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Abstract: On the basis of network analysis, and within the context of modeling imprecision or vague
information with fuzzy sets, we propose an innovative way to analyze, aggregate and apply this
uncertain knowledge into community detection of real-life problems. This work is set on the existence
of one (or multiple) soft information sources, independent of the network considered, assuming
this extra knowledge is modeled by a vector of fuzzy sets (or a family of vectors). This information
may represent, for example, how much some people agree with a specific law, or their position
against several politicians. We emphasize the importance of being able to manage the vagueness
which usually appears in real life because of the common use of linguistic terms. Then, we propose
a constructive method to build fuzzy measures from fuzzy sets. These measures are the basis of
a new representation model which combines the information of a network with that of fuzzy sets,
specifically when it comes to linguistic terms. We propose a specific application of that model in
terms of finding communities in a network with additional soft information. To do so, we propose
an efficient algorithm and measure its performance by means of a benchmarking process, obtaining
high-quality results.

Keywords: soft information; fuzzy sets; linguistic term; extended fuzzy graph; social network
analysis; community detection problem

MSC: 03E72

1. Introduction and Related Work

Social Network Analysis (SNA) is described as the study and understanding of
the relationships between two or more items. As one of the hottest topics of SNA, the
Community Detection Problem (CDP) has become a problem of great interest in modern
statistics with applications in several fields [1–3].

Most of the algorithms and definitions of community detection problems assume that
the only information available for identifying the clusters/communities in a network is
the graph which describes its structure. This graph can be non-directed and binary (all the
relations in the network are equals) in the classical and most studied community detection
problem [2]; non-directed and valued (the network is modeled by a weighted non-directed
graph), or the case in which the relations are not symmetrical [1,4,5]. There are other
interesting approaches focused on the incorporation of additional information to the crisp
graphs, specifically to find communities in a network [6,7]. Nevertheless, any of these
approaches only considers the community detection problem from a topological point of
view, with a focus on the problem from the relations between nodes, but not considering
other types of information that could be relevant in order to find communities in a real
problem.

We illustrate our idea with an example. Let us present a situation in which we have
a set V of nodes which represents the members of a parliament, whose friendly relations
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are known to us by the crisp graph G = (V, E). Let us assume that the reason why they
are interacting is because they are voting on a specific law in parliament. This information
(the voting problem) and also their political preference on the law (or their capacity in the
voting problem) could be relevant information to identify the clusters in the network.

To deal with this type of problem, in [8–12], the authors introduce a new element to
the community detection problem: a capacity measure that tries to model and reflect the
reason why the nodes are interacting in the network in addition to the interests of the nodes
to remain united. From this perspective, in [11], we present an efficient algorithm for a
community detection problem that deals with networks and fuzzy measures in that sense.
Furthermore, in [13], we present a constructive method to build a 1-additive fuzzy measure
from a crisp valuation of the nodes in the network.

Nevertheless and due to the natural uncertainty in real problems, the information
associated with the network nodes is not usually assumed to be crisp in a natural way.
Uncertainty is associated with the lack of knowledge about the occurrence of some event.
Within the last decades, two important models are proposed to represent different types of
uncertainty: randomness and vagueness/imprecision. Whereas the randomness emerges due
to the lack of knowledge about the occurrence of some event [14], vagueness a phenomenon
rises when trying to group together objects that share a certain property. A typical vague
property is “to be a small number” or “to be a tall person”, or (taking the previous example
of the voting system in a parliament) “to be against a specific law”. In this way, the
fuzzy linguistic approach has been successfully applied to many problems [15]. Taking
into account this type of information, an important goal of this work is to provide a
methodology to face community detection problems in networks with additional soft
information. With the aim to extend some of the definitions and algorithms presented
in [13] for crisp information, in this paper, we work on the basis of the existence of a
vector (or a family of them) whose elements are no longer crisp values, but they are fuzzy
sets that provide some type of soft information related to the individuals in the problem.
In this context, another important objective of this work arises: we characterize a new
representation tool which generalizes other existing models in the literature, regarding the
nature of the information: the extended fuzzy graph based on a fuzzy vector (EFVFG). It
is defined on the basis of a crisp networks and a vector of fuzzy sets. Another goal is to
extend it to a more complex scenario in which there is not only one type of information but
many; in this situation, we strongly recommend consideration of the multi-dimensional
extended fuzzy graph fuzzy vector-based (MEFVFG), which is defined on the basis of a
family of vectors of fuzzy sets.

Then, we suggest a specific application of the new representation model, which is
useful to obtain realistic partitions in a network with additional soft information. We
present a competitive algorithm which introduces fuzzy sets to the process of grouping
individuals. It is a modification of the well-known Louvain algorithm for crisp networks
[16] that allows us to deal with soft information in the network, which is developed on
the basis of MEFVFG. To guarantee the quality of the proposed methodology, we dedicate
an important part of this work to its evaluation. The computational results showed in
this work, obtained through a benchmarking process developed on the basis of some
trapezoidal fuzzy sets, allow us to assert the good performance of our algorithm.

This paper is organized as follows. In Section 2, we lay the foundations of the work,
showing several concepts and definitions that are useful for the understanding and follow-
up of the work. In Section 3, we characterize a new model representation based on soft
information about the individuals of a network given by several fuzzy sets. After that, in
Section 4, we propose a specific application of that new tool, related to the community
detection problem with additional soft information, which is a very live issue in the field of
SNA. In order to evaluate the performance of the proposed methodology, we show some
computational results in Section 5. The paper ends in Section 6 with some conclusions and
a final discussion.
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2. Preliminaries
2.1. Fuzzy Sets

Fuzzy sets were introduced by Zadeh as an extension of usual concept of set, and they
have been applied in several fields [17–19].

Definition 1 (Fuzzy set [20]). Let X denote a set. A fuzzy set in X, denoted by Ã, is a set uniquely
characterized by its membership function, defined by ηA : X −→ [0, 1] where, for every point
x ∈ X, ηA(x) defines x’s “grade of membership”.

In this work, we will focus on fuzzy sets over positive real numbers, so from now on,
we will assume that X = R+ .

Introduced by Zadeh [21] and applied to the resolution of many real problems, the
fuzzy linguistic variables were defined in situations in which imprecision or vagueness
of a quantitative variable are given in linguistic terms. For example, a linguistic variable
L̃ = {L1, . . . , Lk} can be characterized by k membership functions, that is, the collection
of its linguistic values, U ⊂ R+ is a universe of discourse and the meaning of each
linguistic value is characterized by ηLi : U −→ [0, 1], which associates each u ∈ U with its
compatibility. In the computational results section of this work, we consider a specific type
of fuzzy sets that are commonly used to model the linguistic terms of a fuzzy linguistic
variable: the trapezoidal fuzzy sets, whose shape is similar to Figure 1.

