) of
progressively Type-II censoring scheme can be calculated by set
Xi =

1
λ log

[
1− λ

θk
log(1− Zi)

]
, i = 1, 2, . . . , m and k = 1, 2.

(v) For each i = 1, . . . , m, if Xi1 ≤ Xi2 set δ∗i = 1 and Xi = Xi1, else, if Xi1 > Xi2 set
δ∗i = 2 and Xi = Xi2. Hence, the required progressively Type-II censored com-
peting risks sample is (X1:m:n, δ∗1 ), (X2:m:n, δ∗2 ), . . .,(Xm:m:n, δ∗m). Where, the ran-

dom variables m1 =
m
∑

i=1
I
(
δ∗i = 1

)
and m2 =

m
∑

i=1
I
(
δ∗i = 2

)
describe the number

of failures due to the cause of failure k, k = 1, 2.
Note that: One can generate the required progressively Type-II censored com-
peting risks sample (X1:m:n, X2:m:n, . . . , Xm:m:n, δ∗m) from Gompertz(θ1 + θ2, λ).

(vi) Find the value of J that satisfies the condition XJ:m:n < T < XJ+1:m:n, then
discard the sample XJ+2:m:n, . . . , Xm:m:n

(vii) Using a truncated distribution f (x,θ1,θ2,λ)
1−F(xJ+1:m:n ,θ1,θ2,λ) , generate the first m− J − 1 or-

der statistics XJ+2:m:n, . . . , Xm:m:n, where the sample size is n− (J + 1+ ∑J
i=1 Ri).

Then we have the following observation: (X1:m:n, δ∗1 , R1),
(X2:m:n, δ∗2 , R2), . . .,(XJ:m:n, δ∗J , RJ), (XJ+1:m:n, δ∗J+1, 0),. . . (Xm−1:m:n, δ∗m−1, 0),
(Xm:m:n, δ∗m, Rm).

Step 2: Create a bootstrap sample x∗1:m:n, x∗2:m:n, . . ., x∗m:m:n, from Gompertz(θ̂1, λ̂) and

Gompertz(θ̂2, λ̂) as provided by the previous step based on n, m, (R1, R2, . . . , Rm),

θ̂1, θ̂2, λ̂, T.

Step 3: Using the bootstrap sample x∗1:m:n, x∗2:m:n, . . ., x∗m:m:n, determine the bootstrap

estimates of Ψ = (θ1, θ2, λ, S(t)), say Ψ̂∗ = (θ̂∗1 , θ̂∗2 , λ̂∗, Ŝ∗(t)).

Step 4: Repetition of Steps 2 and 3 B times, where, we can have B estimates Ψ∗(b)bp , where

b = 1, 2, . . . , B.
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Step 5: Get the bootstrap estimates in the form {Ψ̂∗[1], Ψ̂∗[2], . . . , Ψ̂∗[B]} by arranging

Ψ̂∗(b)={θ̂∗(b)1 , θ̂
∗(b)
2 , λ̂∗(b), Ŝ∗(b)(t)}, in ascending order, b = 1, 2, . . . , B.

Step 6: The two-sided 100(1− α)% confidence interval for parameters θ1, θ2, λ, or S(t) is

provided by (
Ψ̂∗[Bγ/2]

Boot-p
, Ψ̂∗[B(1−γ/2)]

Boot-p

)
, Ψ = θ1, θ2, λ, or S(t),

where [i] denotes the integer part of i.

4.2. Bootstrap-t Method

When the sample size is modest (m < 30), the bootstrap-t (Boot-t) approach, as
described by [53], allows for the computation of the confidence interval for the param-
eters of interest. The subsequent procedure can be used to generate parametric Boot-t
confidence intervals.

Step 1: Repeat Step 1 of the above technique to create an adaptive progressive Type-II

censored competing risks sample, such as (x1:m:n, x2:m:n, . . ., xm:m:n), using Gompertz

distributions. Next, compute the MLEs θ̂1, θ̂2, λ̂ and S(t) for the unknown parameters

θ1, θ2, λ and S(t).

Step 2: Using θ̂1, θ̂2, and λ̂, generate a bootstrap sample (x∗1:m:n, . . . , x∗m:m:n) from Gompertz

(θ̂1, λ̂) and Gompertz(θ̂2, λ̂) and compute the bootstrap estimates Ψ̂∗ = (θ̂∗1 , θ̂∗2 , λ̂∗, Ŝ∗(t)).

Further, using the Fisher information matrix and delta method, compute the variance

of Ψ̂∗, say V̂ar
(
Ψ̂∗
)
, Ψ = θ1, θ2, λ or S(t).

Step 3: Find the forthcoming statistics:

T∗i =

(
Ψ̂∗i − Ψ̂i

)√
V̂ar(Ψ̂∗i )

, i = 1, 2, 3, 4.

Step 4: Steps (2) through (3) should be repeated B times.

Step 5: Assume that Ĝ(y) = P(T∗i ≤ y) represents the cumulative distribution function of

T∗i , where i = 1, 2, . . . , 5, and that for a given 0 < α < 1 define Ψ̂boot−t(α) = Ψ̂+√
V̂ar(Ψ̂∗)Ĝ−1(α), then the approximate 100(1− α)% confidence interval of Ψ is

now given by [
Ψ̂Boot-t(

α

2
), Ψ̂Boot-t(1−

α

2
)
]
, Ψ̂ = θ̂1, θ̂2, λ̂ or Ŝ(t).

5. Bayesian Estimation Using MCMC

This section uses a Bayesian approach based on adaptive Type-II censored with compet-
ing risks data to estimate the unknown parameters and reliability function of the Gompertz
distribution. For the sake of simplicity, it is assumed that the unknown parameters θ1, θ2,
and λ are each independent and follow the gamma distribution, θ1 ∼ gamma(a1, b1), θ1 ∼
gamma(a2, b2) and λ ∼ gamma(a3, b3), respectively. The following can be used to express
the joint prior distribution:

π(θ1, θ2, λ) ∝ θa1−1
1 θa2−1

2 λa3−1e−(b1θ1+b2θ2+b3λ), θ1, θ2, λ, ai, bi > 0, i = 1, 2, 3. (39)

Thus, Equations (8) and (39) can be combined to yield the joint posterior distribution,
and the resulting expression is given by
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π∗(θ1, θ2, λ|x) ∝ θm1+a1−1
1 θm2+a2−1

2 λa3−1e−λ(b3−∑m
i=1 xi)e−(b1θ1+b2θ2) exp

{
−A(x, λ)∑2

k=1 θk

λ

}
, (40)

According to the SE and LINEX loss function, the Bayes estimator of any function θ1,
θ2, and λ, let’s say Φ(θ1, θ2, λ), may be written as

Φ̂BS = E(Φ(θ1, θ2, λ)|x) =
∫ ∞

0

∫ ∞
0

∫ ∞
0 Φ(θ1, θ2, λ)π∗(θ1, θ2, λ|x)dθ1dθ2dλ∫ ∞

0

∫ ∞
0

∫ ∞
0 π∗(θ1, θ2, λ|x)dθ1dθ2dλ

,

and

Φ̂LINEX = −1
c

log
[

E
(

e−cΦ(θ1,θ2,λ)|x
)]

= −1
c

log

∫ ∞
0

∫ ∞
0

∫ ∞
0 e−cΦ(θ1,θ2,λ)π∗(θ1, θ2, λ|x)dθ1dθ2dλ∫ ∞

0

∫ ∞
0

∫ ∞
0 π∗(θ1, θ2, λ|x)dθ1dθ2dλ

,

A numerical approach is needed to solve the Bayes estimators numerically under
the SE and LINEX loss functions because they cannot be obtained explicitly. Here, we
recommend incorporating the Metropolis-Hastings (M-H) into the Gibbs method to produce
the Bayes estimates for θ1, θ2, and λ. In the beginning, we can write the marginal posterior
distributions of θ1, θ2, and λ as

π∗1 (θ1|θ2, λ, x) ∝ θm1+a1−1
1 exp[−θ1(b1 +

A(x, λ)

λ
)] ∼ gamma(m1 + a1, (b1 +

A(x, λ)

λ
)), (41)

π∗2 (θ2|θ1, λ, x) ∝ θm1+a2−1
2 exp[−θ2(b2 +

A(x, λ)

λ
)] ∼ gamma(m2 + a2, (b2 +

A(x, λ)

λ
)), (42)

and

π∗3 (λ|θ1, θ2, x) ∝ λa3−1e−λ(b3−∑m
i=1 xi) exp{−A(x, λ)∑2

k=1 θk

λ
}, (43)

Since Equation (43) cannot be reduced to standard form, the posterior sample for
the parameter λ can be derived using the M-H algorithm (see Metropolis et al. [54],
and Hastings [55]). The MCMC algorithm will carry out the following actions:

Step 1: Select an initial guess of (θ1, θ2, λ), indicated by (θ(0)1 , θ
(0)
2 , λ(0)), and set i = 1.

Step 2: Generate λ(i) from π∗3 (λ
(i−1)|θ(i−1)

1 , θ
(i−1)
2 , x) using the M-H method using the normal

proposal distribution N
(

λ(i−1), Var(λ)
)

where λ(i−1) is the current value of λ and

Var(λ) is a variance of λ.

Step 3: Generate θ
(i)
k from gamma(mk + ak, (bk +

A(x,λ(i−1))

λ(i−1) )), k = 1, 2.

Step 4: The reliability function can be calculated by

S(i)(t) = exp[−
(θ

(i)
1 + θ

(i)
2 )

λ(i)
(eλ(i)t − 1)], t > 0,

Step 5: Set i = i + 1

Step 6: Repeat steps (2–4) N times to get the necessary number of samples (θ(1)1 , θ
(1)
2 , λ(1),

S(1)(t)), (θ(2)1 , θ
(2)
2 , λ(2), S(2)(t)), . . . , (θ(N)

1 , θ
(N)
2 , λ(N), S(N)(t)). The remaining N−

M burn-in samples are utilized to create the Bayesian estimates after the first M

burn-in samples are discarded.

Step 7: The Bayes estimate of any function Φ(θ1, θ2, λ) for the SE and LINEX loss functions

may now be calculated as



Mathematics 2022, 10, 4274 18 of 38

Φ̂BS =
1

N −M

N

∑
i=M+1

Φ(θ
(i)
1 , θ

(i)
2 , λ(i)) and Φ̂LINEX =

−1
c

log

[
1

N −M

N

∑
i=M+1

e−cΦ(θ
(i)
1 ,θ(i)2 ,λ(i))

]
,

where Φ(θ1, θ2, λ) refers to the parameters θ1, θ2, λ, or S(t).

Step 8: Order Φ(M+1), Φ(M+2), . . . , Φ(N) as Φ(1) < Φ(2) < . . . < Φ(N−M). Then, the 100(1−

α)% Bayesian credible interval of is given by
(

Φ[(N−M)α/2], Φ[(N−M)(1−α/2)]

)
.

Where [q] denotes the integer portion of q.

6. Analyzing Application Data

The significance of the theoretical findings that were discussed in the preceding parts
will be clarified in this section using a few examples from the medical fields and industry.
This section’s investigation of two real-world data sets supports the proposed point and
interval estimates of unknown parameters and the reliability function.

6.1. Application to Reticulum Cell Sarcoma

In the first application, we take into account the data provided by Hoel [56]. For review,
this data is also illustrated by [26,27,29]. According to these data, male mice and rats
received 300 roentgens of radiation when they were 5 to 6 weeks old. In searching for the
causes that led to the death of each mouse, the following reasons were reached: (1) Thymic
lymphoma, (2) Reticulum cell sarcoma, or (3) Other causes. Here, we classify the reticulum
cell sarcoma as cause 1, and the other two causes of death are combined to form cause 2.
This data contained n = 77 observations. Of which 38 are due to the first cause of death
and 39 are due to the second cause of death.

Cause 1: 317, 318, 399, 495, 525, 536, 549, 552, 554, 557, 558, 571, 586, 594, 596, 605, 612, 621,
628, 631, 636, 643, 647, 648, 649, 661, 663, 666, 670, 695, 697, 700, 705, 712, 713, 738, 748, 753.