Definition 2 (Trapezoidal fuzzy set [22]). The fuzzy set A = (a, b, c, d) is said to be trapezoidal
if its membership functionηA is defined by:

ηA(x) =





0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if b < x ≤ c
x−d
c−d if c < x ≤ d
0 if d < x

(1)
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Figure 1. Graph G = (V, E) and fuzzy linguistic variable L̃.

In this work, some of the input values are defined as fuzzy sets. Nevertheless, to
face the final goal, we need to “convert” that soft information into crisp values. This
process of obtaining a single output from the output of an aggregated fuzzy set is known
as “defuzzification”, and there are different methods to carry on with it [23,24]. In general,
a formal definition of a defuzzification operator is shown below.

Definition 3 (Defuzzification operator [24]). Given a universe X, the operator D : F(X)→ X
which maps the fuzzy sets on X into elements of the X is said to be a defuzzificatin operator.

2.2. Networks with Additional Information: An Algorithm That Deals with CDP and
Fuzzy Measures

A graph is a pair G = (V, E), in which V = {1, 2, . . . , n} is a set of individuals called
nodes or vertices, and E = {{i, j}|i, j ∈ V} is an unordered set of pairs of nodes called edges
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or arcs. A graph is unequivocally defined by its adjacency matrix A, which is characterized
as (A)i,j∈V = 1 if {i, j} ∈ E, and 0 otherwise. A graph is said to be valued or weighted if
there is a function w : E→ R which assigns a weight to each edge. In this type of graph,
the adjacency matrix not only represents the existence of an edge between two nodes but
also shows the weight of each edge by displaying the value assigned to each edge by the
w function.

The community detection problem is an important problem in the SNA field, the goal
of which is to find a “good” partition of the set of nodes. A partition is considered to be
only as good as how internally homogeneous and externally heterogeneous the defined
groups are in terms of the connections between individuals. The modularity measure
defined in [2], usually denoted by Q, is a quality function of the partitions which somehow
measures the strength of the division of a graph in a partition of communities. Q is usually
considered as a function to be maximized.

Definition 4 (Modularity [25]). Let G = (V, E) denote a graph with adjacency matrix A. Let
i, j ∈ V and m = |E|. The modularity function of the partition of V, P, is characterized by

Q(P) =
1

2m ∑
i,j∈V

[
A(i, j)− ki k j

2m

]
δ(Ci, Cj) (2)

in which ki is the degree of i and Ci is the group to which i is assigned; δ
(
Ci, Cj

)
= 1 if Ci = Cj,

and δ
(
Ci, Cj

)
= 0 otherwise.

Without detriment regarding the worthiness of classic approaches, some authors
agreed on the importance of including as much information as possible in the network
analysis process, regardless of the direct crisp connections between individuals defined
by the edges. We find several approaches with a common idea: the more information is
considered, the more realistic the results obtained, either in terms of partitions or any other
notion [6,26,27]. Specifically, this work is set on the basis of the idea introduced in [11]. In
that preliminary work, the authors proposed a methodology to find realistic communities
in a graph in terms of a fuzzy measure, defining some additional information about the
synergies between the individuals. That method was based on the Louvain algorithm [16]
with a main difference: the calculation of modularity not only considers the adjacency
matrix but also some additional information matrix, specifically, one obtained from the
mentioned affinity fuzzy measure. This methodology, named Duo Louvain, is summarized
in Algorithm 1. The main difference with respect to the common Louvain method can be
seen in line 15 of the pseudo-code: the variation of modularity obtained when moving
the node oi to the community to which its neighbor ej belongs, ∆Qoi (ej), is calculated
in any matrix M, which is different from the adjacency matrix. This methodology was
adapted to different scenarios in later works [9,12,28] related to a variety of fuzzy measures.
Let us emphasize that this methodology is far more powerful than being limited to the
consideration of fuzzy measures. It can also be considered in any other scenario beyond
them, provided that any additional information that can be aggregated, in any form, into a
matrix, is available.

As mentioned, a quick overview of that methodology is showed in Algorithm 1, where
π(V) denotes all the feasible permutations of the elements of V; o = (o1, . . . , on) ∈ π(V) is
one of these orders; H(oi) denotes the set of neighbors of oi ∈ V or, what is the same, the
nodes with which oi is directly connected, and ∆Qoi (ej) denotes the variation of modularity
obtained when moving oi to the community to which ej belongs.
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Algorithm 1 Duo Louvain
1: Input: (A, M);
2: Output: P;
3: Preliminary
4: Ci ← {i}, ∀i ∈ V (each node i is an isolated community);
5: P← (1, 2, . . . , n) (initial partition);
6: end Preliminary
7: Phase 1
8: Take o =

(
o1, . . . , oi, . . . , on) ∈ π(V);

9: stop← 0;
10: while (stop == 0) do
11: stop← 1
12: for (i = 1) to (n) do
13: (e1, . . . , eh)← H(oi) (find the neighbors of oi in A);
14: for (j = 1) to (h) do
15: Calculate ∆Qoi (ej) in M;
16: end for
17: j∗ ←

{
e` | ∆Qoi (j∗) = max

`∈{1...,h}

{
∆Qoi (e`)

}}
;

18: if (∆Qoi (j∗) > 0) then
19: CP(oi) ← CP(oi)\{oi};
20: CP(j∗) ← CP(j∗) ∪ {oi};
21: P

(
oi)← P(j∗);

22: stop← 0;
23: end if
24: end for
25: end while
26: end Phase 1
27: Phase 2
28: Calculate A∗ from A (nodes of A∗ are the communities previously found in A);
29: Calculate M∗ from M (nodes of M∗ are the communities previously found in M);
30: if (A∗ 6= A) then
31: A← A∗;
32: M← M∗;
33: Apply Phase 1 and Phase 2;
34: end if
35: end Phase 2
36: return(P);

3. Model Definition: Building Extended Fuzzy Graphs from Graphs with Fuzzy
Nodes Information

In this section, we work on the definition of a new representation tool. Firstly, we
do this in a uni-dimensional scenario, assuming there is an additional fuzzy information
vector related to the individuals of a set V, denoted by f̃ =

(
f̃1, . . . , f̃r

)
. For each i ∈ V,

the fuzzy set f̃i (characterized by its membership function η fi
) represents the vague or

imprecise information associated to the node i of some characteristic or evidence. This
fuzzy modelization is especially useful (but not only) when the information associated with
each node is gathered (for example) by a linguistic term. Specifically, in this case, we could
work with linguistic terms f̃i ∈ L̃. By analogy with [9], we first propose a characterization
of a fuzzy Sugeno λ-measure from this fuzzy vector f̃ . This measure is denoted by µ f ,p.