Cause 2: 40, 42, 51, 62, 163, 179, 206, 222, 228, 252, 259, 282, 324, 333, 341, 366, 385, 407, 420,
431, 441, 461, 462, 482, 517, 517, 524, 564, 567, 586, 619, 620, 621, 622, 647, 651, 686, 761, 763.

Assuming independent Gompertz distributions for the latent cause of failures, using
the hypotheses H0 (Data follows the Gompertz distribution) and H1 (Data does not follow
the Gompertz distribution), a Chi-square (χ2) goodness-of-fit test as well as Kolmogorov-
Smirnov (K-S) test are applied to test the goodness of fit of the proposed model to the two
causes of failure. The values of the χ2 and K-S test statistics are given in Table 1.

Table 1. The test statistics for Chi-square (χ2) and Kolmogorov-Smirnov (K-S) for Hoel (1972) data.

Data (θ̂, λ̂) χ2 (Observed) χ2 (Tabulated) p-Value K-S p-Value

Cause 1 (2.16 × 10−6,
013354)

1.9745 5.9915 0.6274 0.0613 0.9988

Cause 2 (0.000520,
0.00462) 2.7280 9.4877 0.6043 0.0744 0.9822

Based on these results, for the two causes of failure, one can say that at 5% level of
significance; the χ2observed value is less than the χ2 tabulated value and the p-value is also
quite large in this case. Thus, we can not reject H0 and the data set is fitted well with our
model. In the same way, the computed K-S test statistics are higher than the critical value
for the K-S test statistic. Additionally, as we can see, the p-values for the K-S test statistics
for the Gompertz distribution are higher than the significance level (0.05), indicating that
the Gompertz model generally well fits the previous real data. For further clarification, we
provided Figure 1, which contains both fitted and empirical CDFs of Gompertz distribution
based on the two causes (Figure 1a,b), computed at the estimated parameters. The figures
show that the fitted distribution and empirical distribution are very similar. As a result,
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that results in death.

(a).The empirical and �tted CDFs due to cause 1. (b).The empirical and �tted CDFs due to cause 2.

Fig. 1. Empirical cumulative distribution functions (Black lines) and �tted parametric cumulative distribution functions (red dashed lines)

for the data from Hoel (1972). Panels (a) and (b) represent the cause 1.and cause 2 of death, respectively.

(a) Data from Hoel (1972). (b) Data from Xia et al. (2009).

Fig. 2. Pro�le log-likelihood function of the shape parameter �:

By using the censoring scheme R1 = R2 =� � �= R24 = 2; R25 = 4 and an ideal total test time
T = 550, we generate an adaptive progressively Type II censored sample of size m = 25 from the
complete data. The generated data is obtained as:
(40, 2), (42,2), (51, 2), (62,2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259, 2), (282, 2),

(317, 1), (318, 1), (324, 2), (341, 2), (366, 2), (385, 2), (399, 1), (461, 2), (517, 2), (549, 1), (557, 1),
(586, 1), (636, 1), (649, 1).
From the above generated data, we observed m1 = 8 failure due to cause 1, m2 = 17 failures due to
cause 2 and only 21 observed failures (J = 21) were observed before time T = 550. Thus, we have
R = (221; 03; 10). Here, this sample will be utilized to perform numerical calculations on the results
obtained through theoretical in earlier sections.
The iteration method and SEM algorithm, which are both covered in Sections 3 and 4, are used

to calculate the MLE of unknown parameters. Based on Hoel�data, we plot the pro�le log-likelihood
function (13) before calculating the MLEs, see Fig. 2 (a). From this �gure, it can be seen that
the pro�le log-likelihood function is unimodal with the mode falling between 0.003 and 0.004. It
indicates that the MLE of � is unique.
Additionally, a graphical technique developed by [43] is used to calculate the MLE of the shape

parameter �. Fig. 3 (a) shows the curves of ( 1
�
) and g (�) based on Hoel�data. According to Fig.

3 (a), the intersection of the two functions 1
�
and g (�) is roughly at 0.00347. Therefore, to begin

the iteration to determine the MLE of �, we suggest choosing � = 0:00347 as the initial value, and
stopping the process when

����(s+1) � �(s)��� < 10�6. The MLEs of �1, �2, and S(t) are computed based
on NR method using the estimated initial value of �, and the results are presented in Table (2) along
with the estimated standard errors. The reliability function S(t) is computed at time t = 500.

21

Figure 1. Empirical cumulative distribution functions (Black lines) and fitted parametric cumulative
distribution functions (red dashed lines) for the data from Hoel (1972). Panels (a,b) represent the
cause 1 and cause 2 of death, respectively.

the Gompertz model provides an excellent fit to the provided data set in each scenario that
results in death.

By using the censoring scheme R1 = R2 =· · ·= R24 = 2, R25 = 4 and an ideal total
test time T = 550, we generate an adaptive progressively Type II censored sample of size
m = 25 from the complete data. The generated data is obtained as:

(40, 2), (42,2), (51, 2), (62,2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259, 2), (282, 2),
(317, 1), (318, 1), (324, 2), (341, 2), (366, 2), (385, 2), (399, 1), (461, 2), (517, 2), (549, 1), (557, 1),
(586, 1), (636, 1), (649, 1).

From the above generated data, we observed m1 = 8 failure due to cause 1, m2 = 17
failures due to cause 2 and only 21 observed failures (J = 21) were observed before time
T = 550. Thus, we have R = (221, 03, 10). Here, this sample will be utilized to perform
numerical calculations on the results obtained through theoretical in earlier sections.

The iteration method and SEM algorithm, which are both covered in Sections 3 and 4,
are used to calculate the MLE of unknown parameters. Based on Hoel’data, we plot the
profile log-likelihood function (13) before calculating the MLEs, see Figure 2a. From this
figure, it can be seen that the profile log-likelihood function is unimodal with the mode
falling between 0.003 and 0.004. It indicates that the MLE of λ is unique.
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cause 2 and only 21 observed failures (J = 21) were observed before time T = 550. Thus, we have
R = (221; 03; 10). Here, this sample will be utilized to perform numerical calculations on the results
obtained through theoretical in earlier sections.
The iteration method and SEM algorithm, which are both covered in Sections 3 and 4, are used

to calculate the MLE of unknown parameters. Based on Hoel�data, we plot the pro�le log-likelihood
function (13) before calculating the MLEs, see Fig. 2 (a). From this �gure, it can be seen that
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Figure 2. Profile log-likelihood function of the shape parameter λ.

Additionally, a graphical technique developed by [43] is used to calculate the MLE
of the shape parameter λ. Figure 3a shows the curves of ( 1

λ ) and g(λ) based on Hoel [56]
data. According to Figure 3a, the intersection of the two functions 1

λ and g(λ) is roughly at
0.00347. Therefore, to begin the iteration to determine the MLE of λ, we suggest choosing
λ = 0.00347 as the initial value, and stopping the process when

∣∣∣λ(s+1) − λ(s)
∣∣∣ < 10−6.

The MLEs of θ1, θ2, and S(t) are computed based on NR method using the estimated initial



Mathematics 2022, 10, 4274 20 of 38

value of λ, and the results are presented in Table 2 along with the estimated standard errors.
The reliability function S(t) is computed at time t = 500.

Next, we use the SEM method created in Section 3.2 to compute the MLEs of θ1, θ2,
λ and S(t). For the SEM algorithm, the associated MLEs’ initial values of θ1, θ2 and λ are
established using the NR approach and K = 5100 is assumed to be the number of SEM
cycles. The first 100 cycles are employed as a burn-in period, and the following 5000 cycles
are averaged to estimate the unknown parameters θ1, θ2, λ, and S(t). The trace plots of
these parameters against the SEM cycles are displayed in Figure 4. In this figure, the red
horizontal lines represent the SEM cycles, and the parameter values bounce around them
without exhibiting an upward or downward trend. This signifies that a stationary distribu-
tion for the Markov Chain {ϑ(s)} has been reached. To approach the MLE, the average of the
sequence {ϑ(s)} would be sufficient. The computed and reported standard errors (SEs) for
the MLEs derived using the SEM technique are shown also in Table 2. Using both the NR
and the SEM techniques, the asymptotic 95% confidence intervals of θ1, θ2, λ, and S(t) are
computed, and the results are presented in Table 3. Furthermore, the results of the compu-
tation of the 95% confidence intervals using the Boot-p and Boot-t with B = 1000 bootstrap
replications were also reported in Table 3.

Table 2. Point estimate and standard error (SE) of θ1, θ2, λ and S(t) for data from Hoel (1972).

θ1 θ2 λ S (t = 500)

Method Estimate SE Estimate SE Estimate SE Estimate SE

NR 0.000117 2.38 × 10−6 0.000248 4.36 × 10−6 0.00348 0.000044 0.61112 0.002411
SEM 0.000160 2.32 × 10−6 0.000165 2.38 × 10−6 0.003941 0.000016 0.607149 0.001885

MCMC SEL 0.000124 2.33 × 10−6 0.000264 4.10 × 10−6 0.00338 0.000037 0.614227 0.002959

LINEX

c = −103 0.000126 0.000269 0.003838 0.875585

c = +103 0.000123 0.000259 0.002973 0.221293

Table 3. Point and interval estimates of θ1, θ2, λ and S(t) for the data from Hoel (1972).

θ1 θ2 λ S (t = 500)

NR (3.2 × 10−7, 0.000331) (0.000035, 0.000462) (0.001298, 0.005656) (0.492959, 0.729277)
SEM (0.000064, 0.000257) (0.000066, 0.000264) (0.002998, 0.004884) (0.513890, 0.700407)

Boot-p (0.0000221, 0.000096) (0.000017, 0.000113) (0.002673, 0.006567) (0.774804, 0.875795)
Boot-t (0.000102, 0.000116) (0.000169, 0.000237) (0.003434, 0.003580) (0.619715, 0.629505)

MCMC (0.000041, 0.000268) (0.000108, 0.000501) (0.001640, 0.005303) (0.454243, 0.752024)

Next, we use the SEM method created in Section 3.2 to compute the MLEs of �1, �2, � and
S(t). For the SEM algorithm, the associated MLEs�initial values of �1, �2 and � are established
using the NR approach and K = 5100 is assumed to be the number of SEM cycles. The �rst 100
cycles are employed as a burn-in period, and the following 5000 cycles are averaged to estimate
the unknown parameters �1, �2, �, and S(t). The trace plots of these parameters against the SEM
cycles are displayed in Fig. 4. In this �gure, the red horizontal lines represent the SEM cycles, and
the parameter values bounce around them without exhibiting an upward or downward trend. This
signi�es that a stationary distribution for the Markov Chain {#(s)} has been reached. To approach the
MLE, the average of the sequence {#(s)} would be su¢ cient. The computed and reported standard
errors (SEs) for the MLEs derived using the SEM technique are shown also in Table (2). Using both
the NR and the SEM techniques, the asymptotic 95% con�dence intervals of �1, �2, �, and S(t) are
computed, and the results are presented in Table 3. Furthermore, the results of the computation of
the 95% con�dence intervals using the Boot-p and Boot-t with B = 1000 bootstrap replications were
also reported in Table 3.

(a) Data from Hoel (1972). (b) Data from Xia et al. (2009).

Fig. 3. Graphical technique for obtaining the initial value of � (1=� is solid red line, and g(�) is the dashed line).

The Bayes estimates of �1, �2, �, and S(t = 500) versus the SE and LINEX loss functions will now be
calculated using the MCMC samples. Since we don�t know anything about the unknown parameters
beforehand, we consider their noninformative gamma priors to be ai = bi = 0; i = 1; 2; 3. Nobody is
not aware of the fact that for the LINEX loss function, c > 0 implies that overestimation results in
more penalty than underestimation and the converse is true for c < 0. Additionally, the LINEX loss
function becomes symmetric for c near zero and behaves similar to the SE loss function.
When the LINEX loss function is taken into consideration, Bayes estimates are generated for two

alternative values of c, where c = �103. As was mentioned earlier in Section 5, the posterior analysis
was conducted using a hybrid technique that included the Gibbs chain and Metropolis-Hastings. In
order to run the MCMC sampler algorithm, the initial values for the three parameters �1, �2 and
� were assumed to be their MLEs. With N = 30000 samples and the �rst M = 5000 iterations
serving as the burn-in period, we generate the Markov chain samples. The trace plots of the 25000
MCMC outputs for the posterior distribution of �1, �2, �, and S(t) are shown in Fig. 5 (�rst row)
to verify the MCMC method�s convergence. Also, Fig. 5 displays histogram plots (second row) of
the samples that we generated using the M-H algorithm for �1, �2, �, and S(t). It is clear that the
MCMC method converges extremely e¤ectively. In Tables 2 and 3, point Bayes estimates for �1,
�2, �, and S(t) are produced together with the corresponding 95% credible ranges. The estimated
standard errors of the Bayes estimates are also calculated and are shown in Table 2.

22

Figure 3. Graphical technique for obtaining the initial value of λ (1/λ, is solid red line, and g(λ) is
the dashed line).
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6.2 Application to Breaking Strengths of Jute Fibres

Jute �bers contain a wide range of applications and become one of the most important �bers in
the manufacture of bio-compounds. For instance, jute �bers are mainly used in the textile industry,
where they are used to make clothes, ropes, bed covers, bags, shoelaces, etc. To a large extent, jute
�bers also made their way into the automotive sector, where it is used to make cup holders, various
parts of the instrument cluster, and door panels. According to a real-world data set published by
Xia et al. [57], two di¤erent gauge lengths are what lead to the breaking strengths failure data of
jute �ber. We denote �i = 1 if the breaking strengths of jute �ber of gauge length 10 mm and �i = 2
if the the breaking strengths of jute �ber of gauge length 20 mm. The breaking strengths of jute
�bres at 10 mm, and 20 mm gauge lengths are provided in Table 4. These two independent data
sets representing two groups of breaking strengths samples as competing risks data, say cause 1 and
cause 2, respectively.

Fig. 4. Traces plot of SEM samples based on the data from Hoel (1972). Horizontal lines are the estimated parameter values.
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Figure 4. Traces plot of SEM samples based on the data from Hoel (1972). Horizontal lines are the
estimated parameter values.

The Bayes estimates of θ1, θ2, λ, and S(t = 500) versus the SE and LINEX loss functions
will now be calculated using the MCMC samples. Since we don’t know anything about
the unknown parameters beforehand, we consider their noninformative gamma priors to
be ai = bi = 0, i = 1, 2, 3. Nobody is not aware of the fact that for the LINEX loss function,
c > 0 implies that overestimation results in more penalty than underestimation and the
converse is true for c < 0. Additionally, the LINEX loss function becomes symmetric for c
near zero and behaves similar to the SE loss function.

When the LINEX loss function is taken into consideration, Bayes estimates are gen-
erated for two alternative values of c, where c = ±103. As was mentioned earlier in
Section 5, the posterior analysis was conducted using a hybrid technique that included
the Gibbs chain and Metropolis-Hastings. In order to run the MCMC sampler algorithm,
the initial values for the three parameters θ1, θ2 and λ were assumed to be their MLEs.
With N = 30, 000 samples and the first M = 5000 iterations serving as the burn-in period,
we generate the Markov chain samples. The trace plots of the 25, 000 MCMC outputs for
the posterior distribution of θ1, θ2, λ, and S(t) are shown in Figure 5 (first row) to verify
the MCMC method’s convergence. Also, Figure 5 displays histogram plots (second row) of
the samples that we generated using the M-H algorithm for θ1, θ2, λ, and S(t). It is clear
that the MCMC method converges extremely effectively. In Tables 2 and 3, point Bayes
estimates for θ1, θ2, λ, and S(t) are produced together with the corresponding 95% credible
ranges. The estimated standard errors of the Bayes estimates are also calculated and are
shown in Table 2.
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Fig. 5: MCMC trace plot (�rst row) and Histogram (second row) of �1; �2 �, and S(t) for Hoel (1972) data. Dashed lines ( ... )
represent the posterior means and soled lines (� ) represent lower, and upper bounds 95% probability interval.
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Figure 5. MCMC trace plot (first row) and Histogram (second row) of θ1, θ2λ, and S(t) for Hoel
(1972) data. Dashed lines ( . . . ) represent the posterior means and soled lines (—) represent lower,
and upper bounds 95% probability interval.

6.2. Application to Breaking Strengths of Jute Fibres

Jute fibers contain a wide range of applications and become one of the most important
fibers in the manufacture of bio-compounds. For instance, jute fibers are mainly used in the
textile industry, where they are used to make clothes, ropes, bed covers, bags, shoelaces,
etc. To a large extent, jute fibers also made their way into the automotive sector, where
it is used to make cup holders, various parts of the instrument cluster, and door panels.
According to a real-world data set published by Xia et al. [57], two different gauge lengths
are what lead to the breaking strengths failure data of jute fiber. We denote δi = 1 if the
breaking strengths of jute fiber of gauge length 10 mm and δi = 2 if the the breaking
strengths of jute fiber of gauge length 20 mm. The breaking strengths of jute fibres at
10 mm, and 20 mm gauge lengths are provided in Table 4. These two independent data
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sets representing two groups of breaking strengths samples as competing risks data, say
cause 1 and cause 2, respectively.

Table 4. Breaking strengths of jute fiber under different gauge length from Xia et al. (2009).

Cause 1: Data with gauge length 10 mm

43.93 50.16 101.15 123.06 108.94 141.38 151.48 163.40 177.25 183.16
212.13 257.44 262.90 291.27 303.90 323.83 353.24 376.42 383.43 422.11
506.60 530.55 590.48 637.66 671.49 693.73 700.74 704.66 727.23 778.17

Cause 2: Data with gauge length 20 mm

36.75 45.58 48.01 71.46 83.55 99.72 113.85 116.99 119.86 145.96
166.49 187.13 187.85 200.16 244.53 284.64 350.70 375.81 419.02 456.60
547.44 578.62 581.60 585.57 594.29 662.66 688.16 707.36 756.70 765.14

Before processing, it was determined whether or not these data sets could be analyzed
using the Gompertz distributions. Let random variables X1 and X2 be breaking strengths
of jute fiber of gauge length 10 mm and 20 mm, respectively. Based on the MLEs via NR
method, we first obtain the K-S with the corresponding p-values between the fitted distri-
bution and the empirical CDF for two random variables X1 and X2. Table 5 summarizes the
results. The results do not allow us to reject the null hypothesis but force us to accept that
the data comes from the Gompertz distribution. This is done for both cause 1 and cause 2.
Figure 6 displays the fitted and empirical distribution functions. The two distributions for
the two random variables X1 and X2 are a reasonably close match.

Table 5. The test statistics for Chi-square (χ2) and Kolmogorov-Smirnov (K-S) from Xia et al. (2009).

Data (θ̂, λ̂)
χ2

(Observed)
χ2

(Tabulated) p-Value K-S p-Value

Cause 1 (0.00118,
0.00273) 7.76162 11.0705 0.1699 0.1020 0.9138

Cause 2 (0.00158,
0.00208) 5.47388 11.0705 0.3608 0.1426 0.5753

The two distributions for the two random variables X1 and X2 are a reasonably close match.

:

(a) Gauge length 10 mm b) Gauge length 20 mm

Fig. 6. Empirical cumulative distribution functions (Black lines) and �tted parametric cumulative distribution functions (red dashed lines)

for the data from Xia et al. (2009). Panels (a) and (b) represent the cause 1.and cause 2 of death, respectively.

The previous data set was utilized in this illustration to simulate an adaptive progressive Type-II
censored sample with m = 25, ideal total test time T = 350, and a progressive censoring scheme
R = ((3; 1; 0)8 ; 3):
For clarity, (3; 1; 0)2 is given as a short form of (3; 1; 0; 3; 1; 0). Thus, the observed adaptive

progressive Type-II censored sample of size m from the original complete sample of size n = 60 is
(36.75, 2), (43.93, 1), (45.58, 2), (48.01, 2), (50.16, 1), (71.46, 2), (83.55, 2), (99.72, 2), (108.94,

1), (113.85, 2), (116.99, 2), (119.86, 2), (151.48, 1), (163.4, 1), (177.25, 1), (183.16, 1), (187.13, 2),
(200.16, 2), (212.13, 1), (284.64, 2), (323.83, 1), (350.7, 2), (353.24, 1), (375.81, 2), (383.43, 1).
Here, m1 = 11 and m2 = 14, and J = 21. Thus, we have R = ((3; 1; 0)

7 ; 03; 7). To �nd an initial
guess of �, we display the pro�le log-likelihood function of in Fig. 2 to determine an initial guess of,
and it is obvious that the pro�le log-likelihood is a unimodal function with a mode close to 0:004.
Furthermore, the position at which the two functions 1

�
and g (�) overlap in Figure 3 (b) is quite

close to 0:00403. Then, according to Figs. 2 and 3, the initial value of � can be thought of as 0:004.
The MLEs of �1, �2, �, and S(t) are obtained via both NR method and SEM algorithm with t = 125.
For the SEM algorithm, we used 5100 iterations and the �rst 100 iterations were used as burn-in.
The trace graphs of these parameters versus the SEM cycles are shown in Fig. 7. The average of the
iterations after the burn-in should be used to estimate the parameters because Fig. 7 indicates that
SEM iterations have converged to a density function. Table 6 reports the MLEs with the NR and
SEM algorithm of size 5000. Using noninformative gamma priors, Table 6 also includes the Bayes
estimates of �1, �2, �, and S(t) with respect to the squared error (SE) loss function and the LINEX
with c = �103. The trace plots and the histograms of the MCMC outputs of �1, �2, �, and S(t)
based are represented in Fig. 8. It is evident that from Fig. 8, the MCMC procedure converges very
well. Finally, the 95% asymptotic con�dence intervals, bootstrap con�dence intervals (Boot-p and
Boot-t), and Bayes credible intervals for all parameters �1, �2, �, and S(t) are tabulated in Table 7.
It is clear that the MCMC technique is better than the ML method via NR or SEM algorithm in

respect of estimated standard error. Further, it is observed from Table (7) that the Boot-t intervals

26

Figure 6. Empirical cumulative distribution functions (Black lines) and fitted parametric cumulative
distribution functions (red dashed lines) for the data from Xia et al. (2009). Panels (a,b) represent the
cause 1 and cause 2 of death, respectively.

The previous data set was utilized in this illustration to simulate an adaptive progres-
sive Type-II censored sample with m = 25, ideal total test time T = 350, and a progressive
censoring scheme R = ((3, 1, 0)8, 3).

For clarity, (3, 1, 0)2 is given as a short form of (3, 1, 0, 3, 1, 0). Thus, the observed
adaptive progressive Type-II censored sample of size m from the original complete sample
of size n = 60 is
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(36.75, 2), (43.93, 1), (45.58, 2), (48.01, 2), (50.16, 1), (71.46, 2), (83.55, 2), (99.72, 2),
(108.94, 1), (113.85, 2), (116.99, 2), (119.86, 2), (151.48, 1), (163.4, 1), (177.25, 1), (183.16, 1),
(187.13, 2), (200.16, 2), (212.13, 1), (284.64, 2), (323.83, 1), (350.7, 2), (353.24, 1), (375.81, 2),
(383.43, 1).