Definition 5 (Fuzzy Sugeno λ-measure obtained from fuzzy sets). Given the set
V = {1, 2, . . . , n}, let f̃ =

(
f̃1, . . . , f̃n

)
denote a vector of fuzzy sets defined over a universe
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U ⊂ R+ (i.e., η fi
: U −→ [0, 1]), and let D : F(R+) → R+ denote a defuzzification operator.

Then, for any p ∈ (0, 1] and i ∈ V, a natural definition of is µ f ,p is:

µ f ,p(i) =
pD( f̃i)

∑n
k=1 D( f̃k)

, ∀i ∈ V (3)

where µ f ,p(M∪N) = µ f ,p(M)+µ f ,p(N)+λµ f ,p(M)µ f ,p(N), ∀M, N ⊆ V, with M∩N =

∅ and λ + 1 =
n
∏
i=1

(1 + λµ f ,p(i)), being p ∈ (0, 1].

Note that the interpretation of µ f ,p depends on p. Specifically,

Proposition 1. Given the parameter p = 1, the function µ f ,p is a fuzzy Sugeno λ-measure
1-additive.

Proof. Because of the properties of the Sugeno λ-measures [29] in addition to the assumption

of p = 1, we have λ = 0. Then, ∀M ⊆ V, µ f ,p(M) = ∑`∈M D( f̃`)
∑n

k=1 D( f̃k)
, so µ f ,p meets the conditions

of fuzzy measures [30], Sugeno λ-measures [29] and 1-additivity [31].

• µ f ,p(∅) = 0 Trivial.

• µ f ,p(V) = D( f̃1)

∑n
k=1 D( f̃k)

+ · · ·+ D( f̃n)

∑n
k=1 D( f̃k)

= 1.

• Let M ⊆ N ⊆ V. Then, µ f ,p(N) = ∑`∈N D( f̃`)
∑n

k=1 D( f̃k)
=

∑`∈M D( f̃`)+∑t∈N\M D( f̃t)

∑n
k=1 D( f̃k)

≥ ∑`∈M D( f̃`)
∑n

k=1 D( f̃k)
=

µ f ,p(M), so µ f ,p is a fuzzy measure.
• Sugeno λ-measure. Trivial by definition.
• 1-additivity: regarding [31], it is trivial if ∀i ∈ {1, . . . , n}, we define ai = µ f ,p(i).

Proposition 2. Given the parameter p ∈ (0, 1), µ f ,p is a fuzzy Sugeno λ-measure.

Proof. The proof is similar to that of Proposition 1.

So, we generalize the notion of extended fuzzy graph vector based, G̃ =
(
V, E, µx,p

)
[9]

to a scenario where the additional information is not provided by a crisp vector x, but it
comes from a vector of fuzzy sets, f̃ =

(
f̃1, . . . , f̃r

)
.

Definition 6 (Extended fuzzy graph fuzzy vector based (EFVFG)). Let G = (V, E) denote a
graph with n = |V| individuals and m = |E| edges. Let f̃ =

(
f̃1, . . . , f̃n

)
denote a vector of fuzzy

sets in membership function form, each of them related to an individual of V. Let D : F(R+)→ R+

denote a defuzzification operator, and given the parameter p ∈ (0, 1], let µ f ,p denote the fuzzy

Sugeno λ-measure obtained from f̃ . Then, the tuple Ĝ =
(

V, E, µ f ,p

)
is said to be a fuzzy extended

graph based on the fuzzy vector f̃ .

Example 1. Let L̃ = {Very− Low, Low, Medium, High, Very−High} denote a fuzzy linguistic
variable defined over the universe U = [0, 100], which is characterized by the corresponding
membership functions ηVL, ηL, ηM, ηH , ηVH : [0, 100] → [0, 1] associated with the different
linguistic terms that represent how in agreement a person is with some law denoted by LW1. Let G =
(V, E) define a cyclic graph with V = {1, 2, 3, 4, 5, 6, 7, 8} and E = {(1, 2), (2, 3), (3, 4), (4, 5),
(5, 6), (6, 7), (7, 8), (8, 1)}, and finally, let f̃ =

(
f̃1, . . . , f̃8

)
= (VL, VL, L, VL, H, VH, H, VH)

denote a vector of fuzzy sets that models the linguistic terms affinity of these eight nodes of V to the
law LW1.
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From the previous definition, it is possible to build (for any p ∈ (0, 1]) the extended fuzzy
graph associated with the fuzzy vector f̃ and the graph G = (V, E), that is: Ĝ =

(
V, E, µ f ,p

)
.

Assuming we can have more than one characteristic associated with each node in
a network, we go beyond the uni-dimensional case by considering there is not only a
vector of fuzzy sets f̃ , but a family of them,

(
f̃ 1, . . . , f̃ r

)
, each of them defining some extra

knowledge about the individuals.

Definition 7 (Multi-dimensional extended fuzzy graph fuzzy vector based (MEFVFG)).
Let G = (V, E) denote a graph with n nodes and m edges, and let

(
f̃ 1, . . . , f̃ r

)
denote a family

of r independent vector of n fuzzy sets, each of them defining a type of information, so that
∀` = 1, . . . , r; i = 1, . . . , n the component f̃ `i is the fuzzy set related to the characteristic ` and
the individual i with membership function η f `i

: U` −→ [0, 1]. Let D : F(R+) → R+ be a

defuzzification operator (that we will assume that is the same for all characteristics f̃ `), and let
p` ∈ (0, 1] be a parameter in (0, 1].

Then, the tuple Ĝ =
(

V, E,
(

µ f 1,p1 , . . . , µ f r ,pr

))
is said to be a multi-dimensional extended

fuzzy graph (MEFVFG) based on the r fuzzy vectors ( f̃ 1, . . . , f̃ r ).

Example 2. Let L̃ = {Very− Low, Low, Medium, High, Very−High} denote a fuzzy linguistic
variable defined over the universe U = [0, 100] characterized by the corresponding membership
functions ηVL, ηL, ηM, ηH , ηVH : [0, 100] → [0, 1] associated with the different linguistic terms
that represent how in agreement a person is with a specific law, LW1. Let G = (V, E) denote a cyclic
graph with V = {1, 2, 3, 4, 5, 6, 7, 8} and E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8),
(8, 1)}, and finally let f̃ 1 =

(
f̃ 1
1 , . . . , f̃ 1

8

)
= (VL, VL, L, VL, H, VH, H, VH) be a vector of fuzzy

sets that models the linguistic terms affinity of these eight nodes to the congress proposal LW1 and
let f̃ 2 =

(
f̃ 2
1 , . . . , f̃ 2

8

)
= (M, M, M, M, L, L, L, H) be a vector of eight fuzzy sets that models the

linguistic terms affinity of the eight nodes to the congressional bill, which is denoted by LW2 (see
Figure 2).