Here, m1 = 11 and m2 = 14, and J = 21. Thus, we have R = ((3, 1, 0)7, 03, 7).
To find an initial guess of λ, we display the profile log-likelihood function of in Figure 2 to
determine an initial guess of, and it is obvious that the profile log-likelihood is a unimodal
function with a mode close to 0.004. Furthermore, the position at which the two functions 1

λ
and g(λ) overlap in Figure 3b is quite close to 0.00403. Then, according to Figures 2 and 3,
the initial value of λ can be thought of as 0.004. The MLEs of θ1, θ2, λ, and S(t) are obtained
via both NR method and SEM algorithm with t = 125. For the SEM algorithm, we used
5100 iterations and the first 100 iterations were used as burn-in. The trace graphs of these
parameters versus the SEM cycles are shown in Figure 7. The average of the iterations
after the burn-in should be used to estimate the parameters because Figure 7 indicates that
SEM iterations have converged to a density function. Table 6 reports the MLEs with the
NR and SEM algorithm of size 5000. Using noninformative gamma priors, Table 6 also
includes the Bayes estimates of θ1, θ2, λ, and S(t) with respect to the squared error (SE)
loss function and the LINEX with c = ±103. The trace plots and the histograms of the
MCMC outputs of θ1, θ2, λ, and S(t) based are represented in Figure 8. It is evident that
from Figure 8, the MCMC procedure converges very well. Finally, the 95% asymptotic
confidence intervals, bootstrap confidence intervals (Boot-p and Boot-t), and Bayes credible
intervals for all parameters θ1, θ2, λ, and S(t) are tabulated in Table 7.

Table 6. ML and Bayes estimates of θ1, θ2, λ, and S(t) for Xia et al. (2009) data.

MLE MCMC

NR SEL SEL LINEX

Parameter Criteria c = −1000 c = 1000

θ1 Estimate 0.00058 0.000605 0.00081 0.00087 0.00075
SE 0.501×10−4 0.353×10−4 0.686×10−4

θ2 Estimate 0.00074 0.000605 0.00102 0.00111 0.00095
SE 0.604×10−4 0.353×10−4 0.809×10−4

λ Estimate 0.00404 0.004713 0.00215 0.00457 0.00092
SE 0.359×10−3 0.153×10−3 0.411×10−3

S(t = 125) Estimate 0.80644 0.815362 0.77626 0.93759 0.57593
SE 0.948×10−2 0.711×10−2 1.085×10−2

It is clear that the MCMC technique is better than the ML method via NR or SEM
algorithm in respect of estimated standard error. Further, it is observed from Table 7 that
the Boot-t intervals have shorter lengths than other intervals.

Table 7. 95% confidence intervals of θ1, θ2, λ, and S(t) for Xia et al. (2009) data.

MLE Bootstrap Bayes

95% CIs NR SEL Boot-p Boot-t

θ1 Lower 0.00009 0.00025 0.00003 0.00032 0.00028
Upper = 0.00117 0.00096 0.00068 0.00060 0.00159
Length 0.00108 0.00071 0.00065 0.00038 0.00131

θ2 Lower 0.00015 0.00025 0.00009 0.00008 0.00038
Upper 0.00133 0.00096 0.00101 0.00078 0.00192
Length 0.00118 0.00071 0.00092 0.00070 0.00154

λ Lower 0.00052 0.00304 0.00283 0.00376 0.7 ×10−9

Upper 0.00756 0.00639 0.00757 0.00472 0.00643
Length 0.00704 0.00335 0.00474 0.00096 0.00643

S (t = 125) Lower 0.71355 0.74292 0.82547 0.81030 0.66687
Upper 0.89933 0.88780 0.92886 0.85015 0.87576
Length 0.18578 0.14488 0.10339 0.03985 0.20889
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have shorter lengths than other intervals.

Table 7: 95% con�dence intervals of �1; �2; �, and S(t) for Xia et al. (2009) data.

MLE Bootstrap Bayes
95% CIs NR SEL Boot-p Boot-t

�1 Lower 0.00009 0.00025 0.00003 0.00032 0.00028
Upper 0.00117 0.00096 0.00068 0.00060 0.00159
Length 0.00108 0.00071 0.00065 0.00038 0.00131

�2 Lower 0.00015 0.00025 0.00009 0.00008 0.00038
Upper 0.00133 0.00096 0.00101 0.00078 0.00192
Length 0.00118 0.00071 0.00092 0.00070 0.00154

� Lower 0.00052 0.00304 0.00283 0.00376 0.7�10�9
Upper 0.00756 0.00639 0.00757 0.00472 0.00643
Length 0.00704 0.00335 0.00474 0.00096 0.00643

S(t = 125) Lower 0.71355 0.74292 0.82547 0.81030 0.66687
Upper 0.89933 0.88780 0.92886 0.85015 0.87576
Length 0.18578 0.14488 0.10339 0.03985 0.20889

Fig. 7. Traces plot of SEM samples based on the data from Xia et al. (2009). Horizontal lines are the estimated parameter values.
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Figure 7. Traces plot of SEM samples based on the data from Xia et al. (2009). Horizontal lines are the
estimated parameter values.

As can be seen in this previous examples, the outcomes of all estimates are similar. It
should be noted that the MLEs produced by the SEM algorithm have the lowest standard
errors. As a result, the performance of ML estimates acquired using the SEM algorithm
is often superior to that of estimates obtained using the NR and MCMC methods with
noninformative priors. We must provide numerical simulation to compare all methods
accurately, clearly and objectively.
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Fig. 8: MCMC trace plot (�rst row) and Histogram (second row) of �1; �2 �, and S(t) for Xia et al. (2009) data. Dashed lines ( ... )
represent the posterior means and soled lines (� ) represent lower, and upper bounds 95% probability interval.

As can be seen in this previous examples, the outcomes of all estimates are similar. It should be
noted that the MLEs produced by the SEM algorithm have the lowest standard errors. As a result,
the performance of ML estimates acquired using the SEM algorithm is often superior to that of
estimates obtained using the NR and MCMC methods with noninformative priors. We must provide
numerical simulation to compare all methods accurately, clearly and objectively.

28

Figure 8. MCMC trace plot (first row) and Histogram (second row) of θ1, θ2λ, and S(t) for Xia et al.
(2009) data. Dashed lines ( . . . ) represent the posterior means and soled lines (—) represent lower,
and upper bounds 95% probability interval.

7. Simulation Study

In this section, we conduct a simulation analysis to evaluate the effectiveness of several
estimation approaches for the unknwon parameters and reliability function covered in the
preceding sections. We create adaptive Type-II progressive censored samples with compet-
ing risks from the Gompertz models by employing the algorithm described in Section 2
for specific total sample sizes n = (30, 60, 80), failure sample sizes m = (15, 25, 40, 50, 60),
and censoring schemes. The true values of θ1, θ2 and λ are assumed to be 0.05, 0.06, and 1.8,
respectively. To create the appropriate samples, the progressive censoring schemes listed
below are taken into account:

Scheme I: R1 = n−m and R2 =···= Rm = 0,
Scheme II: R1 = R2 =. . .= Rn−m = 1 and Rn−m+1 =. . .= Rm = 0,
Scheme III: R1 = R2 =. . .= Rm−1 = 0 and Rm = n−m.
It should be noted that the first scheme is the left censoring scheme, where n−m units

are taken from the test at the time of the mth failure, the second scheme is the usual Type II
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progressive censoring scheme, and the third scheme is the Type II censoring scheme. Using
the NR and SEM algorithm approaches, we compute MLEs of unknown parameters θ1, θ2,
λ as well as reliability function S(t = 0.9) based on generated data. We use the parameters’
true values as starting points for the SEM algorithm. Additionally, we perform the iterative
procedure up to K = 1100 iterations with K0 = 100 serving as the burn-in sample in order
to apply the SEM algorithm. We utilize the NMaximize command of the Mathematica 11
package to solve the nonlinear equations and obtain the MLEs of the parameters. Under the
SE and LINEX loss functions, the gamma prior distributions are used to obtain the Bayes
estimates of unknown parameters. There are two distinct priors considered. First, we
examine the non-informative priors for the three parameters θ1, θ2, and λ. In this case, we
choose hyper-parameters such that ai = bi = 0; i = 1, 2, 3. It is instructive to use a second prior
in which the hyper-parameters are chosen so that the prior expectations equal the values of the
corresponding true parameters, i.e., a1 = 1, a2 = 3, a3 = 9, and b1 = 20, b2 = 50, b3 = 5. This
helps us to see how much does the informative prior effect contributes to the results obtained
based on observed data. Additionally, when computing the Bayes estimates with regard to the
LINEX loss function, we assume c = −2.0 and 2.0, which, respectively, give more weight to
underestimation and overestimation. These calculations are based on 10000 MCMC samples
using Gibbs within the Metropolis method.

The accuracy of the point estimates (ML and Bayes) is compared against the bias
and squared error values (MSE) in these settings. When evaluating the various interval
estimations, we take into account the average interval lengths and the average interval
coverage percentages (CPs). The scheme with the lowest mean squared error (MSE) of the
estimator is considered to be the best one. In Tables 8–11, we show the bias and MSEs of
the proposed estimates of the unknown parameters and reliability function. The results
are presented by considering two different values of T (0.8, 1.5). By using NR, the SEM
algorithm, bootstrap (Boot-p and Boot-t), and MCMC intervals (with non-informative prior
(NIP) and informative prior (IP)), the average length (AV) and coverage probability (CP) of
95% asymptotic confidence are provided in Tables 12–15. The ALs and CPs are evaluated and
summarized for various censoring combinations using 1000 sets of random samples and the
Bootstrap confidence intervals are obtained in our simulations after B = 1000 resampling.

From the results of Tables 8–11, we can obtain the following conclusions:

• The MSEs of MLEs decrease using NR and SEM approaches as well as Bayes estimates
within the SEL and LINEX loss functions when T and n are fixed but m increases.

• When T is fixed but n and m increases, the MSEs of all estimates generally decrease.
• In most cases, when n and m are fixed but T increases, the MSEs increase.
• In general, all the point estimates are completely effective because the corresponding

average biases and MSEs are very small. Where, both the average bias and MSEs tend
to zero when n and m increase.

• We can see from the simulation results that the Bayes estimations perform better than
the other estimates. When compared to all other estimates, the Bayes estimates based
on the informative prior (IP) show fewer biases and MSEs. However, it is evident
that the SEM method performs better than the NR method and Bayes estimates with
uninformative priors (NIP).

• The best MSEs for estimations of θ1, θ2, and λ are those based on Bayes estimates
under LINEX (c = 2). While c = −2 is a better option for the S(t) under the LINEX
loss function.

• It is clear from the ALs and CPs for all confidence intervals (see Tables 12–15) that the
Bayes credible intervals based on IP offer lower widths and higher coverage probability
than other approaches. So, for interval estimates, we advise adopting the Bayesian
approach. Furthermore, we see that adopting the ML via the NR technique yields the
longest ALs. It is evident from a comparison of the two approximation methods that
the ALs confidence intervals obtained using the SEM algorithm method are smaller
than those obtained using the NR method. In terms of having smaller ALs but greater
CPs, we can observe that the Bayes estimates based on informative priors perform
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better than those based on noninformative priors for the two Bayesian intervals.
Furthermore, when utilizing bootstrap Type intervals, the Boot-p strategy provides
more precise confidence interval estimations than the Boot-t method. Additionally,
when employing all approaches, the ALs get shorter as sample sizes n and m rise and
the 95% CPs get closer to 0.95.

Although the Bayes estimators outperform all other estimators, the simulation results
show that all point and interval estimators methods are efficient. The Bayes technique may
be chosen if one has enough prior knowledge.