From the previous definition, for any p1,p2 ∈ (0, 1], it is possible to build the MEFVFG
associated with the two fuzzy vectors ( f̃ 1, f̃ 2) as

Ĝ =
(

V, E,
(

µ f 1,p1
, µ f 2,p2

))
.

Let us remark that this last case generalizes other existent tools, such as for example
fuzzy graphs defined in [32], which actually only define relations between connected
individuals, the extended fuzzy graphs [11], in which the additional information is about
the relations between the elements but not on the individuals itself; or the [9] whose
additional information is about individuals, but it is crisp.

Figure 2. Graph G = (V, E) and fuzzy linguistic variable L̃.

4. An Application: Social Network Analysis with Soft Information

As a specific application of the new proposed model, we take up firstly the idea
introduced in [9] about community detection in graphs taking into account the information
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given by a crisp vector, x. In that preliminary work, we set up the philosophy of finding
groups in a network when there is a vector of crisp values providing some additional
information. Now, we generalize this idea, starting from extended fuzzy graphs that are
built from r fuzzy vectors f̃ 1, . . . , f̃ r.

To find “good” communities in Ĝ, we have to extend the Sugeno Louvain Algorithm
described in [9] to a multi-dimensional stage with more than one vector of additional
information, with the peculiarity that the components of the vectors considered are no
longer crisp values but fuzzy sets: therefore, actually, what we have is an MEFVFG. We
illustrate the problem of community detection based on an MEFVFG in Example 3.

Example 3. We consider a chain with 12 nodes, represented by the crisp graph G = (V, E) (see
Figure 3) about which we have additional information, ( f̃ 1, f̃ 2, f̃ 3, f̃ 4), and the defuzzification operator D,
so (D( f̃ 1) = (9, 9.5, 10, 1, 0.5, 1, 9.5, 8, 10, 1, 1, 2), D( f̃ 2) = (10, 9.5, 9, 1, 0.5, 1, 9, 9, 9.5, 1.5, 2,
0.5), D( f̃ 3) = (9.5, 8.5, 10, 1.5, 1, 1, 10, 9, 9.5, 0.9, 1, 1), D( f̃ 4) = (9, 9, 10, 1, 1, 1, 10, 9.5, 9, 0.5,
1, 1)). These fuzzy sets represent the opinion of 12 people about f our different films. We accept
that there are more synergies between those people who have similar preferences. Partition P =
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} is obtained with any algorithm based on modularity
optimization. Nevertheless, if the additional information is considered, the partition provided by the Multi-
Dimensional fuzzy Sugeno–Louvain 1-additive is P f = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}.

Figure 3. Chain with 12 nodes. Partitions P and P f .

The proposed method, named Multi-dimensional Fuzzy Sugeno Louvain, is based on
the Louvain algorithm [16]. The main point is to summarize all the knowledge of the
MEFVFG into two matrices: A that represents the direct connections between the nodes
(edges), and F summarizes the additional information given by the family of vectors of
fuzzy sets

(
f̃ 1, . . . , f̃ r

)
. The weighted graph associated to a fuzzy Sugeno λ-measure [9]

µ f `,p` is essential, and it is considered in terms of a multi-dimensional scenario (MAWG)

(one weighted graph with adjacency matrix F` associated to each µ f `,p` ). This methodology
to find realistic partitions in an MEFVFG explained below is summarized in Algorithm 2,
which includes its pseudo-code, and in Figure 4, which shows a flowchart of the process.

• Step 1: definition of the MAWG. Given the fuzzy Sugeno λ-measures
(

µ f 1,p1 , . . . , µ f r ,pr

)

obtained from
(

f̃ 1, . . . f̃ r
)

and
(

p1, . . . , pr), and the defuzzification operator D,

matrices
(

F1, . . . , Fr) are calculated as

F`
ij = φ

(
Shi(µ f `,p`)− Shj

i(µ f `,p`), Shj(µ f `,p`)− Shi
j(µ f `,p`)

)
(4)

being φ : [−1, 1] → [0, 1] a bi-variate aggregation operator [33]; Shi(µ f `,p`) and

Shj
i(µ f `,p`) the Shapley values of i on µ f `,p` in the presence of all the elements of V or

V\{j}, respectively [34].
• Step 2: information aggregation. Matrices F1, . . . , Fr are aggregated to obtain the

matrix F. The aggregation function Φ : Πr → Π is used, being Π the set of quadratic n-
matrices. Particularly, we suggest the use of a matrix aggregator based on the classical
aggregation operators with element to element transformation: F = Φ

(
F1, . . . , Fr).
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After this aggregation process, the method Duo Louvain has to be applied [12,13],
considering the matrix M = θ(A, F), being θ : Π2 → Π an aggregation function. That
method can consider the information of two matrices when finding communities in a graph.

Algorithm 2 Multi-dimensional Fuzzy Sugeno–Louvain

1: Input:
(

A,
(

f̃ 1, . . . , f̃ r
)

,
(

p1, . . . , pr)), A represents G = (V, E); f̃ ` is a vector of fuzzy

sets; p` ∈ [0, 1), ∀` = 1, . . . , r;
2: Output: P;
3: Preliminary
4: for (` = 1) to (r) do
5: Calculate µ f `,p` (fuzzy Sugeno λ-measure from f̃ `);

6: F`
ij ← φ

(
Shi(µ f `,p`)− Shj

i(µ f `,p`), Shj(µ f `,p`)− Shi
j(µ f `,p`)

)
, ∀i, j ∈ V;

7: end for
8: F ← Φ

(
F1, . . . , Fr);

9: M← θ(A, F);
10: end Preliminary
11: P← Duo Louvain(A, M);
12: return(P);

Figure 4. Flowchart of the methodology Multi-dimensional Fuzzy Sugeno–Louvain.

Remark 1. The concept of “what is a good group” depends on the operator Φ applied. In the
case that Φ is a disjunctive operator, groups are composed by elements among which there are
strong synergies regarding any evidence or characteristic (any fuzzy vector). The size of the groups
that are somehow similar regarding the additional information will increase the more vectors are
considered. In contrast, where Φ is a conjunctive operator, the groups are composed by elements
among which there are strong synergies in all the evidence or characteristics. The size of the groups
that are somehow similar regarding the additional information will increase the less vectors are
considered. Particularly, we consider the most popular ordered weighted averaging aggregation
operators, OWA [35]: maximum, minimum and average.