Table 8. Average values of the biases (first row) and MSEs (second row) for MLEs and Bayes
estimators of θ1 under informative prior (IP) and noninformative (NIP) prior and different censoring
schemes, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(30, 15) I Bias 0.002981 0.003561 0.025490 0.004065 0.030289 0.005110 0.021610 0.003089
MSE 0.001720 0.001108 0.004806 0.000670 0.006040 0.000720 0.003937 0.000627

II Bias −0.001878 −0.004675 0.038669 0.002392 0.043224 0.003140 0.034630 0.001778
MSE 0.001350 0.000794 0.005859 0.000471 0.006710 0.000497 0.005152 0.000453

III Bias −0.002942 −0.008842 0.034542 0.000080 0.038906 0.000830 0.030680 −0.000636
MSE 0.001410 0.000980 0.005252 0.000438 0.006036 0.000459 0.004605 0.000421

(30,25 I Bias −0.000462 0.004444 0.010035 0.002213 0.011624 0.002890 0.008610 0.001561
MSE 0.000930 0.000936 0.001511 0.000475 0.001704 0.000498 0.001360 0.000454

II Bias −0.000462 0.004444 0.009409 0.002382 0.010883 0.003050 0.008070 0.001745
MSE 0.000930 0.000736 0.001336 0.000466 0.001488 0.000488 0.001214 0.000447

III Bias −0.000889 0.002960 0.012998 0.001969 0.015003 0.002630 0.011220 0.001337
MSE 0.000910 0.000823 0.001885 0.000428 0.002158 0.000448 0.001668 0.000410

(60, 40) I Bias 0.000125 0.001179 0.006245 0.002090 0.006959 0.002540 0.005560 0.001651
MSE 0.000540 0.000421 0.000798 0.000353 0.000846 0.000364 0.000755 0.000342

II Bias 0.000029 −0.001936 0.008095 0.002117 0.008966 0.002540 0.007270 0.001703
MSE 0.000550 0.000423 0.000860 0.000298 0.000921 0.000307 0.000806 0.000289

III Bias −0.000600 −0.002180 0.007837 0.000995 0.008724 0.001400 0.007000 0.000597
MSE 0.000560 0.000492 0.000940 0.000281 0.001008 0.000289 0.000880 0.000274

(60, 50) I Bias −0.000097 0.002850 0.004633 0.001995 0.005155 0.002370 0.004130 0.001635
MSE 0.000400 0.000383 0.000488 0.000286 0.000508 0.000294 0.000470 0.000279

II Bias −0.000112 0.003127 0.004533 0.001907 0.005034 0.002260 0.004050 0.001558
MSE 0.000410 0.000386 0.000478 0.000283 0.000497 0.000291 0.000462 0.000276

III Bias −0.000897 0.001976 0.004597 0.001150 0.005167 0.001520 0.004050 0.000792
MSE 0.000430 0.000416 0.000550 0.000275 0.000574 0.000282 0.000528 0.000268

(80, 65) I Bias −0.000765 0.001301 0.002684 0.001008 0.003051 0.001290 0.002330 0.000729
MSE 0.000310 0.000272 0.000356 0.000238 0.000367 0.000243 0.000347 0.000234

II Bias −0.001152 0.001403 0.002470 0.000916 0.002827 0.001190 0.002120 0.000645
MSE 0.000300 0.000281 0.000335 0.000220 0.000344 0.000224 0.000327 0.000216

III Bias 0.000004 0.001334 0.004086 0.001664 0.004498 0.001960 0.003690 0.001375
MSE 0.000350 0.000322 0.000418 0.000248 0.000432 0.000254 0.000405 0.000243

T = 1.5

(30, 15) I Bias 0.001502 −0.000309 0.023855 0.003896 0.028537 0.004930 0.020060 0.002928
MSE 0.001520 0.000938 0.004400 0.000640 0.005539 0.000687 0.003602 0.000599

II Bias −0.000454 −0.004452 0.038777 0.001966 0.043437 0.002770 0.03466 0.001204
MSE 0.001660 0.000899 0.005861 0.000510 0.006754 0.000538 0.005126 0.000485

III Bias −0.000171 −0.008871 0.038645 0.002335 0.043311 0.003140 0.034520 0.001566
MSE 0.001670 0.000928 0.005928 0.000506 0.006835 0.000534 0.005179 0.000481

(30, 25) I Bias −0.001569 0.004109 0.008676 0.001601 0.010150 0.002270 0.00734 0.000963
MSE 0.000800 0.000831 0.001289 0.000432 0.001441 0.000452 0.001166 0.000414

II Bias 0.002109 0.006579 0.012561 0.003898 0.014080 0.004580 0.011180 0.003240
MSE 0.000900 0.000877 0.001694 0.000493 0.001874 0.000519 0.001545 0.000471

III Bias −0.000291 0.003273 0.013609 0.002118 0.015607 0.002780 0.011840 0.001485
MSE 0.000870 0.000843 0.001761 0.000418 0.002010 0.000438 0.001563 0.000401
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Table 8. Cont.

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(60, 40) I Bias 0.000207 0.003018 0.006231 0.002102 0.006949 0.002560 0.005550 0.001661
MSE 0.000570 0.000457 0.000735 0.000367 0.000775 0.000379 0.000700 0.000356

II Bias 0.000328 0.001248 0.005431 0.002315 0.005991 0.002700 0.004890 0.001940
MSE 0.000480 0.000396 0.000593 0.000332 0.000619 0.000342 0.000570 0.000323

III Bias 0.000520 −0.000314 0.008870 0.002348 0.009780 0.002780 0.008010 0.001931
MSE 0.000560 0.000501 0.000936 0.000303 0.001006 0.000313 0.000874 0.000294

(60, 50) I Bias −0.000824 0.001667 0.003893 0.001264 0.004406 0.001630 0.003400 0.000909
MSE 0.000420 0.000393 0.000506 0.000297 0.000526 0.000305 0.000488 0.000290

II Bias 0.000096 0.003317 0.004441 0.001987 0.004923 0.002340 0.003970 0.001642
MSE 0.000400 0.000391 0.000485 0.000292 0.000503 0.000299 0.000468 0.000284

III Bias 0.000063 0.001939 0.005630 0.001700 0.006222 0.002070 0.005060 0.001336
MSE 0.000480 0.000431 0.000665 0.000299 0.000699 0.000307 0.000633 0.000292

(80, 65) I Bias 0.000528 0.004156 0.004538 0.002114 0.004538 0.002410 0.003780 0.001826
MSE 0.000320 0.000378 0.000390 0.000242 0.000390 0.000248 0.000366 0.000237

II Bias 0.000455 0.002182 0.003666 0.002010 0.004010 0.002280 0.003330 0.001741
MSE 0.000310 0.000304 0.000357 0.000252 0.000367 0.000257 0.000347 0.000247

III Bias 0.000571 0.001527 0.004764 0.002124 0.005180 0.002420 0.004360 0.001832
MSE 0.000310 0.000276 0.000380 0.000221 0.000393 0.000226 0.000368 0.000216

Table 9. Average values of the biases (first row) and MSEs (second row) for MLEs and Bayes
estimators of θ2 under informative prior (IP) and noninformative (NIP) prior and different censoring
schemes, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(30, 15) I Bias 0.004534 0.000118 0.032101 0.006139 0.038707 0.007582 0.026830 0.004795
MSE 0.002550 0.001161 0.007320 0.000978 0.009418 0.001066 0.005856 0.000904

II Bias −0.001875 −0.009407 0.044429 0.001195 0.050337 0.002212 0.039210 0.000230
MSE 0.001970 0.001125 0.007628 0.000666 0.008862 0.000599 0.006612 0.000539

III Bias −0.002673 −0.011689 0.042848 0.001497 0.048761 0.002515 0.037650 0.000531
MSE 0.001950 0.001039 0.007093 0.000531 0.008272 0.000561 0.006131 0.000525

(30, 25) I Bias 0.000943 −0.006170 0.013889 0.004175 0.016145 0.005135 0.011890 0.003263
MSE 0.001380 0.000908 0.002305 0.000731 0.002643 0.000774 0.002043 0.000693

II Bias −0.000564 −0.006537 0.011685 0.003458 0.013696 0.004365 0.009890 0.002593
MSE 0.001170 0.000803 0.001802 0.000630 0.002032 0.000664 0.001621 0.000599

III Bias −0.001422 −0.008132 0.015044 0.001986 0.017736 0.002868 0.012700 0.001144
MSE 0.001270 0.000929 0.002593 0.000501 0.002993 0.000531 0.002281 0.000514

(60, 40) I Bias 0.000053 −0.000055 0.007330 0.002424 0.008291 0.003033 0.006420 0.001834
MSE 0.000750 0.000564 0.001068 0.000485 0.001136 0.000503 0.001006 0.000469

II Bias −0.000804 −0.004245 0.008658 0.001822 0.009804 0.002385 0.007580 0.001275
MSE 0.000720 0.000552 0.001108 0.000388 0.001194 0.000401 0.001032 0.000376

III Bias 0.000663 −0.004257 0.011041 0.002499 0.012307 0.003071 0.009860 0.001945
MSE 0.000880 0.000531 0.001505 0.000447 0.001629 0.000463 0.001397 0.000433

(60, 50) I Bias −0.000555 −0.003030 0.005074 0.002007 0.005775 0.002504 0.004400 0.001524
MSE 0.000540 0.000428 0.000658 0.000387 0.000688 0.000399 0.000631 0.000376

II Bias −0.000798 −0.004922 0.005835 0.001798 0.006614 0.002300 0.005090 0.001309
MSE 0.000560 0.000435 0.000727 0.000363 0.000764 0.000374 0.000694 0.000353

III Bias 0.000044 −0.003623 0.006653 0.002339 0.007457 0.002848 0.005880 0.001843
MSE 0.000660 0.000505 0.000846 0.000415 0.000889 0.000428 0.000806 0.000403

(80, 65) I Bias −0.000375 −0.002775 0.003821 0.001828 0.004329 0.002220 0.003330 0.001444
MSE 0.000420 0.000339 0.000482 0.000316 0.000499 0.000323 0.000467 0.000308

II Bias −0.001150 −0.002500 0.003195 0.001370 0.003684 0.001747 0.002720 0.001001
MSE 0.000410 0.000363 0.000465 0.000309 0.000479 0.000316 0.000453 0.000303

III Bias −0.000066 −0.002956 0.004835 0.001940 0.005395 0.002340 0.004290 0.001548
MSE 0.000460 0.000351 0.000554 0.000320 0.000575 0.000329 0.000535 0.000313
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Table 9. Cont.

T = 1.5 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(30, 15) I Bias −0.000278 −0.003966 0.025252 0.003203 0.031059 0.004534 0.020620 0.001962
MSE 0.002000 0.001094 0.005445 0.000782 0.006937 0.000846 0.004426 0.000729

II Bias 0.000239 −0.005584 0.047790 0.003777 0.054031 0.004861 0.042300 0.002750
MSE 0.002070 0.001206 0.007892 0.000638 0.009226 0.000659 0.006801 0.000596

III Bias −0.001637 −0.012405 0.044407 0.002312 0.050426 0.003361 0.039120 0.001317
MSE 0.001950 0.001185 0.007450 0.000612 0.008704 0.000650 0.006431 0.000579

(30, 25) I Bias −0.002069 −0.006832 0.010128 0.001895 0.012099 0.002793 0.008360 0.001039
MSE 0.001020 0.000777 0.001620 0.000563 0.001826 0.000592 0.001457 0.000537

II Bias 0.001919 −0.003387 0.014108 0.004506 0.016093 0.005423 0.012320 0.003632
MSE 0.001110 0.000900 0.001847 0.000625 0.002070 0.000661 0.001666 0.000584

III Bias 0.000437 0.008593 0.016206 0.002677 0.018162 0.003799 0.014430 0.001619
MSE 0.001270 0.000855 0.002742 0.000566 0.003047 0.000605 0.002486 0.000533

(60, 40) I Bias 0.000595 −0.002414 0.007875 0.003077 0.008855 0.003699 0.006940 0.002474
MSE 0.000760 0.000538 0.000992 0.000479 0.001053 0.000498 0.000937 0.000462

II Bias 0.000005 0.000151 0.006088 0.002483 0.006831 0.002993 0.005370 0.001986
MSE 0.000620 0.000567 0.000774 0.000429 0.000812 0.000443 0.000740 0.000416

III Bias 0.000468 0.002082 0.010422 0.002286 0.011337 0.003004 0.009550 0.001594
MSE 0.000810 0.000587 0.001306 0.000418 0.001384 0.000437 0.001236 0.000402

(60, 50) I Bias −0.001201 −0.004170 0.004444 0.001394 0.005137 0.001886 0.00378 0.000916
MSE 0.000570 0.000467 0.000684 0.000398 0.000715 0.000410 0.000657 0.000388

II Bias 0.000258 −0.002340 0.005442 0.002583 0.006101 0.003065 0.004810 0.002114
MSE 0.000560 0.000493 0.000671 0.000408 0.000701 0.000420 0.000645 0.000396

III Bias 0.000398 0.004119 0.006259 0.001905 0.006843 0.002532 0.005690 0.001299
MSE 0.000560 0.000476 0.000720 0.000355 0.000747 0.000369 0.000694 0.000349

(80, 65) I Bias 0.000608 −0.001654 0.004997 0.002535 0.005520 0.002935 0.00449 0.002144
MSE 0.000450 0.000360 0.000539 0.000347 0.000559 0.000356 0.000521 0.000338

II Bias 0.000155 −0.002129 0.003989 0.002062 0.004448 0.002427 0.003540 0.001705
MSE 0.000390 0.000342 0.000444 0.000306 0.000458 0.000314 0.000431 0.000300

III Bias 0.000294 0.003268 0.004725 0.001756 0.005144 0.002254 0.004320 0.001270
MSE 0.000510 0.000371 0.000623 0.000351 0.000639 0.000366 0.000607 0.000345

Table 10. Average values of the biases (first row) and MSEs (second row) for MLEs and Bayes
estimators of λ under informative prior (IP) and noninformative (NIP) prior and different censoring
schemes, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(30, 15) I Bias 0.179162 0.114900 0.030558 0.082385 0.303908 0.204413 −0.234290 −0.028933
MSE 0.335900 0.170286 0.377886 0.074067 0.574149 0.126221 0.381641 0.055574

II Bias 0.328080 0.375084 −0.141489 0.113266 0.590084 0.310275 −0.709730 −0.052580
MSE 0.762950 0.456461 1.010090 0.075167 1.728490 0.182796 1.118150 0.049245

III Bias 0.347467 0.426425 −0.114099 0.118621 0.609937 0.314043 −0.687460 −0.046693
MSE 0.751880 0.516007 0.963829 0.075534 1.711310 0.183035 1.079190 0.068319

(30, 25) I Bias 0.136497 0.129389 0.063529 0.075185 0.212406 0.164106 −0.082030 −0.009066
MSE 0.179150 0.155368 0.180600 0.066676 0.245054 0.097923 0.168143 0.0529610

II Bias 0.159588 0.136501 0.081028 0.077393 0.251696 0.174322 −0.082940 −0.012808
MSE 0.215720 0.171223 0.207620 0.069393 0.320055 0.108527 0.171066 0.052445

III Bias 0.176044 0.186346 0.068027 0.091451 0.286579 0.202572 −0.143810 −0.011334
MSE 0.25455 0.201025 0.266055 0.074288 0.386459 0.119440 0.262045 0.066133

(60, 40) I Bias 0.075532 0.045076 0.032702 0.048365 0.116705 0.109324 −0.049650 −0.010646
MSE 0.101300 0.068181 0.103167 0.054086 0.124499 0.068957 0.096815 0.047279

II Bias 0.109760 0.144712 0.033570 0.062049 0.189716 0.155824 −0.118980 −0.026133
MSE 0.159650 0.123332 0.167453 0.060592 0.218387 0.088728 0.170870 0.050997

III Bias 0.097088 0.128339 0.015668 0.053873 0.170958 0.146834 −0.136660 −0.033404
MSE 0.181470 0.114536 0.197174 0.070262 0.241520 0.097903 0.206914 0.061001
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Table 10. Cont.

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(60, 50) I Bias 0.060359 0.050171 0.026613 0.036909 0.092867 0.087208 −0.038610 −0.012216
MSE 0.073030 0.063848 0.072314 0.043333 0.085303 0.052852 0.068669 0.039243

II Bias 0.067231 0.045486 0.030182 0.038477 0.104362 0.093667 −0.042500 −0.015081
MSE 0.087210 0.069006 0.084471 0.048072 0.105999 0.061242 0.075673 0.041768

III Bias 0.080867 0.078959 0.036217 0.050297 0.130202 0.116715 −0.054920 −0.013599
MSE 0.102270 0.073716 0.104055 0.051560 0.128217 0.067004 0.098995 0.045397

(80, 65) I Bias 0.053679 0.047267 0.029130 0.036033 0.079363 0.076585 −0.020630 −0.003885
MSE 0.058590 0.047796 0.057663 0.038898 0.066012 0.045663 0.054679 0.035593

II Bias 0.076784 0.055005 0.047702 0.050211 0.110015 0.098807 −0.013440 0.002782
MSE 0.071040 0.055129 0.069185 0.043494 0.086902 0.055266 0.060348 0.037008

III Bias 0.054573 0.058394 0.021173 0.034586 0.093216 0.089135 −0.049360 −0.018463
MSE 0.077890 0.056425 0.078481 0.045761 0.091760 0.055656 0.076184 0.042101

T = 1.5

(30, 15) I Bias 0.206549 0.160738 0.060877 0.098353 0.336904 0.221013 −0.206350 −0.013571
MSE 0.313720 0.199322 0.343209 0.076587 0.529587 0.132120 0.350884 0.055150

II Bias 0.314232 0.318476 −0.161213 0.110223 0.570395 0.306423 −0.733670 −0.055412
MSE 0.697180 0.404996 0.940526 0.070720 1.605790 0.174945 1.092980 0.046494

III Bias 0.339302 0.504470 −0.128673 0.119982 0.601303 0.317356 −0.70398 −0.046703
MSE 0.729550 0.595949 0.964092 0.072367 1.722960 0.180883 1.084490 0.058519

(30, 25) I Bias 0.140106 0.114795 0.068714 0.076818 0.218504 0.166279 −0.076300 −0.007634
MSE 0.164300 0.136196 0.161795 0.060136 0.229124 0.091031 0.147194 0.046948

II Bias 0.097824 0.092587 0.024398 0.052923 0.163519 0.138061 −0.112640 −0.027771
MSE 0.154350 0.135458 0.160605 0.060252 0.208122 0.085209 0.158088 0.051080

III Bias 0.151635 0.165738 0.046897 0.077384 0.203965 0.216469 −0.10682 −0.048438
MSE 0.234990 0.173774 0.259561 0.069984 0.325633 0.126588 0.251630 0.056881

(60, 40) I Bias 0.074050 0.056077 0.030944 0.045080 0.115628 0.106147 −0.052120 −0.014060
MSE 0.106400 0.078109 0.106168 0.055703 0.128169 0.070102 0.1001240 0.049318

II Bias 0.079631 0.050804 0.030725 0.045249 0.111146 0.104335 −0.049930 −0.012780
MSE 0.103990 0.072658 0.101997 0.056509 0.122253 0.070709 0.095997 0.049923

III Bias 0.099133 0.093791 0.020545 0.058303 0.137385 0.176871 −0.09486 −0.051435
MSE 0.180100 0.113124 0.193343 0.069540 0.224046 0.108907 0.194415 0.054740

(60, 50) I Bias 0.075059 0.068369 0.040881 0.049768 0.107687 0.101093 −0.024990 −0.000241
MSE 0.079900 0.069132 0.078408 0.046899 0.093928 0.058240 0.072516 0.0412230

II Bias 0.060957 0.050443 0.028456 0.038583 0.092052 0.087899 −0.03426 −0.009645
MSE 0.073100 0.067228 0.072418 0.044099 0.085076 0.053389 0.068388 0.039979

III Bias 0.067913 0.075543 0.022469 0.042707 0.092042 0.125652 −0.045770 −0.036378
MSE 0.095070 0.074898 0.096293 0.048813 0.110104 0.068710 0.092914 0.043348

(80, 65) I Bias 0.037681 0.034209 0.011438 0.023248 0.061184 0.063595 −0.037780 −0.016424
MSE 0.055620 0.046851 0.055698 0.037040 0.062062 0.042688 0.054527 0.034793

II Bias 0.040222 0.038361 0.015553 0.025146 0.062588 0.063666 −0.031000 −0.012852
MSE 0.051240 0.046562 0.050909 0.035126 0.057127 0.040475 0.049360 0.032896

III Bias 0.063422 0.068207 0.028937 0.041414 0.083057 0.110367 −0.024220 −0.024855
MSE 0.083810 0.059432 0.085214 0.046106 0.095322 0.063984 0.081438 0.043232
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Table 11. Average values of the biases (first row) and MSEs (second row) for MLEs and Bayes
estimators of S (t = 0.9) under informative prior (IP) and noninformative (NIP) prior and different
censoring schemes, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(30, 15) I Bias −0.002090 −0.000338 −0.023142 −0.006557 −0.015753 −0.001900 −0.030980 −0.011428
MSE 0.007414 0.004756 0.009231 0.003450 0.008435 0.003259 0.010184 0.003696

II Bias 0.004043 0.013142 −0.021266 −0.004394 −0.015819 −0.000660 −0.026960 −0.008289
MSE 0.004930 0.004468 0.005811 0.002811 0.005449 0.002674 0.006243 0.002985

III Bias 0.007852 0.017509 −0.017486 −0.001774 −0.012093 0.001900 −0.023130 −0.005612
MSE 0.004684 0.004357 0.005424 0.002553 0.005110 0.002446 0.005806 0.002695

(30, 25) I Bias 0.003465 0.005372 −0.008718 −0.002165 −0.004163 0.001110 −0.013480 −0.005554
MSE 0.004726 0.004015 0.005056 0.002561 0.004801 0.002483 0.005367 0.002665

II Bias 0.004467 0.004802 −0.007372 −0.001871 −0.003041 0.001270 −0.011890 −0.005112
MSE 0.004292 0.003988 0.004473 0.002267 0.004269 0.002199 0.004724 0.002358

III Bias 0.006550 0.008857 −0.007711 −0.000177 −0.003260 0.002850 −0.012360 −0.003305
MSE 0.004389 0.004108 0.004905 0.002203 0.004673 0.002153 0.005188 0.002275

(60, 40) I Bias 0.002860 0.001574 −0.004505 −0.000022 −0.001723 0.002210 −0.007370 −0.002309
MSE 0.002833 0.002192 0.002976 0.001831 0.002887 0.001799 0.003084 0.001874

II Bias 0.001798 0.005486 −0.005777 −0.001623 −0.003344 0.000250 −0.008270 −0.003528
MSE 0.002222 0.002123 0.002382 0.001378 0.002312 0.001354 0.002466 0.001411

III Bias −0.000679 0.001804 −0.008379 −0.003608 −0.005913 −0.001720 −0.010910 −0.005531
MSE 0.002212 0.002074 0.002440 0.001427 0.002355 0.001475 0.002539 0.001447

(60, 50) I Bias 0.002902 0.002082 −0.003065 −0.000088 −0.000801 0.001780 −0.005380 −0.001997
MSE 0.002099 0.001801 0.002142 0.001457 0.002089 0.001436 0.002206 0.001486

II Bias 0.001276 0.001583 −0.004435 −0.00144 −0.002284 0.000350 −0.00663 −0.003259
MSE 0.002037 0.001843 0.002055 0.001327 0.002004 0.001363 0.002116 0.001418

III Bias 0.003809 0.004571 −0.002515 0.000697 −0.000342 0.002450 −0.004740 −0.001088
MSE 0.001997 0.001884 0.002071 0.001300 0.002027 0.001286 0.002127 0.001321

(80, 65) I Bias 0.002945 0.003065 −0.001454 0.000498 0.000288 0.002000 −0.003230 −0.001024
MSE 0.001642 0.001368 0.001657 0.001212 0.001628 0.001199 0.001693 0.001229

II Bias 0.002547 0.001987 −0.001786 −0.000230 −0.000158 0.001170 −0.003440 −0.001651
MSE 0.001524 0.001440 0.001549 0.001124 0.001526 0.001111 0.001579 0.001141

III Bias 0.001752 0.002747 −0.002839 −0.000345 −0.001188 0.001040 −0.004520 −0.001755
MSE 0.001584 0.001495 0.001624 0.001127 0.001594 0.001115 0.001659 0.001144

T = 1.5

(30, 15) I Bias 0.003401 0.009764 −0.017613 −0.003657 −0.010292 0.00093 −0.025400 −0.008463
MSE 0.006736 0.004662 0.008248 0.003239 0.007561 0.003082 0.009091 0.003448

II Bias −0.000683 0.007124 −0.025730 −0.008511 −0.020195 −0.00469 −0.031520 −0.012504
MSE 0.005107 0.004430 0.005998 0.003180 0.005586 0.002995 0.006485 0.003406