As in the uni-dimensional problem with crisp information addressed in [9], the
exponential complexity concerning the calculation of the Shapley value may be avoided
by considering an additive fuzzy measure. For this reason, in this paper, we suggest the
specific characterization of µ f `,p` when p = 1. On this basis, as µa

f ` is a 1−additive fuzzy
measure [31], it holds:

Shi(µ
a
f `) =

D( f̃ `i )

∑n
k=1 D( f̃ `k )

and Shj
i(µ

a
f `) =

D( f̃ `i )

∑n
k=1
k 6=j

D( f̃ `k )

In this context, we propose a specific application of the Algorithm Multi-dimensional
Fuzzy Sugeno–Louvain. For every ` = 1, . . . , r, the characterization of µa

f ` only depends on

the calculation of F`. Then, the complexity of the method 1-additive Multi-dimensional Fuzzy
Sugeno–Louvain is equal to that of the Louvain algorithm (Algorithm 3) [16].
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Algorithm 3 1-additive Multi-dimensional Sugeno–Louvain

1: Input:
(

A,
(

f̃ 1, . . . , f̃ r
))

, A is a representation of G = (V, E); f̃ ` is a vector of fuzzy
sets, ∀` = 1, . . . , r;

2: Output: P;
3: Preliminary
4: for (` = 1) to (r) do

5: F`
ij ← φ{| D( f̃ `i )

∑n
k=1 D( f̃ `k )

− D( f̃ `i )

∑n
k=1
k 6=j

D( f̃ `k )
|, | D( f̃ `j )

∑n
k=1 D( f̃ `k )

− D( f̃ `j )

∑n
k=1
k 6=i

D( f̃ `k )
|};

6: end for
7: F ← Φ

(
F1, . . . , Fr);

8: M← θ(A, F);
9: end Preliminary

10: P← Duo Louvain(A, M);
11: return(P);

Example 4. We illustrate the idea of our methodology in a simple case considering there is a
vector of fuzzy sets. Let us consider the situation described in Example 1 in which we have a
cycle of eight nodes and the information associated to each node is described in linguistic terms
f̃ =

(
f̃1, . . . , f̃8

)
= (VL, VL, L, VL, H, VH, H, VH). The whole information is summarized in

the Figure 5. Now, let us assume that these linguistic fuzzy variables defined over U = [0, 100]
are modeled in terms of the following four fuzzy trapezoidal sets. ṼL = (0, 0, 10, 25), L̃ =
(5, 10, 20, 25), M̃ = (30, 40, 60, 70), H̃ = (60, 70, 80, 100), ṼH = (75, 90, 100, 100). It is
possible to see that if we apply the Fuzzy Sugeno–Louvain 1-additive, just in the unidimensional
so we only have one matrix F`, to this extended fuzzy graph the partition obtained for any p is
P f = {{1, 2, 3, 4}, {4, 5, 6, 7, 8}}.

Figure 5. Graph G = (V, E) and fuzzy linguistic variable L̃.

5. Computational Results

When a new method is proposed, an evaluation of its performance is required.
This process can be addressed comparing the results obtained with the method under
evaluation with respect to other proposals established in the literature to solve the same
problem. Nevertheless, in our case, as the community detection problem with additional
soft information has never been faced before, we cannot compare our method with other
proposals of the literature. Then, we work on an evaluation process. For this, we consider
several reference models [36] to which we apply our methodology, whose performance is
quantified with the calculation of the Normalized Mutual Information (NMI) [37].

Definition 8 (Normalized Mutual Information (NMI) [37]). Let X = {xi}i∈V and Y = {yi}i∈V
denote two disjoint partitions of the graph G = (V, E). Let P(x) denote the probability that a
random node is assigned to the community x, and let P(x, y) denote the conditional probability that
a random node is assigned to the community x in the partition X and assigned to the community y
in the partition Y. The Shannon entropy of X is calculated as H(X) = −∑x P(x)log(P(x)); and
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the Shannon entropy of X and Y is calculated as H(X, Y) = −∑x ∑y P(x, y)log(P(x, y)). The
Mutual Information (MI) among partitions X and Y is defined as:

MI(X, Y) = ∑
x

∑
y

P(x, y)log
P(x, y)

P(x)P(y)
(5)

Then, NMI is a normalization of Equation (5).

NMI(X, Y) =
2MI(X, Y)

H(X) + H(Y)
(6)

Although there can be some issues with the basic version of the measure [38], we
consider this measure because, to the best of our knowledge, it is fair enough to compare
how similar two partitions are; i.e., NMI allows us to quantify how much the partition
provided by our method resembles the considered standard partition.

In all the benchmark models we present, there are two components: the adjacency
matrix A and the additional information matrix F, which are obtained from some aggregation
of a family of vectors of soft information about the individuals. That component about the
synergies is defined from multiple vectors. The generation of these vectors is based on the
use of trapezoidal fuzzy sets [39].

5.1. Experiment Design

Following the idea in [2], then, we explain how we generate the benchmark models.
Each one will represent an MEFVFG with n = 256 nodes. This process has two main parts:
the definition of the adjacency matrix and the generation of the additional information.

To approach the manipulation of multiple vectors from a benchmarking perspective,
we propose the following: in every vector, the value of each component depends on certain
trapezoidal fuzzy sets, specifically saying low and high fuzzy sets. Low fuzzy sets are related
to the generation of the components of each vector which imply scarce connections among
the nodes, whereas high fuzzy sets refer to the generation of the components of the vectors
which imply many connections among the nodes. Therefore, in each vector, the component
related to nodes which are in the same community are generated as high fuzzy sets, whereas
the components related to nodes of different communities are generated as low fuzzy sets.
Let us emphasize that in the simulation process presented, what we randomly generate
are the values D( f̃ i) as high or low depending on the trapezoidal fuzzy sets f̃ i, being D a
defuzzification operator.

We have r vectors of fuzzy sets as the starting point in each benchmark, where r is the
amount of communities embedded in the synergies matrix, F. Each vector is associated
with a community Ci, so nodes belonging to Ci have a high value in the vector f̃ i, whereas
nodes which are not in Ci have a low value in f̃ i: D( f̃ i

j ) = h̄, if j ∈ Ci; D( f̃ i
j ) = `, if j /∈ Ci.

The process for defining and simulating these trapezoidal fuzzy sets is detailed below. To
analyze different scattering of the ` and h̄ fuzzy sets, several combinations of the parameters
a, b, c and d are considered (see Figures 6 and 7). For example, to define a benchmark graph
with f our communities, we have to generate f our n-vectors

(
D( f̃ 1), D( f̃ 2), D( f̃ 3), D( f̃ 4)

)

with n = 256 nodes.
Each benchmark model represents an MEFVFG summarized into two matrices: one of

direct connections (adjacency A) and another of additional information (synergies matrix
F, obtained from the soft information vectors). Below, we explain the generation of them.