III Bias 0.002465 0.013862 −0.022256 −0.006814 −0.016783 −0.003020 −0.027990 −0.01077
MSE 0.005377 0.005081 0.006162 0.003072 0.005780 0.002906 0.006614 0.003278

(30, 25) I Bias 0.008027 0.006861 −0.004111 0.001712 0.000364 0.00494 −0.00879 −0.001627
MSE 0.004137 0.003521 0.004318 0.002222 0.004130 0.002178 0.004559 0.002290

II Bias −0.001135 −0.000542 −0.012432 −0.004362 −0.008092 −0.001190 −0.016950 −0.007640
MSE 0.004231 0.003881 0.004644 0.002419 0.004388 0.002331 0.004950 0.002531

III Bias 0.003926 0.006532 −0.010595 −0.001434 −0.006078 0.001620 −0.015320 −0.004583
MSE 0.003983 0.003761 0.004532 0.002072 0.004286 0.002017 0.004833 0.002148

(60, 40) I Bias 0.002488 0.001781 −0.004976 −0.000560 −0.002157 0.001700 −0.007880 −0.002868
MSE 0.002864 0.002197 0.002960 0.001801 0.002867 0.001767 0.003072 0.001846

II Bias 0.000494 0.000402 −0.005088 −0.002108 −0.002903 −0.000270 −0.007320 −0.003984
MSE 0.002192 0.002013 0.002234 0.001542 0.002173 0.001511 0.002306 0.001581

III Bias −0.000679 0.001804 −0.008379 −0.003608 −0.005913 −0.001720 −0.010910 −0.005531
MSE 0.002212 0.002074 0.002440 0.001427 0.002355 0.001475 0.002539 0.001447

(60, 50) I Bias 0.004606 0.004970 −0.001450 0.001426 0.000794 0.003290 −0.003750 −0.000478
MSE 0.002255 0.001966 0.002284 0.001545 0.002237 0.001529 0.002342 0.001569

II Bias 0.001056 0.000651 −0.004177 −0.001441 −0.002065 0.000350 −0.006340 −0.003260
MSE 0.002064 0.001948 0.002112 0.001463 0.002059 0.001438 0.002175 0.001496

III Bias 0.002684 0.003881 −0.003592 0.000237 −0.001424 0.001990 −0.005810 −0.001549
MSE 0.002185 0.002029 0.002273 0.001418 0.002221 0.001401 0.002335 0.001442
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Table 11. Cont.

T = 1.5 MLEs SEL LINEX

c = −2 c = 2

(n, m) Sc. Statistic NR SEM NIP IP NIP IP NIP IP

(80, 65) I Bias 0.000684 0.000377 −0.003949 −0.001248 −0.002193 0.000260 −0.005740 −0.002783
MSE 0.001703 0.001446 0.001745 0.001258 0.001707 0.001240 0.001791 0.001282

II Bias 0.000607 0.001458 −0.003276 −0.001182 −0.001687 0.000210 −0.004890 −0.002593
MSE 0.001545 0.001456 0.001560 0.001198 0.001530 0.001181 0.001596 0.001219

III Bias 0.000937 0.001927 −0.003811 −0.000827 −0.002156 0.000570 −0.005500 −0.002242
MSE 0.001478 0.001418 0.001519 0.001053 0.001488 0.001040 0.001557 0.001070

Table 12. 95% CI’s, average length (AL) and coverage percentage (CP) of approximate, Bayes and
bootstrap confidence intervals of θ1 under informative prior (IP) and noninformative (NIP) prior,
for different schemes with different values of n and m, when (θ1, θ2, λ) =(0.05, 0.06, 1.8).

T = 0.8 MLEs MCMC Intervals Bootstrap Intervals

NR SEM NIP IP Boot-p Boot-t

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) I 0.1938 0.950 0.1399 0.932 0.2019 0.917 0.1140 0.971 0.1986 0.891 0.2021 0.921
II 0.1970 0.947 0.1380 0.888 0.2201 0.881 0.1026 0.982 0.1994 0.902 0.2073 0.934
III 0.1893 0.957 0.1264 0.896 0.2138 0.893 0.0991 0.968 0.1903 0.897 0.1988 0.953

(30,25) I 0.1333 0.949 0.1392 0.948 0.1301 0.922 0.0945 0.968 0.1345 0.923 0.1379 0.961
II 0.1316 0.948 0.1310 0.953 0.1278 0.931 0.0937 0.969 0.1332 0.919 0.1356 0.950
III 0.1387 0.939 0.1259 0.951 0.1434 0.935 0.0936 0.977 0.1396 0.924 0.1406 0.948

(60, 40) I 0.0985 0.948 0.0898 0.939 0.0948 0.934 0.0785 0.964 0.0993 0.921 0.0998 0.945
II 0.1029 0.945 0.0866 0.922 0.1031 0.932 0.0768 0.971 0.1037 0.919 0.1042 0.948
III 0.1017 0.951 0.0863 0.926 0.1028 0.936 0.0754 0.971 0.1025 0.927 0.1033 0.956

(60, 50) I 0.0866 0.961 0.0829 0.954 0.0833 0.951 0.0717 0.972 0.0880 0.961 0.0892 0.962
II 0.0853 0.954 0.0826 0.955 0.0821 0.944 0.0707 0.965 0.0864 0.954 0.0876 0.950
III 0.0890 0.944 0.0814 0.931 0.0863 0.929 0.0715 0.958 0.0901 0.944 0.0914 0.961

(80, 65) I 0.0736 0.941 0.0681 0.945 0.0708 0.928 0.0633 0.953 0.0773 0.923 0.0784 0.952
II 0.0730 0.955 0.0682 0.947 0.0704 0.944 0.0627 0.962 0.0768 0.918 0.0771 0.949
III 0.0774 0.950 0.0682 0.933 0.0747 0.935 0.0646 0.962 0.0795 0.927 0.0797 0.955

T = 1.5
(30, 15) I 0.1909 0.949 0.1192 0.914 0.1998 0.912 0.1135 0.972 0.1941 0.887 0.1957 0.960

II 0.1969 0.964 0.1430 0.908 0.2220 0.901 0.1021 0.974 0.1996 0.896 0.2003 0.953
III 0.1945 0.951 0.1066 0.897 0.2209 0.887 0.1017 0.967 0.1971 0.902 0.1985 0.942

(30,25) I 0.1316 0.963 0.1089 0.95 0.1272 0.948 0.0937 0.969 0.1328 0.919 0.1343 0.957
II 0.1332 0.955 0.1330 0.956 0.1300 0.940 0.0950 0.966 0.1354 0.908 0.1361 0.962
III 0.1400 0.960 0.1277 0.945 0.1450 0.939 0.0936 0.969 0.1411 0.921 0.1414 0.951

(60, 40) I 0.0991 0.936 0.0917 0.956 0.0952 0.918 0.0787 0.944 0.1013 0.924 0.1020 0.954
II 0.0880 0.936 0.0830 0.938 0.0856 0.929 0.0729 0.952 0.0924 0.922 0.0965 0.961
III 0.1038 0.954 0.0825 0.927 0.1047 0.941 0.0771 0.968 0.1049 0.913 0.1056 0.949

(60, 50) I 0.0855 0.952 0.0837 0.949 0.0823 0.929 0.0710 0.958 0.0873 0.932 0.0878 0.961
II 0.0836 0.944 0.0828 0.950 0.0803 0.936 0.0702 0.955 0.0849 0.924 0.0852 0.948
III 0.0901 0.945 0.0811 0.938 0.0872 0.930 0.0720 0.954 0.0917 0.916 0.0928 0.962

(80, 65) I 0.0751 0.950 0.0695 0.943 0.0724 0.949 0.0644 0.958 0.0775 0.925 0.0782 0.950
II 0.0713 0.951 0.0689 0.938 0.0688 0.940 0.0621 0.955 0.0739 0.928 0.0748 0.951
III 0.0782 0.956 0.0685 0.945 0.0755 0.944 0.0651 0.959 0.0799 0.934 0.0814 0.956
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Table 13. 95% CI’s, average length (AL) and coverage percentage (CP) of approximate, Bayes and
bootstrap confidence intervals of θ2 under informative prior (IP) and noninformative (NIP) prior,
for different schemes with different values of n and m, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs MCMC Intervals Bootstrap Intervals

NR SEM NIP IP Boot-p Boot-t

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) I 0.2262 0.946 0.1392 0.926 0.2385 0.918 0.1342 0.974 0.2281 0.921 0.2287 0.934
II 0.2243 0.956 0.1293 0.884 0.2513 0.884 0.1169 0.987 0.2250 0.925 0.2257 0.928
III 0.2219 0.960 0.1306 0.893 0.2518 0.896 0.1164 0.978 0.2224 0.935 0.2229 0.945

(30, 25) I 0.1579 0.942 0.1292 0.948 0.1301 0.922 0.0945 0.968 0.1584 0.933 0.1592 0.940
II 0.1515 0.949 0.1280 0.942 0.1483 0.935 0.1087 0.970 0.1522 0.919 0.1524 0.938
III 0.1602 0.957 0.1249 0.934 0.1669 0.937 0.1082 0.974 0.1611 0.942 0.1617 0.961

(60, 40) I 0.1145 0.944 0.0913 0.936 0.1104 0.930 0.0914 0.958 0.1161 0.935 0.1166 0.942
II 0.1187 0.954 0.0870 0.917 0.1189 0.940 0.0886 0.971 0.1189 0.940 0.1193 0.966
III 0.1207 0.943 0.0869 0.931 0.1226 0.922 0.0891 0.969 0.1212 0.946 0.1216 0.958

(60, 50) I 0.1004 0.951 0.0856 0.954 0.0968 0.942 0.0833 0.961 0.1021 0.946 0.1032 0.962
II 0.1001 0.957 0.0863 0.943 0.0966 0.943 0.0830 0.969 0.1005 0.938 0.1011 0.951
III 0.1046 0.958 0.0844 0.950 0.1015 0.934 0.0839 0.966 0.1054 0.952 0.1056 0.956

(80, 65) I 0.0867 0.955 0.0748 0.945 0.0835 0.942 0.0746 0.966 0.0874 0.944 0.0881 0.960
II 0.0855 0.956 0.0751 0.938 0.0825 0.934 0.0735 0.955 0.0862 0.947 0.0865 0.954
III 0.0905 0.955 0.0748 0.951 0.0874 0.944 0.0753 0.965 0.0904 0.953 0.0909 0.961

T = 1.5

(30, 15) I 0.2143 0.960 0.1321 0.915 0.2254 0.921 0.1297 0.975 0.2152 0.942 0.2155 0.946
II 0.2305 0.969 0.1339 0.908 0.2607 0.913 0.1198 0.983 0.2315 0.930 0.2316 0.962
III 0.2236 0.947 0.1296 0.886 0.2537 0.884 0.1172 0.979 0.2244 0.937 0.2248 0.948

(30, 25) I 0.1524 0.965 0.1272 0.955 0.1485 0.947 0.1092 0.976 0.1532 0.945 0.1535 0.957
II 0.1536 0.954 0.1328 0.948 0.1504 0.937 0.1104 0.971 0.1539 0.951 0.1542 0.966
III 0.1643 0.961 0.1265 0.948 0.1720 0.946 0.1104 0.981 0.1648 0.957 0.1652 0.964

(60, 40) I 0.1162 0.944 0.0983 0.953 0.1119 0.932 0.0925 0.959 0.1167 0.960 0.1169 0.959
II 0.1015 0.946 0.0917 0.927 0.0990 0.938 0.0843 0.961 0.1016 0.947 0.1019 0.952
III 0.1213 0.949 0.0893 0.925 0.1231 0.933 0.0900 0.979 0.1217 0.955 0.1220 0.948

(60, 50) I 0.0996 0.951 0.0862 0.940 0.0960 0.937 0.0828 0.961 0.0999 0.950 0.1003 0.962
II 0.0976 0.947 0.0884 0.944 0.0940 0.940 0.0820 0.958 0.0978 0.963 0.0984 0.970
III 0.1060 0.948 0.0874 0.937 0.1027 0.926 0.0846 0.958 0.1063 0.959 0.1069 0.968