1. Adjacency matrix. The adjacency matrix A is randomly generated according to
Equation (7) for a set V with 256 nodes. We consider different combinations of
the values of parameters α and β regarding the input/output values (zin and zout),
as shown in Table 1 (similarly to the proposal in [2]). These parameters regulate
the density of the connections matrix, A, whose generation process is shown in
Algorithm 4.
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P(i, j) =
{

α if i, j ∈ Ck
β if otherwise

(7)

Table 1. Parameters used to generate the adjacency matrix A of each model.

Network 1 Network 2 Network 3 Network 4 Network 5 Network 6 Network 7 Network 8 Network 9

α 0.45 0.4 0.35 0.325 0.3 0.275 0.25 0.225 0.2
β 0.016 0.033 0.05 0.058 0.066 0.075 0.083 0.091 0.1

Algorithm 4 Generate Adjacency
1: Input: (|C1|, . . . |Cr|), α, β, n;
2: Output: A;
3: A(i, j)← 0, ∀i, j = 1, . . . , n;
4: for (i = 1) to (n) do
5: for (i = 1) to (n) do
6: for (` = 1) to (r) do
7: ε← rand(0, 1);
8: if (|C`−1| < i ≤ |C`|) and (|C`−1| < j ≤ |C`|) then
9: if ε < α then

10: A(i, j)← 1;
11: end if
12: else
13: if ε < β then
14: A(i, j)← 1;
15: end if
16: end if
17: end for
18: end for
19: end for
20: return(A);

2. Low trapezoidal fuzzy sets generation. This type of fuzzy sets f̃ i, shown in Figure 6,
are generated to represent, in each vector D( f̃ i), the components related to the
elements with a low value in the characteristic of the corresponding vector.
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Figure 6. Low trapezoidal fuzzy set.

After fixing the values a and b, we can calculate the lines r1 and r2 to obtain a trapezoid
below them with area 1. Particularly, r1 is defined as y = h, where h is a value chosen
so that the value of the corresponding integral is 1: 1 = ah +

(
b−a

2

)
h =⇒ h = 2

a+b .

On the other hand, r2 is the line through the points
(

2
a+b , a

)
and (0, b), so
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r2 =

{
2

a+b = α + βa
0 = α + βb

By isolating α and β, α = −2b
(a+b)(a−b) and β = 2

(a+b)(a−b) , the distribution function of
the low trapezoidal fuzzy set is:

F(x) =

{
2x

a+b , x ∈ [0, a]
2a

a+b +
∫ x

a

(
−2b

(a+b)(a−b) +
2z

(a+b)(a−b)

)
dz, x ∈ (a, b]

where

2a
a + b

+
∫ x

a

( −2b
(a + b)(a− b)

+
2z

(a + b)(a− b)

)
dz =

2a
a + b

+
(x− b)2 − (a− b)2

(a + b)(a− b)

Once the low fuzzy set is characterized, in the following denoted by `, we apply the
inverse method. First, we have to calculate the inverse function of F, F−1(x); then, we
simulate a value between 0 and 1 (p). Finally, F−1(p) is the value assigned to an edge
which connect nodes which are not in the same community.

• If p ≤ 2a
a+b =⇒ p = 2x

a+b =⇒ x = (a+b)p
2 .

• If p > 2a
a+b =⇒ p = 2a

a+b +
(x−b)2−(a−b)2

(a+b)(a−b)

=⇒ x = b−
√(

p− 2a
a+b

)
(a + b)(a− b) + (a− b)2.

We take the sign ‘−’ because x− b < 0.

Then, if p U(0, 1), the low values considered are obtained as:




x = (a+b)p
2 if p ≤ 2a

a+b

x = b−
√(

p− 2a
a+b

)
(a + b)(a− b) + (a− b)2 otherwise

(8)

This process is summarized in Algorithm 5.

Algorithm 5 Low Fuzzy Set
1: Input: a, b;
2: Output: `;
3: p← rand(0, 1);
4: if p ≤ 2a

a+b then

5: `← (a+b)p
2 ;

6: else

7: `← b−
√(

p− 2a
a+b

)
(a + b)(a− b) + (a + b)2;

8: end if
9: return(`);

3. High trapezoidal fuzzy sets generation. This type of fuzzy sets, f̃ i, shown in Figure 7,
are generated to represent, in each vector D( f̃ i), the components related to the
elements with a high value in the characteristic of the corresponding vector.
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Algorithm 5 Low Fuzzy Set
1: Input: a, b;
2: Output: ℓ;
3: p← rand(0, 1);
4: if p ≤ 2a

a+b then

5: ℓ← (a+b)p
2 ;

6: else

7: ℓ← b−
√(

p− 2a
a+b

)
(a + b)(a− b) + (a + b)2;

8: end if
9: return(ℓ);

3. High trapezaoidal fuzzy sets generation. This type of fuzzy sets f̃ i, showed in the 368

Figure 7, are generated to represent, in each vector D( f̃ i), the components related to 369

the elements with a high value in the characteristic of the corresponding vector. 370
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1
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h
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Figure 7. High trapezoidal fuzzy set.

After fixing the values c and d, we can calculate the lines r3 and r4 to obtain a trapezoid
below them with area 1. Particularly, r3 is defined as y = h, where h is a value
chosen so that the value of the corresponding integral is 1: 1 = (d−c)h

2 (1− d)×
h =⇒ h = 2

(1−d)+(1−c)

On the other hand, r4 is the line through points
(

2
(1−d)+(1−c) , d

)
and (0, c), so:

r4 =

{
2

(1−d)+(1−c) = α + βd

0 = α + βc

By isolating α and β, α = −2c
[(1−d)+(1−c)](d−c) and β = 2

[(1−d)+(1−c)](d−c) , so the
distribution function of the high trapezoidal fuzzy set is:

F(x) =





∫ x
c

(
−2c+2z

((1−d)+(1−c))(d−c)

)
dz, x ∈ [c, d]

∫ d
c

(
−2c+2z

((1−d)+(1−c))(d−c)

)
dz +

∫ z=x
z=d

2
(1−d)+(1−c) , x ∈ (d, 1]

where

•
∫ x

c
−2c+2z

((1−d)+(1−c))(d−c)dz = (x−c)2

((1−d)+(1−c))(d−c) ;

•
∫ d

c

(
−2c+2z

((1−d)+(1−c))(d−c)

)
dz +

∫ x
d

2
(1−d)+(1−c) =

(x−d)+(x−c)
(1−d)+(1−c) .

As with low fuzzy sets, we apply the inverse method to simulate the values of the high
fuzzy sets (h̄ in the following). Then, the value F−1(p) is:

• If p ≤ d−c
(1−d)+(1−c) =⇒ p = (x−c)2

((1−d)+(1−c))(d−c)

=⇒ x = c +
√

p(d− c)[(1− d) + (1− c)];
• If p > d−c

(1−d)+(1−c) =⇒ p = (x−d)+(x−c)
(1−d)+(1−c) =⇒ x = p((1−d)+(1−c)+d+c)

2 .
We take the sign ‘+’ because x− d > 0.