(80, 65) I 0.0876 0.953 0.0759 0.950 0.0847 0.942 0.0753 0.960 0.0882 0.949 0.0883 0.964
II 0.0827 0.952 0.0754 0.946 0.0799 0.94 0.0721 0.962 0.0834 0.955 0.0836 0.959
III 0.0907 0.948 0.0755 0.932 0.0877 0.937 0.0754 0.962 0.0908 0.954 0.0912 0.950

Table 14. 95% CI’s, average length (AL) and coverage percentage (CP) of approximate, Bayes and
bootstrap confidence intervals of λ under informative prior (IP) and noninformative (NIP) prior,
for different schemes with different values of n and m, when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs MCMC Intervals Bootstrap Intervals

NR SEM NIP IP Boot-p Boot-t

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) I 2.0228 0.918 1.4099 0.906 2.0058 0.918 1.3275 0.974 2.0234 0.932 2.0251 0.956
II 4.4298 0.876 1.5882 0.890 2.9758 0.857 1.6552 0.944 4.4312 0.906 4.4352 0.948
III 4.8762 0.893 1.5737 0.903 2.9800 0.877 1.6449 0.985 4.8786 0.922 4.8810 0.950

(30,25) I 1.5442 0.921 1.4075 0.914 1.4972 0.922 1.1467 0.983 1.5465 0.943 1.5487 0.970
II 1.6370 0.920 1.4092 0.907 1.5858 0.936 1.1870 0.982 1.6385 0.935 1.6405 0.964
III 1.8368 0.910 1.4414 0.878 1.8127 0.929 1.2735 0.992 1.8374 0.929 1.8381 0.947

(60, 40) I 1.1694 0.936 0.9590 0.933 1.1255 0.927 0.9561 0.967 1.1702 0.951 1.1713 0.962
II 1.5859 0.937 0.9912 0.921 1.5359 0.943 1.1780 0.992 1.5870 0.955 1.5892 0.949
III 1.5825 0.923 0.9835 0.934 1.5308 0.926 1.1699 0.980 1.5834 0.948 1.5852 0.964

(60, 50) I 1.0406 0.945 0.9494 0.940 1.0024 0.948 0.8706 0.974 1.0423 0.961 1.0435 0.962
II 1.0932 0.943 0.9515 0.926 1.0524 0.937 0.9065 0.967 1.0943 0.962 1.0956 0.958
III 1.2368 0.946 0.9633 0.925 1.1901 0.939 0.9569 0.979 1.2384 0.959 1.2403 0.960

(80, 65) I 0.9085 0.938 0.8184 0.930 0.8741 0.933 0.7835 0.955 0.9105 0.963 0.9129 0.949
II 1.0022 0.938 0.9225 0.921 0.9649 0.939 0.8519 0.964 1.0046 0.955 1.0072 0.951
III 1.0890 0.943 0.9250 0.923 1.0445 0.946 0.9063 0.974 1.0916 0.962 1.0939 0.963
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Table 14. Cont.

T = 1.5 MLEs MCMC Intervals Bootstrap Intervals

NR SEM NIP IP Boot-p Boot-t

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) I 2.0275 0.917 1.4195 0.886 2.0180 0.923 1.3316 0.986 2.0312 0.926 2.0325 0.951
II 2.1452 0.911 1.5206 0.838 2.9820 0.888 1.6488 0.991 2.1486 0.912 2.1511 0.954
III 2.3093 0.873 1.6023 0.884 3.0109 0.872 1.6585 0.985 2.3114 0.904 2.3145 0.938

(30,25) I 1.5434 0.939 1.4007 0.942 1.4962 0.946 1.1484 0.988 1.5465 0.959 1.5489 0.971
II 1.4914 0.924 1.3926 0.922 1.4502 0.934 1.1219 0.989 1.4943 0.946 1.4974 0.954
III 1.8224 0.940 1.4304 0.899 1.7930 0.938 1.2668 0.990 1.8256 0.948 1.8290 0.966

(60, 40) I 1.1761 0.932 1.0484 0.938 1.1294 0.922 0.9568 0.957 1.1784 0.938 1.1806 0.957
II 1.1452 0.922 0.9532 0.931 1.1084 0.922 0.9448 0.960 1.1491 0.945 1.1513 0.949
III 1.5910 0.942 0.9794 0.916 1.5465 0.933 1.1775 0.986 1.5983 0.951 1.6004 0.955

(60, 50) I 1.0470 0.935 0.9551 0.929 1.0066 0.931 0.8796 0.966 1.0497 0.954 1.0521 0.950
II 1.0192 0.936 0.9524 0.935 0.9825 0.942 0.8634 0.959 1.0231 0.960 1.0268 0.962
III 1.2309 0.940 0.9597 0.907 1.1799 0.93 0.9932 0.973 1.2342 0.948 1.2387 0.967

(80, 65) I 0.9047 0.942 0.8166 0.939 0.8709 0.941 0.7819 0.961 0.9095 0.961 0.1023 0.951
II 0.8765 0.948 0.8162 0.938 0.8460 0.938 0.7652 0.960 0.8792 0.957 0.8832 0.962
III 1.0873 0.939 0.8233 0.91 1.0409 0.937 0.9084 0.963 1.0902 0.952 1.0929 0.965

Table 15. 95% CI’s, average length (AL) and coverage percentage (CP) of approximate, Bayes and
bootstrap confidence intervals of S (t = 0.9) under informative prior (IP) and noninformative (NIP)
prior, for different schemes with different values of n and m when (θ1, θ2, λ) = (0.05, 0.06, 1.8).

T = 0.8 MLEs MCMC Intervals Bootstrap Intervals

NR SEM NIP IP Boot-p Boot-t

(n, m) Sc. AL CP AL CP AL CP AL CP AL CP AL CP

(30, 15) I 0.3165 0.905 0.2360 0.888 0.3294 0.933 0.2652 0.981 0.3205 0.944 0.3218 0.935
II 0.2564 0.907 0.2313 0.913 0.2862 0.950 0.2395 0.977 0.2575 0.962 0.2579 0.949
III 0.2545 0.904 0.2287 0.859 0.2851 0.947 0.2366 0.987 0.2558 0.954 0.2563 0.962

(30,25) I 0.2542 0.917 0.2215 0.938 0.2560 0.972 0.2230 0.972 0.2589 0.948 0.2597 0.941
II 0.2478 0.922 0.2202 0.921 0.2559 0.951 0.2188 0.989 0.2490 0.963 0.2495 0.961
III 0.2448 0.900 0.2127 0.893 0.2587 0.943 0.2150 0.986 0.2468 0.935 0.2475 0.934

(60, 40) I 0.2013 0.920 0.1686 0.918 0.2053 0.948 0.1845 0.977 0.2027 0.945 0.2034 0.939
II 0.1817 0.933 0.1673 0.917 0.1926 0.959 0.1693 0.975 0.1833 0.962 0.1840 0.956
III 0.1810 0.927 0.1665 0.921 0.1920 0.949 0.1681 0.986 0.1821 0.958 0.1825 0.958

(60, 50) I 0.1820 0.934 0.1678 0.931 0.1855 0.957 0.1690 0.977 0.1832 0.954 0.1833 0.961
II 0.1768 0.935 0.1661 0.938 0.1810 0.959 0.1652 0.982 0.1781 0.951 0.1788 0.964
III 0.1761 0.931 0.1662 0.935 0.1820 0.951 0.1637 0.973 0.1779 0.950 0.1781 0.967

(80, 65) I 0.1601 0.931 0.1452 0.933 0.1629 0.946 0.1513 0.968 0.1609 0.947 0.1613 0.962
II 0.1541 0.938 0.1455 0.935 0.1588 0.951 0.1459 0.972 0.1548 0.952 0.1549 0.967
III 0.1537 0.938 0.1456 0.932 0.1577 0.954 0.1464 0.969 0.1542 0.956 0.1544 0.959

T = 1.5

(30, 15) I 0.3139 0.906 0.2808 0.867 0.3275 0.940 0.2633 0.981 0.3152 0.897 0.3158 0.907
II 0.2585 0.909 0.2389 0.884 0.2892 0.946 0.2411 0.983 0.2589 0.914 0.2597 0.925
III 0.2564 0.902 0.2358 0.873 0.2869 0.942 0.2301 0.978 0.2574 0.919 0.2582 0.927

(30,25) I 0.2523 0.909 0.2341 0.920 0.2592 0.958 0.2216 0.977 0.2535 0.905 0.2541 0.939
II 0.2486 0.927 0.2374 0.913 0.2555 0.951 0.2196 0.973 0.2492 0.936 0.2494 0.949
III 0.2469 0.914 0.2345 0.904 0.2607 0.953 0.2159 0.985 0.2471 0.929 0.2479 0.944

(60, 40) I 0.2027 0.921 0.1838 0.942 0.2066 0.949 0.1804 0.972 0.2032 0.937 0.2036 0.953
II 0.1764 0.929 0.1684 0.930 0.1824 0.948 0.1676 0.965 0.1769 0.950 0.1775 0.957
III 0.1825 0.932 0.1683 0.920 0.1939 0.953 0.1701 0.975 0.1834 0.944 0.1841 0.962

(60, 50) I 0.1813 0.918 0.1666 0.918 0.1847 0.945 0.1688 0.979 0.1822 0.920 0.1832 0.939
II 0.1757 0.927 0.1683 0.934 0.1793 0.946 0.1652 0.967 0.1759 0.931 0.1771 0.957
III 0.1763 0.922 0.1671 0.920 0.1816 0.935 0.1638 0.963 0.1770 0.952 0.1784 0.965

(80, 65) I 0.1608 0.934 0.1461 0.939 0.1636 0.945 0.1520 0.966 0.1612 0.957 0.1619 0.952
II 0.1524 0.939 0.1456 0.926 0.1557 0.954 0.1458 0.968 0.1535 0.961 0.1543 0.957
III 0.1544 0.939 0.1458 0.935 0.1591 0.953 0.1462 0.972 0.1553 0.950 0.1559 0.966

8. Conclusions

This paper analyzes the Gompertz competitive risk model with the adaptive pro-
gressively Type-II censoring and presents some statistical inferences. The latent lifetime



Mathematics 2022, 10, 4274 36 of 38

distributions are assumed to have the same shape parameters but different scales. The point
and interval estimators were developed based on the Bayesian approach, and classical
frequency theory, respectively. As a result of the inability to construct explicit equations for
MLEs of some parameters, we turn to a stochastic EM technique for support. Utilizing the
observed Fisher matrix, the approximate confidence intervals of MLEs and Bootstrap confi-
dence intervals have been studied. We then proceed to the Bayesian technique, where the
Bayes estimates are generated under the assumption of independent Gamma priors based
on square error and LINEX loss functions. Some unknown parameters’ posterior distribu-
tions show that they do not follow well-known distributions. Therefore, we employ M-H
sampling as part of the Gibbs sampling steps technique to compute Bayes estimates with
corresponding credible intervals. The performance of all of the aforementioned approaches
was then directly compared in a simulated study. Based on the simulation results, we con-
clude that the Bayes method can be adopted for estimating and constructing approximate
confidence intervals for unknown parameters when available data is adaptive progressive
Type-II censored with competing risks from independent Gompertz distributions. Also,
it was observed that the performance of the SEM algorithm is very good and even better
than NR’s method. Finally, the Gompertz distribution was applied to actual medical and
industrial data, and it was found that it could accurately represent current data to the extent
that it could be trusted to use it to examine similar real data in those fields.

In this paper, there is still a lot of future work to be done. For instance, the creation of
the most effective censoring schemes, the statistical prediction of competing risk models,
and the inference of competing risks model with more failure factors, these topics can be
investigated in the future.

Risk group analysis should be the basis for all patient procedures. In order to develop
a data model for all the risk factors that will be used in medical predictions and discoveries,
it is possible to apply the data mining method to extract knowledge. In this field of study,
experts can identify differences in patient survival and calculate confidence intervals for
survival. This may be a topic for further investigation.
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