Then, if p U(0, 1), the high values considered are obtained as:
{

x = c +
√

p(d− c)((1− c) + (1− d)) if p ≤ d−c
(1−c)+(1−d)

x =
p((1−c)+(1−d))+c+d

2 otherwise
(9)

This process is summarized in Algorithm 6.
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Algorithm 6 High Fuzzy Set
1: Input: c, d;
2: Output: h̄;
3: p← rand(0, 1);
4: if

(
p ≤ d−c

(1−c)+(1−d)

)
then

5: h̄← c +
√

p(d− c)((1− c) + (1− d));
6: else
7: h̄← p((1−c)+(1−d))+c+d

2 ;
8: end if
9: return(h̄);

4. Generate multiple vectors. In each benchmark model, we have r vectors as the
starting point, where r is the amount of communities embedded in the synergies
matrix, F. Each vector is associated with a community Ci, so that nodes belonging
to Ci will have a high value in f̃ i, whereas the nodes which are not in Ci will have a
low value in f̃ i (then D( f̃ i

j ) = h̄, if j ∈ Ci; D( f̃ i
j ) = `, if j /∈ Ci). Different combinations

of the parameters a, b, c and d are considered to generate the low/high fuzzy sets
(see Table 2). These combinations affect the scattering of the ` and h̄ fuzzy sets. The
process is summarized in Algorithm 7.

Algorithm 7 Generate Multiple Vectors
1: Input: (|C1|, . . . |Cr|), a, b, c, d;
2: Output: multipleVectors;
3: |C0| ← 0;
4: multipleVectors← 0; (matrix r× n, the line ` represents the vector D( f̃ `))
5: for (` = 1) to (r) do
6: for (i = 1) to (n) do
7: if |C`−1| < i ≤ |C`| then
8: multipleVectors(`, i)← HighFuzzyset(c, d);
9: else

10: multipleVectors(`, i)← LowFuzzyset(a, b);
11: end if
12: end for
13: end for
14: return(multipleVectors);

Table 2. Parameters to generate the matrix F of the benchmark model.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

a 0 0 0 0.1 0.1 0.1 0.2 0.2 0.2
b 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
c 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
d 1 0.9 0.8 1 0.9 0.8 1 0.9 0.8

5. Synergies matrix. From vectors generated with the Algorithm Generate Multiple

Vectors, we obtain
(

µa
f 1 , . . . , µa

f r

)
. We consider the matrices

(
F1, . . . , Fr) and the

adjacency of the corresponding MAWG. The second component of each benchmark
is an aggregation of these matrices, F = Φ

(
F1, . . . , Fr) = max

(
F1, . . . , Fr). We

summarize this process in Algorithm 8 for the particular case p = 1.
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Algorithm 8 Matrix From Multiple Vectors
1: Input: (|C1|, . . . |Cr|), a, b, c, d;
2: Output: F;
3: multipleVectors← GenerateMultipleVectors((|C1|, . . . |Cr|), a, b, c, d);
4: for (` = 1) to (r) do
5: for (i = 1) to (n) do
6: Sh(`, i)← multipleVectors(`,i)

∑n
k=1 multipleVectors(`,k) ;

7: for (j = 1) to (n) do
8: Shj(`, i)← multipleVectors(`,i)

∑n
k 6=i
k∈V

multipleVectors(`,k) ;

9: end for
10: end for
11: end for
12: for (` = 1) to (r) do
13: for (i = 1) to (n) do
14: for (j = 1) to (n) do
15: F`(i, j)← min{|Sh(`, i)− Shj(`, i)|, |Sh(`, j)− Shi(`, j)|};
16: end for
17: end for
18: end for
19: F ← max{F1, . . . , Fr};
20: return(F);

5.2. Results

Then, we show the evaluation of the proposed methodology in the 1-additive stage.
We do this to avoid exponential complexity in computing fuzzy measures. Nevertheless,
there is no reason to think that the goodness of the partitions obtained, and therefore the
accuracy of the evaluated method, will worsen if non-additive measures are considered.
To do so, we consider several structures which vary in size and number of groups. Each
of them represents an MEFVFG, Ĝ =

(
V, E,

(
µ f 1,p1 , . . . , µ f r ,pr

))
with two independent

components. One of them, G = (V, E), is related to the direct connections among the nodes
represented by edges. The other,

(
µ f 1,p1 , . . . , µ f r ,pr

)
, is used to define a relations matrix F.

For each combination of α and β; a, b, c and d, we analyze the linear combination
M = θ(A, F) = γA + (1− γ)F, by considering γ = 0 (this is the only case in which,
including the additional information, we can assert the partition which should be obtained).

In Tables 3–6, we show the average of the NMI obtained from 100 iterations of
each combination of α and β, concerning matrix A, and the parameters a, b, c and d
for the definition of the vectors which give rise to the synergies matrix F. To simplify the
interpretation of the results, these tables display the values in different colors: the closer
the value is to 1 (i.e., the better the result), the lighter the color.

• Benchmark graph. Model 1. It is the simpler benchmark model, showed in the
Figure 8. The adjacency matrix has two communities with an expected size of 128
each, being < k >= 128α + 128β the expected degree of each node. F1 is obtained from
vectors

(
D( f̃ 1), D( f̃ 2), D( f̃ 3), D( f̃ 4)

)
, so the 256 nodes are organized into four groups

CF
1 , . . . , CF

4 with expected size |CF
i | = 64. In Table 3, we show the results. Note that

the tested algorithm always recovers the standard partition, even when the networks
are sparse.
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• Benchmark graph. Model 2. Due to modularity resolution limit [40], the Louvain
algorithm is very sensitive to changes in the groups’ size, particularly with small
communities [41]. Then, we test the algorithm in this context, where the groups of the
standard structure are smaller than in Model 1, as it can be seen in the Figure 9. F2 has
eight communities with 32 nodes each. We also reduce the communities in A2: it has
four communities with 64 nodes each, being < k >= 64α + 192β the expected degree.
The obtained results are shown in Table 4. Despite the size reduction, our method
provides good results.
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Table 4. NMI. Model 2.

NMI F2
Case 1

F2
Case 2

F2
Case 3

F2
Case 4

F2
Case 5

F2
Case 6

F2
Case 7

F2
Case 8

F2
Case 9

A2
Network 1 1 1 1 1 1 1 0.9987 0.9981 0.9994

A2
Network 2 1 1 1 1 1 1 0.9986 0.9980 0.9994

A2
Network 3 1 1 1 1 1 1 0.9993 0.9992 0.9994

A2
Network 4 1 1 1 1 1 1 0.9986 0.9980 0.9996

A2
Network 5 1 1 1 1 1 1 0.9984 0.9990 0.9991

A2
Network 6 1 1 1 1 1 1 0.9986 0.9984 0.9990

A2
Network 7 1 1 1 1 1 1 0.9990 0.9992 0.9992

A2
Network 8 1 1 1 1 1 1 0.9968 0.9992 0.9989

A2
Network 9 1 1 1 1 1 1 0.9993 0.9992 0.9996

• Benchmark graph. Model 3. Previous results set light on the high quality of the tested
method in symmetric structures. However, the interest of every method goes further
than synthetic structures; the main objective is to reach proper results in real cases.
Then, we work with asymmetric structures to simulate more realistic networks, as
it can be seen in the Figure 10. F3 has four communities whose sizes are |CF

1 | = 43,
|CF

2 | = 42, |CF
3 | = 43, |CF

4 | = 96, |CF
5 | = 32. On the other hand, A3 = A1. We show the

results in Table 5.
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Table 5. NMI. Model 3.

NMI F3
Case 1

F3
Case 2

F3
Case 3

F3
Case 4

F3
Case 5

F3
Case 6

F3
Case 7

F3
Case 8

F3
Case 9

A3
Network 1 1 1 1 1 1 1 0.9996 0.9994 0.9997

A3
Network 2 1 1 1 1 1 1 0.9997 1 1

A3
Network 3 1 1 1 1 1 1 0.9997 1 1

A3
Network 4 1 1 1 1 1 1 0.9990 1 1
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Table 5. Cont.

NMI F3
Case 1

F3
Case 2

F3
Case 3

F3
Case 4

F3
Case 5

F3
Case 6

F3
Case 7

F3
Case 8

F3
Case 9

A3
Network 5 1 1 1 1 1 1 1 0.9996 0.9992

A3
Network 6 1 1 1 1 1 1 1 0.9994 0.9994

A3
Network 7 1 1 1 1 1 1 0.9997 0.9996 0.9997

A3
Network 8 1 1 1 1 1 1 1 1 0.9994

A3
Network 9 1 1 1 1 1 1 1 1 0.9995

• Benchmark graph. Model 4. This model combines the reduction of the size communities
with partition asymmetry, as it can be seen in the Figure 11. In this case, A4 = A2,
and F4 has eight communities whose expected sizes are |CF

1 | = 24, |CF
2 | = 40,

|CF
3 | = 64, |CF

4 | = 21, |CF
5 | = 22, |CF

6 | = 21, |CF
7 | = 32 y |CF

8 | = 32. Despite the
obvious complexity of this structure, the results presented in Table 6 show the good
performance of the tested algorithm.
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6. Discussion and Conclusions

Within the framework of the analysis of networks and social networks, this work
is based on the analysis of fuzzy information. We can find different main contributions
in this article. Our first objective is the definition of a new representation model, whose
base is made up of two types of information sources. The first is a set of individuals
whose direct connections are known and represented by a crisp graph or network. The
other part deals with some additional knowledge about these individuals in terms of soft
information represented by family of vectors of fuzzy sets. On this basis, we define the
multi-dimensional extended fuzzy graph based on fuzzy vectors (MEFVFG). This new
model combines the crisp information of a graph with the soft information provided by the
vectors about the individuals. We define it from the simplest case where there is only one
vector of fuzzy sets to the multidimensional scenario involving multiple vectors.

Another goal of this work is the proposal of a specific application of this new model
related to community detection. This problem has been previously addressed in terms
of fuzzy measures that provide additional information about the synergies among the
individuals in some works [12,13,28]. In [11], we proposed a methodology, named Duo-
Louvain, to find a “good” partition of the individuals of an extended fuzzy graph considering
both the connections defined by the edges and also the additional information provided
by the fuzzy measures. It was based on the well-known Louvain method [16], a greedy
multi-phase algorithm based on local moving [42] and modularity optimization [25]. That
proposal [11] is the inspiration of this paper. Now, we work on the community detection in
networks by considering additional soft information about the individuals of the network.
Specifically, we face the existence of several fuzzy sets related to the nodes of a network, so
our proposed application of the MEFVFG in current work is to obtain realistic communities
in it. That idea is quite useful and goes beyond any other previous proposal, as it can be
applied in a wide range of scenarios, for example, when any linguistic variable(s) appear.
As far as we know, this situation has never been faced before, so this work intrinsically
leads to the definition of a new type of problem.

Another important objective is the evaluation of the developed methodology. As
mentioned above, the problem presented in this article has not been addressed before in
the literature, so there are no other methods with which we can compare our proposal.
Then, to evaluate the performance of the new algorithm, we present some experimental
results developed on the basis of benchmarking [36] and NMI calculation [37]. We develop
some methods based on trapezoidal fuzzy sets with which we generate the elements of
the gold models considered, each with a standard partition summarizing an MEFVFG,
which should be detected by the evaluated algorithm. The high level of the results shown
in Section 5 allows us to assert the good performance of the proposed method: the NMI
calculated in almost all the scenarios is 1, which means that our algorithm perfectly detects
the standard partition despite the complexity of the considered model.

As further research, we stress the importance of an in-depth analysis of the distance
between fuzzy sets. Specifically, we are interested in analyzing how far two fuzzy sets
are in order to compute new measures of additional information to be later considered
in the presented methodology. Our idea is to work with the Hausdorff distance between
two fuzzy sets [43], based on the classic metric with the same name [44], which is used
in mathematics to quantify how far two subsets of a metric space are from each other. To
approach this theoretical approach, it is essential to be familiar with the properties of fuzzy
sets and also with various topological concepts related to the measurement of distances in
different spaces.

Another important line of future work is not so theoretical but applied. Let us
emphasize the importance of applying this methodology in real-life cases in order to obtain
realistic groups of individuals which not only consider the direct connections between them
but also some additional soft information. Real problems are too complex to be represented
by a crisp graph alone. The need to include as many sources of information as possible
is clear. For example, in the behavior of people, things are not “black or white”. To the
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question “do you agree with this law?”, the answer may be something like “well, more or
less but not quite”. The more capable we are of representing these situations in a model, the
more realistic the results obtained will be. We have to be prepared to understand, model,
and analyze the fuzzy knowledge of real life, for example, by the consideration of linguistic
terms. Undeniably, it is worth an in-depth analysis of the linguistic terms that accompany
any real problem, for whose study the tools and methodology proposed here can be crucial.
When facing this type of problem, it is vitally important to take into account its difficulty,
both computationally and in terms of understanding. When fuzzy elements appear, it is
essential to be well prepared to consider tools that mitigate the intrinsic difficulty.
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